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A Szego type property for two doubly
commuting contractions

by MAREK SELOCINSKI (Krakéw)

Abstract. In this paper we consider scalar measures for a pair of doubly commut-
ing contractions. If we take the spectral measure E {on the two-dimensional torus)
connected with the special unitary dilation of two doubly commuting contractions,
we can ask about continuity of scalar measures pg(c) = (E (o), z) with respect to
the measure m X u2 on the torus (m is the Lebesgue measure on the unit circle). It
is proved in the paper that if T}« — 0, then the measure x; is mutually absolutely

continuous with respect to m x p2 and, for almost all 2, logf(z, 2,) is summable,
whero

dug

fley, ) = m);

ui(o) = pg(axT).

In what follows H is a complex Hilbert space with inner product
(#,y), =,y e H, and norm |jz|| = }/(_m?v-), xeH. L(H) stands for the
algebra of all linear bounded operators on the space H. For T e L(H), T"
denotes the adjoint of 7. If T € L(H) is a contraction, then (see [3]) T
has a unitary dilation, i.e., there is a Hilbert space K including H and
2 unitary operator U e L(K) such that T"x = PU"x for every v e H
and » =0,1,2,..., where P is the projection of K onto H. A unitary

dilation U e L(K) is called minimal if K = \/ U"H. 1t is proved (see [5])

that two minimal unitary dilations are unitarily equivalent. Ando in [1]
proved that if T,,T,e L(H) are commuting contractions, then there
are a Hilbert space K > H and two commuting unitary operators
U,, U, € L(K) such that T7Tyz = PUT Uz for every x € H and n, m =
0,1,2,..., P is the projection of K onto H. The couple (U,, U,)
is called a wunitary dilation of T,,T,. A unitary dilation U,, U, on K

is called minimal if K = \/ U} UYH. In the case of two commuting

n,Mm=— 00

contractions, two minimal unitary dilations need not be unitarily equiv-
alent. It is proved in [3] and [5] that if T' is a completely non-unitary
contraction on H and E is the spectral measure of its minimal unitary
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dilation, then for every xe H the scalar measure u(c)= (H(o), ») is
absolutely continuous with respect to m (m is the Lebesgue measure on

d
the unit circle) and logg;% is summable with respect to m. In this paper

we give a similar result for the special unitary dilation of a pair of doubly
commuting contractions.
Let T,, T, be a pair of doubly commuting contractions on the space H.

If 8, is the minimal unitary dilation of T, on the space K, = \/ SrH,
n=-—o00

then (see for example Lemma 1 of [4]) there is exactly one extension S,
on K, of the operator T, such that 8, commutes with §,. Moreover, the
space H reduces §; and 8, = |T,|. Now, forz e H and n,m = 0,1, ...,
we have

(1) PS8y w = PySyStw = PySi'TYe =T T e = TY T .
Since §, is a unitary operator, 8, and S, doubly commute. If V, is the
minimal unitary dilation of 8, on the space K, = \/ VI!K,, then

Nn= —00

(see Lemma 1 of [4]) there.is exactly one unitary extension V, of S, such
that V, commutes with V,. It follows, by (1), that for every x ¢ H and
n,m =0,1,2,... we have the equality

(2) PyViVio = PyPxViVie = PuPy ViSTa=PySI8)s = T} Tpa;

hence the pair V,, V, is a unitary dilation of T, 7,.
Let 2 € H. Then we can define

(3) H.o =V V ViVie=V\ V VIiSre,
n=—00 fil=—00 n=-—00 M=-—00
(4) Hy(n) = V 'V VIVie =V V Vi8e,
PEn m=—o pn m=—o
(5) S.t = ﬂ Hz(")a

n<0
(6) E_(L) = OVI”M_(L),
n=0 (o]
where M_(L)= \/ Vi"L and L = \/ S7u=.

n=0 n=—oo

We shall show that §, = R_(L). We start from considering the spaces
H,(n). We have the following equalities:

H.,n)=V V Vi8yz =\ V¥ V 87 =p\</ VPL = \/ ViV

PN Mm=—0o0 n<n Np=— 00 P—ns0

= VVIVIL =V} V VIL) = VI V VL) = VI M_(L).

q<<0 g<0 a=0
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It follows
8, =MH,(n)=VIM_(L) = N Vi"M_(L) = R_(L).

n<0 n<o n=0
Suppose additionally that TTx — 0 for n — oo. Since 8, is an extension
of T',, we have S}z = Tyz — 0 for n - oo. Since V, is the minimal unitary

dilation of §,, it follows, by L.emma 6.4 of [3], that the following equality
holds:

(7) 8" Pg,Viy =Pgy for ye Vi"M_(L) and n =1,2, ...

Let P, be the projection of K, onto V"M _(L). It follows, by the defi-
nition of P, (sce [3]), that there is @ = s—1limP, and ¢ is the projection
of K onto R_(L). Let y € L. It follows by (7) that

IP,yI* = (P,y,¥) = (S7"Pg, ViP,y,y) = (Pg,ViP,y, STy).

Let y = 87«. Then {P,8y'#|* = (Pg, V1P, 8%, 878y w). Since Stz —0
for n — oo, we get ST ST x| = |IS7'St 2] = IS8z - 0. Since L = \ Sy«,

m=—oo

we have QL = {0}. But @ commutes with V, because R_(L) reduces
V,. Hence we have QV "L = V{"QL = {0}. Consequently QM _(L)
= {0} and R (L) = QR (L) = Q( (N Vi"M_(L) = N QVi"M_(I) =

n=0 nz=0

= () V{"QM_(L)y = {0}. Now we consider the following process:

nz=0
z(n,m) = Vi V3w If E; is the spectral measure of V, (¢ = 1, 2), then
E = F,x F, is the spectral measure of the pair V,, V,. It is easy to
show that for x(n, m) the following condition holds true

(8) B(n,m) = (x(s+n,t-+m), x(s, t))  does not depend on s, ?.
Indeed,

(w(s+n,t4m), x(s,t)) = (VT Vi™s, VIVia) = (ViVyw, o).

Also, by this computation we have

(9) le Zydu, (2, 22),
where u,(0) = (E(o)x, z); o is a Borel set on I,

If H (n) =V V z(p, m) and S, = () H,(n), then by the definition

PN M=—00 <0
of the process z(n, m) we get that H_(n) = H,(n) and S, = §,. It follows
that if T'# — 0 for » — oo, then S, = {0} and, consequently, for the

process x(n,m) the assumptions of the following theorem hold true
(Theorem 1 of [2]):
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Suppose that for the process #(n, m) condition (9) holds. Then §, = {0}
if and only if:

(10) the measures u, and m X u, are mutually absolutely continuous,
where m is the Lebesgue measure on the unit circle I" and u, (o)
= u,(I" X o) for every Borel subset ¢ of I,

dp,
A1) i foz) = gy

to x4 ) we have the inequality

lf logf(2y, zz)dm(zl)‘ < 0.

then for almost all z, (with respect

From this theorem we get the following

THEOREM 1. Let T,, T, be a pair of doubly commuting conlractions
on the space H. Suppose that E = E, X E, is the spectral measure of Vi, V,
(Vy, V, is the unitary dialation of T, T, defined as above), where E; is the
spectral measure of V; (¢ =1, 2). Let x € H be a vector salisfying TYx — 0
Jor n— oo. Then:

(12) the measures u, and m X u, are mutually absolutely continuous,
where p, (o) = (E(o)@, z) and u;(8) = (E.(d)z, z),

d H
(13)  if f(21,2;) = __,ui_w_’ then for almost all z, (with respect to u,) the
d(m X py)

following inequality holds:
| [ogf(zy, ) dm(zy)| < oo.

Using this theorem we can prove

COROLLARY. Suppose that the assumptions of Theorem 1 are fulfilled.
If, additionally, T7x — 0 for m — oo, or T, is completely non-unitary, then
the closed support of the measure p, is equal to I"™.

Proof. It is sufficient to show that, for c¢very open subset & of I,
fz(6 X 8) > 0. By Theorem 1 we have p,(dx8) = ff (21, 25)d(m X p., ).

It follows, by Fubini’s theorem, that u,(d X ) j f f(21, 25)dmd u, .
Now we consider the function ¢(z,) = f f(z1, 25) dm(zl) Since for almost
4

all z,(u,), logf(2,, 2,) is summable (m), we have, in particular, that for

almost all 2,(u.) and almost all z,(m), f(2,, 2,) > 0. This implies that

g(2,) > 0 for almost all 2,(u, ), because m(d) > 0. Consequently, it suffices

to show that u (6) > 0, because then we get u (8% d) = [g(z))duy > 0.
o
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It is easy to see that if E’ is the spectral measure of the minimal unitary
dilation of T, (for example, the spectral measure of S,), then x. (o)
= (E’ (o), x). Now, by Theorem 8.5 of [3] we get that u, is absolutely
continuous with respect to m and if f(z) = du, /dm, then logf(2) is sum-
mable. In particular, f(z) > 0 for almost all z(m) and consequently
4z (8) = [f(2)dm(z) > 0 which finishes the proof.

é
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