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On the inner parts of certain analytic functions
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1. Introduction. It is a classical theorem that a bounded analytic
function on the open unit disk has an essentially unique factorization into
an inner part and an outer part ([3], p. 63). The inner part further factors
into a Blaschke product and a singular function ([3], p. 66). More generally,
if we consider bounded analytic functions on a finite open Riemann
surface R, a similar factorization theorem is to be expected since the
open unit disk is the universal covering space for E. But this procedure
involves the use of the so-called multiple-valued functions [7]. We have
recently proved in [4] the existence and the essential uniqueness of
Blaschke products for E without using the above techniques. Our method
was based on the H”-space theory developed in [1]. If X is the boundary
of R, let H* denote the space of non-tangential boundary values on X
of bounded analytic functions on R. We give in Section 2 an intrinsic
factorization of functions in H®™.

If f is a function in H* and a is a complex number, f—a is in H*
and we have

(*) f_a’ = Ba,SaFtn

where B, is a Blaschke product, 8, is a singular function and ¥, is an

outer function. If fA is the bounded analytic function on R whose non-
tangential boundary values are equal to f, it is clear that the factor B,

appears in () if and only if a belongs to the range of f: The main part of this
paper, Section 3, deals with conditions on a under which the factor S, is ab-
sent in (*). We show [Theorem 3.4 ] that if f(z) misses, for almost every point
z in X, a o-compact set V in C, then for every point a in V, except for
a subset of logarithmic capacity zero, the factor 8§, is missing in (*). The
method of proof is adopted from a similar classical result proved by
Frostman in [2], p. 111-112.

Now, if f is bounded away from a point a, in C, there certainly exists
a sequence (a,), converging to a, such that 8., is absent in (*). Thus,
I —a,/F, is a Blaschke product for each n. One would expect that the
outer parts ¥, would vary continuously with a, i.e. if a, tends to a,,
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then j”an would converge to ]§'¢,0 uniformly on RE. This, in particular, would
generalize to the case of a finite open Riemann surface Frostman’s theorem
for the unit disk, stating that every inner function is a uniform limit of
Blaschke products. Although we are unable to prove this, we can show
that if f is any inner function, there exists a sequence (B,), of Blaschke

products such that (1§n)n converges to f uniformly on compact subsets
of R and (|B,|), converges to |f| uniformly on R [Theorem 4.1].

2. The factorization theorem. Let 4 be the first Betti number of the
finite open Riemann surface R, and {y,,..., y,;} 2 homology basis for
the closed paths in R. Then there exist nowhere-vanishing functions ([8],
Lemma 1) Z,, ..., Z, which are analytic on E and can be extended ana-
Iytically across the boundary X of R such that

1 .

o= *d(log|Zyl) = & for 1<j, k< o.

aT v;

Fix a point 2z, in R and consider the harmonic measure m on X with
respect to z,. Then a function f in L*(dm) belongs to H* iff there exists

a bounded analytic function f on R whose non-tangential boundary
values are cqual to f. Following [1], we call a function f in H* an inner
function if there exist real numbers a,, ..., a, such that [f| = |Z{|" ... |Z,|%,
a.e. dm on X. In the classical case, where R is the open unit disk and
o = 0, this becomes |f| = 1 a.e. d0 on the unit circle.

Let (a,), be a sequence of points in E. In [4], we defined a Blaschke
product for R with respect to the sequence (a,), as an inner function B

such that B has zeros at (a,), and B is minimal in the following sense:
if f is any function in H*® such that f has zeros at (a,),, then B divides f

-~

in H*. Now, if f is a function in H*, the zeros of f on R can be factored
out with the help of an essentially unique Blaschke product and we are
left with a function g in H* such that § has no zeros on R. Since Z,,..., Z,
constitute a basis of the multiplicative group of the nowhere vanishing
analytic functions on R modulo the subgroup of the exponentials,
g differs from an exponential ¢™* by a factor of Z™ ... Z™s, where
My, ..., M, are Integers. The real part  of the function & in the exponent
can be taken to be non-negative and has an integral representation

u(z) = [ P(&,2)dp(@)[P(z, 2),
X

where P(z, z) is the normal derivative at x of the Green function for R
with singularity at z, and u is a non-negative finite Baire measure on X
determined by u. In order to represent the analytic function %, one needs
an analog of the complex Poisson kernel. The difficulty lies in the fact
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that, for a fixed point # in X, the harmonic function P(z,2) may not
have a (single-valued) conjugate on R. For this reason, let

1
2(x) = o f*dP(w, )y for 1<j<o,
ks v
and consider, for a fixed # in X, the harmonic function

K(z,2) = P(=,2) - 2 A; (@) log |Z;(2)|.

=1

Then the analytic function H (x, 2) whose real part is K (x, 2) and which
is real at 2, is a suitable analog of the complex Poisson kernel. Thus we
obtain

he2) = [ H(w,2)du(@)[P(z, 2).
>. ¢

Let M denote the set of all finite signed Baire measures x4’ on X such
that

[ 4@ay @)/P@,2) =0 for 1<j<o.
X

The above measure u above belongs to It and has the Lebesgue decom-
position into absolutely continuous and singular parts: y = g, + u,. We shall
now give names to the analytic functions represented by g, and u,.

DEFINTTION 2.1. (i) A function f in H® is called an outer funciion if
log|f(20)l = [ log|f|dm.
x

(ii) An inner function S is called a singular function if S has no zeros
on R.
It can be seen fairly easily that there exist real numbers f,, ..., B,

such that du.,+(2 ﬁjlog]Zj|)dm belongs to I and represents a singular
j=1

function and that u, represents an outer function. We thus get the fol-
lowing factorization theorem.
THEOREM 2.2. Let f be a function in H™. Then

f=wF, w=BS,

where w is an inner function;
B is a Blaschke product,

|B| = |Z|" ... |Z,]%, a.e. dm on X;

S is a singular function,

A

8(z) =exp— [ H(a,2)|( by Bylog|Z,)) dm+ du,|IP (@, 2);
X j=1
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F i3 an outer function,

F(z) =exp [ H(z,2)| Y (B;— a)log|Z;|+log|fl| dm[P(z, 2),
X j=1

where u, > 0,

-4

(26' ﬁ,-log |Z;,|) dm +dp, | and (E (B; — a;)log |Z;] -|—log|f|) dm
j=1 j

1=

belong to M and
arg (f/BS (2,)) = arg(f/B(z,) = 0.

The singular measure u, and the real numbers a; and B;, j =1, ..., o, are
determined by f.

3. Absence of the singular factor. Let f be a function in H* and a
a complex number. Let f—a = B,S,¥,, as in Theorem 2.2. We would
like to find conditions on ¢ which imply the absence of the factor S§,.
Clearly, if f—a were an outer function, S, would be equal to 1. Let W
be the range of f in C, and 0W its boundary. If a were not in W v oW,
— a would be an invertible function in H* and, since we can use Jensen’s
inequality both ways, this would imply that f—a is outer. If a belongs
to W, certainly f—a would not be outer. Thus, it is interesting to find
points a in 0W for which f—a is outer.

DEFINITION 3.1. Let ¥ be a subset of C and a a point in C. Then ¥
is said to omit a half-plane near a if there exist a disk D with centre at a
and a diameter of D such that £ N D lies on only one side of the diameter.

ProposSITION 3.2. Let f be a function in H®, W the range of f and a
a point in OW. If W omits a half-plane near a, then f — a is outer, and hence S,
18 absent.

Proof. We can assume without loss of generality that a = 0 and
that there exists a 6 > 0 such that W n {ze¢ C, |2| < 4, Rez< 0} = O,
because a translation and a suitable rotation would give the required
result.

Now, for each ¢ such that 0 < e < /2, f+ ¢ is invertible in H* and
is, therefore, an outer function, i.e.

log|f(zo) +¢l = [ loglf+e|dm.
X

As ¢ tends to zero, f(zo)—{-s tends to f(zo) # 0, and since
min (log /2, log|f|) < log|f-+e¢| < M, _
for some constant M, [log|f+¢|dm tends to [log|f|dm, and this shows
X X

that f is an outer function.
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We now investigate the absence of the factor S, when f—a is not
necessarily an outer function. Certainly, f—a/F, is an inner function
and we would like to know when, in fact, it is a Blaschke product. In
order to generalize the classical criterion for this to the case of a finite
open Riemann surface R, we introduce the following subregions of R.
Let G(-, 2, be the Green function for R with singularity at z,, and

1
R, ={ze R, G(z, zo)>%}, X, = {ze R, G(z, zy) =;}.

For all sufficiently large =», R, is a finite open Riemann surface with
boundary X,, R, = R,., and R = | R,. Let m, be the harmonic measure
on X, with respect to z,.

LEMMA 3.3. Let f be an inner function, |f| = |Z,)% ... |Z,|%, a.e. dm
on X. Then f is a Blaschke product if and only if

im [ log{|f] |Z,]" ... |Z,/*}dm, = 0.

n—->o0 Xn

Proof. Let f = BS, as in Theorem 2.2. Note that here a;—f; = 9;,
for 1<j<o.

If a:is a point in B and A is a Blaschke factor for B with respect to a
with b = |Z,|*1... |Z,|°* a.e. dm on X, it has been shown in Section 2 of [4]
that for z in R,

g

log|h(2)] = Y &log|Z;(2)| — Gz, a).

i=}

Now let (a), be the sequence of the zeros of Bon R, so that > G(z, a;) < oc.
k=1

It is clear from the construction of a Blaschke product as given in Theorem
2.5 of [4] and the essential uniqueness of a Blaschke product as proved
in Theorem 3.1 of [4] that

g

log|B(2)| = D) a;log|Z;(2)| — )] G(z, ).

=1 © k=l

Also,

log)S(2)l = — [ P(a,2)[( Y Blog|Z,)) dm + a,) /P (@, 2).
x .

j=1
Hence,

log|f(@) = Y (a;—B)log|Z;(2)| — 3 Gz, @) — [ P, 2)dp,[P(w, 2).-
k=1 X

i=1
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Since a; —p; = J;, this gives

[ log{|f| 1Z,|~ ... |Z|°}dm,
Xn

= — f[fG(z, a)| am,— [| [ P(@, 2)du,(@)[P(@,2)| dm,(2).
X, k=1 X, X

If we interchange the order of integration in the second term, we
readily find that it is equal to [du,. Since f is a Blaschke product if and
X

only if § =1, i.e. y, =0, to conclude the proof of Lemma 3.3, it is enough
to show that

lim “,,Z: Q(z, a,,)] dm, = 0.

n—oo b.¢

(= <]

Let wu(2) = kg’l G (2, a;) and, for each natural number N, uy(2)

= ) G(z, a;). Now, u —uy is continuous on a neighbourhood of X and
k=N

is zero on X. Hence, for all sufficiently large # and each N,

fu(z)dmnz fuN(z)dmn.
Xn

Xn

Fix N for the time being. Only a finite number of a,’s, say k = N,..., N,,
liein B, v X,. If a; is in R, and if G, (-, #,) is the Green function for R,
with singularity at z,, we have

[ G, a)dm, = [ [6(z, &) — Gy (2, ) 1dm,
Xn Xn
= G(zor ak) _Gn(zm ak)
< G(zo’ a’k)-

If a, is in-X,, we still get

[ 6z, a)am, < G(z, o),
Xn

by approximating a, by a sequence of points in R,.
For points a, outside R, U X,, we have

00

MY 6 a)an— 3 6 a.

X, k=Ny+1 k=Nj+1

Thus,

fuN(z)dmn< upn(2,) for each N.
X’R

But uy(2,) tends to zero as N tends to infinity. This completes the proof.
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We shall now apply the criterion in Lemma 3.3 to find sets of points a
for which the singular factor 8, is missing. We have already noted that
the Blaschke factor B, is missing if and only if a lies off the range of f.
Curiously enough, the condition we give for the absence of §, requires
that in some sense a lie off ‘‘the range of f.

THEOREM 3.4. Let f be a function in H™. If V is any o-compact subset
of C such that

m({me X,f(a’;)eV}) =0,

then for every point a in V, except for a subset of logarithmic capacity zero,
the singular factor S, in f—a = B S, F, is absent.

Proof. Since the logarithmic capacity of the union of a countable
number of sets of logarithmic capacity zero is zero, we can assume without
loss of generality that V is compact.

Let f—a = w,F, as in Theorem 2.2, where |w,| = |Z,/® ... |Z,|%@,
a.e. dm on X. According to Lemma 3.3, the inner function w, = f—a/F,
is a Blaschke product if and only if ‘

limL(n,a) =0,
n—o0

where
L(n,a) = [ K(z,a)dm,,
Xﬂ

where ) )
K (2, a) = log{|F,(2)[f(2) —a| |Z,(2)["" ... |Z,(2)|°@}.

Let I(a) = limL(n, a), and

n—>00

E = {acV,l(a) > 0}.

We wish to show that the logarithmic capacity of F is zero. If it
were not, let x be its equilibrium distribution. We ghall show that
fl(a)du(a) = 0 and get a.contradiction.

E

Now, by Jensen’s inequality,

K(z, a) = log{|F,(2)[f(2) —al |Z,(2)|" ... |Z,(2)| "}
‘ ) .
= log{exp ?n'—}.f Pz, 2) [log[f— al — % 6;(a)log |z,|] dgz}_

—log|f(z)—al + ' 8;(a)log|Z;(2)|
j=1
=2 [ P, 2)log|f(@)— alds, ~ log f() — al > 0.
27 ¥
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Hence it is enough to show that

lim fL(n, a)du(a) = 0.

n—o0 E

Bat, f L(n, a)du(a) = f v(2)dm, (), where

v(2) = fK(z a)du(a), =z in R.

aeE
Singe p is the equilibrium distribution of E, there exists a constant M,
uch tha t, for every complex number b,

— floglb—a]d,u(a)< M,.
E

Algo, since F c V and V is compact, there exists a constant M, such
that, for a in E, |a| < M,. If M is the bound for f, we thus get

1
0<n@) = [ [;T; [ P(w,z)loglf(w)—alds,] du(a) —
X

E
— [ 1og|f(2) —aldp(a)
<log(M+M)+M,. "

Now, for almost all (dm) # in X, if (2;), is a sequence in R tending
non-tangentially to x, v(z,) tends to zero. This can be seen as follows.

For almost all # and (z,), tending non-tangentially to #, the harmonic
function

1
wie) = | [ﬁ I P(w,z)log|f(w>—a|dsz] du(a)
X

E
— Xf P(z,2)| Ef log (@) — aldys(a)| ds,

tends to [log|f()— a|du(a). Similarly, f(z,) tends to f(=), and since [log|b—
E E

—a|du(a) i8 harmonic outside cl. £ = V and f(x) lies off V for almost
all =,

[ 1og|f(2) — aldu(a)
E

also tends to [log|f(z)— a|du(a).
z

Since » is non-negative and bounded above, it only remains to con-

sider boundary strips around the boundary components of X (cf., section
4.b of [6]) to conclude that

lim fv(z)dm,, =0.

n—>00 xn
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COROLLARY 3.5. Let S be a singular function which is not trivial, <.e.
not of the form ¢ZT ... Z7's, where ¢ is a complex constant of absolute value 1

and my, ..., m, are integers. Then S omits only a set of logamthmw capacity
zero near 0. If F is any outer function, SF cannot omit a half-plane near 0.

Proof. Since § is an inner function, there exists a é > 0 such that
|8} > 6 a.e. dm on X. Then the inner part w, of § —a is a Blaschke product
for each a satisfying |a| < 6 and not belonging to a fixed set of logarithmic
capacity zero. Moreover, for any a such that |a|< /3, w, cannot be
trivial, since S —a cannot be an outer function. Indeed in that case,
for z in R,

- - 1
log {18 (2)| + lal} > log|§(:) —al =~ [ 10g|§ —alP(a, 2)ds, > log(s—Ial),
X

and hence, |§ (2)] = 6/3 for 2z in R. This would imply that S is trivial.

Thus, S takes on every value a in |a| < §/3 for which w, is a Blaschke
product.

The second statement in the corollary follows immediately from
Proposition 3.2. ' :

4. Frostman’s theorem. Let us consider the classical case where R
is the open unit disk, X the unit circle, 2, = 0 and dm = df. Suppose
that f is an inner function, i.e. f is in H* and |f| = 1 a.e. d6 on the unit
circle. Then it follows that if |a| > 1, then f—a is outer and if |a|< 1
and a does not belong to a fixed set of logarithmic eapacity zero, then
f—a/F, is a Blaschke product. In this case, F, has a neat expression,
viz. ¥, = ¢ (L—af), where ¢ is a complex constant of absolute value one.
Frostman proved this result in this form in [2], p. 111. A weaker result
was proved by Newman [5]. Since, as a tends to 0, f(z)—a,/l —c’if' (2)
tends to f (2) uniformly on the open unit disk, this shows that Blaschke
products are norm-dense in the set of all inner functions. Since no such neat
expression is available for F, in the general case, we are unable to general-
ize Frostman’s theorem. But we can still prove a slightly weaker result,

THEOREM 4.1. Let f be an inner function, |f| = |Z,% ... |Z,|%, a.e.
dm on X. Then there exists a sequence (B,), of Blaschke products such that
(ﬁn)n converges to f uniformly on compact subsets of R and (|§n| )n CONVETgES
to | f’ | uniformly on R. :

Proof. There exists an ¢ > 0 such that [f| > ¢ a.e. dm on X. Hence,
by Theorem 3.4, there exists a sequence (a,), tending to 0 such that
Wy = f —an/Fan is a Blaschke product.

Now, for z in R,

-

B, (2) = exp [ H(x,2)[log|f—a,| - 2 (@) log ;]| ds,f2.
X i=1
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A discerning look at Theorem 2.2 shows that, for 1<j< o,
and;(a,) = [ 4(@)log|f (@) —aylds,,
X

whereas
omd; = [ (@) (2 8, log |Zk(a>)\) ds
X k=1

= f 4 ()log |f ()| ds,,.

This shows that ¢;(a,) tends to J;, 1 < j< o, as a, tends to 0. Thus,
since f is bounded away from O,

g, = log|f—a,|— >’ 8;(a,)log |7
j=1

tends to 0 uniformly on X. Since the kernel H (x, 2) is uniformly bounded
for # in X and 2 in a compact subset of R and since

Re fH(a: 2)g,(x)ds, fP(a; 2)g,(z)ds,,

X
where P(x,2) > 0 for # in X and z in R, it fo]lows that (F Jn COLVEIges

to 1 uniformly on compact subsets of B and (IF l) converges to 1 uni-
formly on R. If we let B, =f—a,[F, , this proves the theorem.
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