On the inner parts of certain analytic functions

by Balmohan V. Limaye (Bombay, India)

1. Introduction. It is a classical theorem that a bounded analytic function on the open unit disk has an essentially unique factorization into an inner part and an outer part ([3], p. 63). The inner part further factors into a Blaschke product and a singular function ([3], p. 66). More generally, if we consider bounded analytic functions on a finite open Riemann surface R, a similar factorization theorem is to be expected since the open unit disk is the universal covering space for R. But this procedure involves the use of the so-called multiple-valued functions [7]. We have recently proved in [4] the existence and the essential uniqueness of Blaschke products for R without using the above techniques. Our method was based on the H^p -space theory developed in [1]. If X is the boundary of R, let H^{∞} denote the space of non-tangential boundary values on X of bounded analytic functions on R. We give in Section 2 an intrinsic factorization of functions in H^{∞} .

If f is a function in H^{∞} and a is a complex number, f-a is in H^{∞} and we have

$$f-a=B_aS_aF_a,$$

where B_a is a Blaschke product, S_a is a singular function and F_a is an outer function. If \hat{f} is the bounded analytic function on R whose nontangential boundary values are equal to f, it is clear that the factor B_a appears in (*) if and only if a belongs to the range of \hat{f} . The main part of this paper, Section 3, deals with conditions on a under which the factor S_a is absent in (*). We show [Theorem 3.4] that if f(x) misses, for almost every point x in X, a σ -compact set V in C, then for every point a in V, except for a subset of logarithmic capacity zero, the factor S_a is missing in (*). The method of proof is adopted from a similar classical result proved by Frostman in [2], p. 111-112.

Now, if f is bounded away from a point a_0 in C, there certainly exists a sequence $(a_n)_n$ converging to a_0 such that S_{a_n} is absent in (*). Thus, $f-a_n/F_{a_n}$ is a Blaschke product for each n. One would expect that the outer parts F_a would vary continuously with a, i.e. if a_n tends to a_0 ,

then \hat{F}_{a_n} would converge to \hat{F}_{a_0} uniformly on R. This, in particular, would generalize to the case of a finite open Riemann surface Frostman's theorem for the unit disk, stating that every inner function is a uniform limit of Blaschke products. Although we are unable to prove this, we can show that if f is any inner function, there exists a sequence $(B_n)_n$ of Blaschke products such that $(\hat{B}_n)_n$ converges to \hat{f} uniformly on compact subsets of R and $(|\hat{B}_n|)_n$ converges to $|\hat{f}|$ uniformly on R [Theorem 4.1].

2. The factorization theorem. Let δ be the first Betti number of the finite open Riemann surface R, and $\{\gamma_1, \ldots, \gamma_\sigma\}$ a homology basis for the closed paths in R. Then there exist nowhere-vanishing functions ([8], Lemma 1) Z_1, \ldots, Z_σ which are analytic on R and can be extended analytically across the boundary X of R such that

$$rac{1}{2\pi}\int\limits_{
u_j}^{st}d(\log |Z_k|)\,=\,\delta_{j,\,k}\quad ext{ for }\,1\leqslant j\,,\,k\leqslant\sigma.$$

Fix a point z_0 in R and consider the harmonic measure m on X with respect to z_0 . Then a function f in $L^{\infty}(dm)$ belongs to H^{∞} iff there exists a bounded analytic function \hat{f} on R whose non-tangential boundary values are equal to f. Following [1], we call a function f in H^{∞} an inner function if there exist real numbers a_1, \ldots, a_{σ} such that $|f| = |Z_1|^{a_1} \ldots |Z_{\sigma}|^{a_{\sigma}}$, a.e. dm on X. In the classical case, where R is the open unit disk and $\sigma = 0$, this becomes |f| = 1 a.e. $d\theta$ on the unit circle.

Let $(a_n)_n$ be a sequence of points in R. In [4], we defined a Blaschke product for R with respect to the sequence $(a_n)_n$ as an inner function B such that \hat{B} has zeros at $(a_n)_n$ and B is minimal in the following sense: if f is any function in H^{∞} such that \hat{f} has zeros at $(a_n)_n$, then B divides f in H^{∞} . Now, if f is a function in H^{∞} , the zeros of \hat{f} on R can be factored out with the help of an essentially unique Blaschke product and we are left with a function g in H^{∞} such that \hat{g} has no zeros on R. Since Z_1, \ldots, Z_{σ} constitute a basis of the multiplicative group of the nowhere vanishing analytic functions on R modulo the subgroup of the exponentials, g differs from an exponential e^{-h} by a factor of $Z_1^{m_1} \ldots Z_{\sigma}^{m_{\sigma}}$, where m_1, \ldots, m_{σ} are integers. The real part u of the function h in the exponent can be taken to be non-negative and has an integral representation

$$u(z) = \int_X P(x,z) d\mu(x)/P(x,z_0),$$

where P(x, z) is the normal derivative at x of the Green function for R with singularity at z, and μ is a non-negative finite Baire measure on X determined by u. In order to represent the analytic function h, one needs an analog of the complex Poisson kernel. The difficulty lies in the fact

that, for a fixed point x in X, the harmonic function P(x, z) may not have a (single-valued) conjugate on R. For this reason, let

$$\lambda_j(x) = rac{1}{2\pi} \int\limits_{\gamma_j} {}^*dP(x,\,\cdot) \quad ext{ for } 1 \leqslant j \leqslant \sigma,$$

and consider, for a fixed x in X, the harmonic function

$$K(x,z) = P(x,z) - \sum_{j=1}^{\sigma} \lambda_j(x) \log |Z_j(z)|.$$

Then the analytic function H(x,z) whose real part is K(x,z) and which is real at z_0 is a suitable analog of the complex Poisson kernel. Thus we obtain

$$h(z) = \int_X H(x,z) d\mu(x) / P(x,z_0).$$

Let $\mathfrak M$ denote the set of all finite signed Baire measures μ' on X such that

$$\int\limits_X \lambda_j(x) \, d\mu'(x)/P(x,z_0) \, = \, 0 \quad \text{ for } 1 \leqslant j \leqslant \sigma.$$

The above measure μ above belongs to \mathfrak{M} and has the Lebesgue decomposition into absolutely continuous and singular parts: $\mu = \mu_a + \mu_s$. We shall now give names to the analytic functions represented by μ_a and μ_s .

DEFINITION 2.1. (i) A function f in H^{∞} is called an outer function if

$$\log |\hat{f}(z_0)| = \int\limits_{\mathcal{X}} \log |f| \, dm$$
.

(ii) An inner function S is called a singular function if \hat{S} has no zeros on R.

It can be seen fairly easily that there exist real numbers $\beta_1, \ldots, \beta_{\sigma}$ such that $d\mu_s + (\sum_{j=1}^{\sigma} \beta_j \log |Z_j|) dm$ belongs to \mathfrak{M} and represents a singular function and that μ_a represents an outer function. We thus get the following factorization theorem.

THEOREM 2.2. Let f be a function in H^{∞} . Then

$$f = wF, \quad w = BS,$$

where w is an inner function;

B is a Blaschke product,

$$|B| = |Z_1|^{a_1} \dots |Z_{\sigma}|^{a_{\sigma}}, \quad a.e. \ dm \ on \ X;$$

S is a singular function,

$$\hat{S}(z) = \exp - \int\limits_X H(x,z) \left[\left(\sum_{j=1}^{\sigma} \beta_j \log |Z_j| \right) dm + d\mu_s \right] / P(x,z_0);$$

F is an outer function,

$$\hat{F}(z) = \exp \int\limits_X H(x,z) \Big[\sum_{j=1}^{\sigma} (eta_j - a_j) \log |Z_j| + \log |f| \Big] dm/P(x,z_0),$$

where $\mu_s \geqslant 0$,

$$\Big(\sum_{j=1}^{\sigma}eta_{j}\log|Z_{j}|\Big)\;dm+d\mu_{s} \quad \ \ and \quad \ \Big(\sum_{j=1}^{\sigma}\left(eta_{j}-a_{j}
ight)\log|Z_{j}|+\log|f|\Big)\;dm$$

belong to M and

$$\arg(\hat{f}/\hat{BS}(z_0)) = \arg(\hat{f}/\hat{B}(z_0)) = 0.$$

The singular measure μ_s and the real numbers a_j and β_j , $j = 1, ..., \sigma$, are determined by f.

3. Absence of the singular factor. Let f be a function in H^{∞} and a a complex number. Let $f-a=B_aS_aF_a$, as in Theorem 2.2. We would like to find conditions on a which imply the absence of the factor S_a . Clearly, if f-a were an outer function, S_a would be equal to 1. Let W be the range of f in C, and ∂W its boundary. If a were not in $W\cup \partial W$, -a would be an invertible function in H^{∞} and, since we can use Jensen's inequality both ways, this would imply that f-a is outer. If a belongs to W, certainly f-a would not be outer. Thus, it is interesting to find points a in ∂W for which f-a is outer.

DEFINITION 3.1. Let E be a subset of C and a a point in C. Then E is said to omit a half-plane near a if there exist a disk D with centre at a and a diameter of D such that $E \cap D$ lies on only one side of the diameter.

PROPOSITION 3.2. Let f be a function in H^{∞} , W the range of \hat{f} and a a point in ∂W . If W omits a half-plane near a, then f-a is outer, and hence S_a is absent.

Proof. We can assume without loss of generality that a=0 and that there exists a $\delta>0$ such that $W\cap\{z\in C,\ |z|<\delta,\ \mathrm{Re}\,z<0\}=\emptyset$, because a translation and a suitable rotation would give the required result.

Now, for each ε such that $0 < \varepsilon < \delta/2$, $f + \varepsilon$ is invertible in H^{∞} and is, therefore, an outer function, i.e.

$$\log |\hat{f}(z_0) + \varepsilon| = \int\limits_X \log |f + \varepsilon| \, dm.$$

As ε tends to zero, $\hat{f}(z_0) + \varepsilon$ tends to $\hat{f}(z_0) \neq 0$, and since

$$\min(\log \delta/2, \log|f|) \leqslant \log|f + \varepsilon| \leqslant M$$
,

for some constant M, $\int_X \log |f + \varepsilon| dm$ tends to $\int_X \log |f| dm$, and this shows that f is an outer function.

We now investigate the absence of the factor S_a when f-a is not necessarily an outer function. Certainly, $f-a/F_a$ is an inner function and we would like to know when, in fact, it is a Blaschke product. In order to generalize the classical criterion for this to the case of a finite open Riemann surface R, we introduce the following subregions of R. Let $G(\cdot, z_0)$ be the Green function for R with singularity at z_0 , and

$$R_n = \left\{z \in R, G(z, z_0) > \frac{1}{n}\right\}, \quad X_n = \left\{z \in R, G(z, z_0) = \frac{1}{n}\right\}.$$

For all sufficiently large n, R_n is a finite open Riemann surface with boundary X_n , $\overline{R}_n \subset R_{n+1}$ and $R = \bigcup R_n$. Let m_n be the harmonic measure on X_n with respect to z_0 .

LEMMA 3.3. Let f be an inner function, $|f| = |Z_1|^{\delta_1} \dots |Z_{\sigma}|^{\delta_{\sigma}}$, a.e. dm on X. Then f is a Blaschke product if and only if

$$\lim_{n o\infty}\int\limits_{X_n}\log\{|\hat f|\;|Z_1|^{-\delta_1}\dots|Z_\sigma|^{-\delta_\sigma}\}\,dm_n\,=\,0\,.$$

Proof. Let f = BS, as in Theorem 2.2. Note that here $a_j - \beta_j = \delta_j$, for $1 \le j \le \sigma$.

If a is a point in R and h is a Blaschke factor for R with respect to a with $h = |Z_1|^{\epsilon_1} \dots |Z_{\sigma}|^{\epsilon_{\sigma}}$ a.e. dm on X, it has been shown in Section 2 of [4] that for z in R,

$$|\log |\hat{h}(z)| = \sum_{j=1}^{\sigma} \varepsilon_j \log |Z_j(z)| - G(z, a).$$

Now let $(a_k)_k$ be the sequence of the zeros of \hat{B} on R, so that $\sum_{k=1}^{\infty} G(z, a_k) < \infty$. It is clear from the construction of a Blaschke product as given in Theorem 2.5 of [4] and the essential uniqueness of a Blaschke product as proved in Theorem 3.1 of [4] that

$$\log |\hat{B}(z)| = \sum_{j=1}^{\sigma} a_j \log |Z_j(z)| - \sum_{k=1}^{\infty} G(z, a_k).$$

Also,

$$|\log |\hat{S}(z)| = -\int\limits_X P(x,z) \left[\left(\sum_{j=1}^\sigma eta_j \log |Z_j| \right) dm + d\mu_s \right] / P(x,z_0).$$

Hence,

$$\log|\hat{f}(z)| = \sum_{j=1}^{\sigma} (a_j - \beta_j) \log|Z_j(z)| - \sum_{k=1}^{\infty} G(z, a_k) - \int_{X} P(x, z) d\mu_s / P(x, z_0).$$

Since $a_i - \beta_i = \delta_i$, this gives

$$\begin{split} &\int\limits_{X_n} \log \{ |\hat{f}| \ |Z_1|^{-\delta_1} \ldots \ |Z|^{-\delta_\sigma} \} \, dm_n \\ &= - \int\limits_{X_n} \Big[\sum_{k=1}^\infty G(z, \ a_k) \Big] \, dm_n - \int\limits_{X_n} \Big[\int\limits_X P(x, z) \, d\mu_s(x) / P(x, z_0) \Big] \, dm_n(z) \, . \end{split}$$

If we interchange the order of integration in the second term, we readily find that it is equal to $\int_X d\mu_s$. Since f is a Blaschke product if and only if $S\equiv 1$, i.e. $\mu_s\equiv 0$, to conclude the proof of Lemma 3.3, it is enough to show that

$$\lim_{n\to\infty}\int\limits_{X_n}\Big[\sum_{k=1}^\infty G(z,\,a_k)\Big]\,dm_n=0.$$

Let $u(z) = \sum_{k=1}^{\infty} G(z, a_k)$ and, for each natural number N, $u_N(z) = \sum_{k=N}^{\infty} G(z, a_k)$. Now, $u - u_N$ is continuous on a neighbourhood of X and is zero on X. Hence, for all sufficiently large n and each N,

$$\int\limits_{X_n}u(z)\,dm_n=\int\limits_{X_n}u_N(z)\,dm_n.$$

Fix N for the time being. Only a finite number of a_k 's, say $k = N, \ldots, N_1$, lie in $R_n \cup X_n$. If a_k is in R_n and if $G_n(\cdot, z_0)$ is the Green function for R_n with singularity at z_0 , we have

$$egin{aligned} \int\limits_{X_n} G(z,\,a_k)\,dm_n &= \int\limits_{X_n} \left[G(z,\,a_k) - G_n(z,\,a_k)
ight] dm_n \ &= G(z_0,\,a_k) - G_n(z_0,\,a_k) \ &\leqslant G(z_0,\,a_k). \end{aligned}$$

If a_k is in X_n , we still get

$$\int\limits_{X_n}G(z\,,\,a_k)\,dm_n\leqslant G(z_0\,,\,a_k)\,,$$

by approximating a_k by a sequence of points in R_n . For points a_k outside $R_n \cup X_n$, we have

$$\int\limits_{X_n} \Big[\sum_{k=N_1+1}^{\infty} G(z,\, a_k) \Big] \, dm_n = \sum_{k=N_1+1}^{\infty} G(z_0,\, a_k) \, .$$

Thus,

$$\int\limits_{X_n}u_N(z)\,dm_n\leqslant u_N(z_0)\quad \text{ for each }N.$$

But $u_N(z_0)$ tends to zero as N tends to infinity. This completes the proof.

We shall now apply the criterion in Lemma 3.3 to find sets of points a for which the singular factor S_a is missing. We have already noted that the Blaschke factor B_a is missing if and only if a lies off the range of \hat{f} . Curiously enough, the condition we give for the absence of S_a requires that in some sense a lie off "the range of f".

THEOREM 3.4. Let f be a function in H^{∞} . If V is any σ -compact subset of C such that

$$m(\{x \in X, f(x) \in V\}) = 0,$$

then for every point a in V, except for a subset of logarithmic capacity zero, the singular factor S_a in $f-a=B_aS_aF_a$ is absent.

Proof. Since the logarithmic capacity of the union of a countable number of sets of logarithmic capacity zero is zero, we can assume without loss of generality that V is compact.

Let $f-a=w_aF_a$ as in Theorem 2.2, where $|w_a|=|Z_1|^{\delta_1(a)}\dots|Z_\sigma|^{\delta_\sigma(a)}$, a.e. dm on X. According to Lemma 3.3, the inner function $w_a=f-a/F_a$ is a Blaschke product if and only if

$$\lim_{n\to\infty}L(n,a)=0,$$

where

$$L(n, a) = \int\limits_{X_n} K(z, a) dm_n,$$

where

$$K(z, a) = \log \{|\hat{F}_a(z)/\hat{f}(z) - a| |Z_1(z)|^{\delta_1(a)} \dots |Z_{\sigma}(z)|^{\delta_{\sigma}(a)}\}.$$

Let
$$l(a) = \overline{\lim}_{n \to \infty} L(n, a)$$
, and

$$E = \{a \in V, l(a) > 0\}.$$

We wish to show that the logarithmic capacity of E is zero. If it were not, let μ be its equilibrium distribution. We shall show that $\int\limits_E l(a)\,d\mu(a)=0$ and get a contradiction.

Now, by Jensen's inequality,

$$\begin{split} K(z,\,a) &= \log\{|\hat{F}_a(z)|\hat{f}(z) - a| \; |Z_1(z)|^{\delta_1(a)} \, \dots \, |Z_\sigma(z)|^{\delta_\sigma(a)}\} \\ &= \log\left\{\exp\frac{1}{2\pi} \int\limits_X P(x,\,z) \left[\log|f - a| - \sum_{j=1}^\sigma \, \delta_j(a) \log|Z_j|\right] ds_x\right\} - \\ &\qquad \qquad -\log|\hat{f}(z) - a| + \sum_{j=1}^\sigma \, \delta_j(a) \log|Z_j(z)| \\ &= \frac{1}{2\pi} \int\limits_Y P(x,\,z) \log|f(x) - a| \, ds_x - \log|\hat{f}(z) - a| \geqslant 0 \,. \end{split}$$

Hence it is enough to show that

$$\lim_{n\to\infty}\int\limits_E L(n,a)d\mu(a)=0.$$

But, $\int\limits_E L(n,a)d\mu(a) = \int\limits_{X_n} v(z)dm_n(z)$, where

$$v(z) = \int\limits_{a \in E} K(z,\,a) \, d\mu(a), \quad z \, ext{ in } \, R.$$

Since μ is the equilibrium distribution of E, there exists a constant M_1 uch that, for every complex number b,

$$-\int\limits_E \log|b-a|\,d\mu(a) < M_1.$$

Also, since $E \subset V$ and V is compact, there exists a constant M_2 such that, for a in E, $|a| < M_2$. If M is the bound for f, we thus get

$$egin{align} 0 \leqslant v(z) &= \int\limits_E \left[rac{1}{2\pi} \int\limits_X P(x,z) \log |f(x)-a| \, ds_x
ight] d\mu(a) - \ &- \int\limits_E \log |\hat{f}(z)-a| \, d\mu(a) \ &\leqslant \log (M+M_2) + M_1. \end{aligned}$$

Now, for almost all (dm) x in X, if $(z_k)_k$ is a sequence in R tending non-tangentially to x, $v(z_k)$ tends to zero. This can be seen as follows. For almost all x and $(z_k)_k$ tending non-tangentially to x, the harmonic function

$$\begin{split} u(z) &= \int\limits_E \left[\frac{1}{2\pi} \int\limits_X P(x,z) \log |f(x) - a| \, ds_x \right] d\mu(a) \\ &= \frac{1}{2\pi} \int\limits_X P(x,z) \left[\int\limits_E \log |f(x) - a| \, d\mu(a) \right] ds_x \end{split}$$

tends to $\int_E \log |f(x)-a| d\mu(a)$. Similarly, $\hat{f}(z_k)$ tends to f(x), and since $\int_E \log |b-a| d\mu(a)$ is harmonic outside cl. $E \subset V$ and f(x) lies off V for almost all x,

$$\int\limits_{E}\log|\hat{f}(z_{k})-a|\,d\mu(a)$$

also tends to $\int_{E} \log |f(x) - a| d\mu(a)$.

Since v is non-negative and bounded above, it only remains to consider boundary strips around the boundary components of X (cf., section 4. b of [6]) to conclude that

$$\lim_{n\to\infty}\int\limits_{X_n}v(z)dm_n=0.$$

COROLLARY 3.5. Let S be a singular function which is not trivial, i.e. not of the form $cZ_1^{m_1} \ldots Z_{\sigma}^{m_{\sigma}}$, where c is a complex constant of absolute value 1 and m_1, \ldots, m_{σ} are integers. Then \hat{S} omits only a set of logarithmic capacity zero near 0. If F is any outer function, $\hat{S}\hat{F}$ cannot omit a half-plane near 0.

Proof. Since S is an inner function, there exists a $\delta > 0$ such that $|S| \ge \delta$ a.e. dm on X. Then the inner part w_a of S-a is a Blaschke product for each a satisfying $|a| < \delta$ and not belonging to a fixed set of logarithmic capacity zero. Moreover, for any a such that $|a| < \delta/3$, w_a cannot be trivial, since S-a cannot be an outer function. Indeed in that case, for z in R,

$$\log\{|\hat{S}(z)|+|a|\}\geqslant \log|\hat{S}(z)-a|=\frac{1}{2\pi}\int\limits_X\log|S-a|P(x,z)ds_x\geqslant \log(\delta-|a|),$$

and hence, $|\hat{S}(z)| \ge \delta/3$ for z in R. This would imply that S is trivial. Thus, \hat{S} takes on every value a in $|a| < \delta/3$ for which w_a is a Blaschke product.

The second statement in the corollary follows immediately from Proposition 3.2.

4. Frostman's theorem. Let us consider the classical case where R is the open unit disk, X the unit circle, $z_0 = 0$ and $dm = d\theta$. Suppose that f is an inner function, i.e. f is in H^{∞} and |f| = 1 a.e. $d\theta$ on the unit circle. Then it follows that if $|a| \ge 1$, then f - a is outer and if |a| < 1 and a does not belong to a fixed set of logarithmic capacity zero, then $f - a/F_a$ is a Blaschke product. In this case, F_a has a neat expression, viz. $F_a = c$ $(1 - \overline{a}f)$, where c is a complex constant of absolute value one. Frostman proved this result in this form in [2], p. 111. A weaker result was proved by Newman [5]. Since, as a tends to 0, $\hat{f}(z) - a/1 - \overline{a}\hat{f}(z)$ tends to $\hat{f}(z)$ uniformly on the open unit disk, this shows that Blaschke products are norm-dense in the set of all inner functions. Since no such neat expression is available for F_a in the general case, we are unable to generalize Frostman's theorem. But we can still prove a slightly weaker result

THEOREM 4.1. Let f be an inner function, $|f| = |Z_1|^{\delta_1} \dots |Z_{\sigma}|^{\delta_{\sigma}}$, a.e. dm on X. Then there exists a sequence $(B_n)_n$ of Blaschke products such that $(\hat{B}_n)_n$ converges to \hat{f} uniformly on compact subsets of R and $(|\hat{B}_n|)_n$ converges to $|\hat{f}|$ uniformly on R.

Proof. There exists an $\varepsilon > 0$ such that $|f| \geqslant \varepsilon$ a.e. dm on X. Hence, by Theorem 3.4, there exists a sequence $(a_n)_n$ tending to 0 such that $w_{a_n} = f - a_n/F_{a_n}$ is a Blaschke product. Now, for z in R,

$$\hat{F}_{a_n}(z) = \exp \int\limits_{\mathbf{x}} H(x,z) \left[\log |f-a_n| - \sum_{i=1}^{\sigma} \delta_j(a_n) \log |Z_j| \right] ds_x/2\pi.$$

A discerning look at Theorem 2.2 shows that, for $1 \leqslant j \leqslant \sigma$,

$$2\pi\delta_j(a_n) = \int\limits_X \lambda_j(x) \log |f(x) - a_n| \, ds_x,$$

whereas

$$egin{align} 2\pi\delta_j &= \int\limits_X \lambda_j(x) \, \Big(\sum_{k=1}^\sigma \, \delta_k \! \log |Z_k(x)| \Big) \, ds_x \ &= \int\limits_X \lambda_j(x) \! \log |f(x)| \, ds_x. \end{split}$$

This shows that $\delta_j(a_n)$ tends to δ_j , $1 \le j \le \sigma$, as a_n tends to 0. Thus, since f is bounded away from 0,

$$g_n = \log |f - a_n| - \sum_{j=1}^{\sigma} \delta_j(a_n) \log |Z_j|$$

tends to 0 uniformly on X. Since the kernel H(x, z) is uniformly bounded for x in X and z in a compact subset of R and since

$$\operatorname{Re} \int\limits_X H(x,z) g_n(x) ds_x = \int\limits_X P(x,z) g_n(x) ds_x,$$

where $P(x,z) \ge 0$ for x in X and z in R, it follows that $(\hat{F}_{a_n})_n$ converges to 1 uniformly on compact subsets of R and $(|\hat{F}_{a_n}|)_n$ converges to 1 uniformly on R. If we let $B_n = f - a_n/F_{a_n}$, this proves the theorem.

References

- 1] P. R. Ahern and D. Sarason, The H^p -spaces of a class of function algebras, Acta Math. 117 (1967), p. 123-163.
- [2] O. Frostman, Potentiel d'équilibre et capacité des ensembles, Lunds Univ. Mat. Sem. 3 (1935).
- [3] K. Hoffman, Banach spaces of analytic functions, Prentice Hall, Englewood Cliffs, N.J. (1962).
- [4] B. V. Limaye, Blaschke products for finite Riemann surfaces, Studia Math. 34 (1970), p. 169-176.
- [5] D. J. Newman, Interpolation in H^{∞} , Trans. Amer. Math. Soc. 92 (1959), p. 438-445.
- [6] H. L. Royden, The boundary values of analytic and harmonic functions, Math. Zeit. 78 (1962), p. 1-24.
- [7] M. Voichick and L. Zalcman, Inner and outer functions on Riemann surfaces, Proc. Amer. Math. Soc. 16 (1965), p. 1200-1204.
- [8] J. Wermer, Analytic disks in maximal ideal spaces, Amer. J. Math. 86 (1964), p. 161-170.

TATA INSTITUTE OF FUNDAMENTAL RESEARCH Bombay, India

Reçu par la Rédaction le 4. 3. 1971