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A NUMERICAL METHOD
FOR SOLVING THE ABEL INTEGRAL EQUATION

1. Introduction. Many papers (see, e.g., [3], [6] and their references)
deal with numerical methods of solving the Abel integral equation

t
(1.1) Je)ds gt) for¢>0.

g Vet —s2

~ In the present paper we give a method based on the well-known
version formula (see, for example, [4])

2 d [ tg(t)at
(L.2) f(8) = — — M— for s >0
. 7 dso Vs2—¢2

and using polynomial interpolating spline functions [1]. Usually, the func-
tion g(t) is known only at a finite number of points ¢t € 4 = {t;, %5, ..., 1.},

Khere 0 =i <it,<...<t,. Therefore, instead of equation (1.1) we solve
ere

t
(1.3) J f"/A(S*)dS = gd(t) for teT = (t17 tn>’
t* —s2

Where g4(t) is a spline function of degree m = 2k —1, 1 < k < n, inter-
Polating the function g(t) on the network 4. In virtue of (1.2) the solution
f (1.3) is of the form

0

2 d [ tg,(t)dt

—_ — for seT.
T ds) Vst

(14 fals) =

" In the sequel we suppose that the function g has an absolutely con-
'Muous (%4 —1)-st derivative and the %k-th derivative integrable with its
Square, These assumptions with a suitable chosen boundary conditions
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guarantee (see [5]) that the spline function g,(t) exists and is uniquely
determined.

The function g,(t) can be represented in the form (see [5])

(1.5) 94(1) = Zait"+ Zﬂje(t7 i) (t—1)",
i=0 ji=1

where a; (¢ =0,1,...,m)and §; (j =1,2,...,n) are given real numbers
and

0 . for t<t,
1 for t>1.

Using (1.4) and (1.5) we give in Section 2 some analytical formulae
for the solution f,(s) of equation (1.3) which approximates the solution f(s)
of the original equation (1.1).

0(t,t;) =

2. Numerical method. It is known [7] that
d» -1 . 2ex+b

IO= '/_E = '/___aJrCS]D.—.'/—_.—3 for 0<0, .D<O,
._6 —_—
o)1, = 2% @_b dw
' ' 1/1_?, ¢ VE’
_ 2m —1 (m—1)a

where m = 2,3,..., R = a+br+cx?, and D = 4ac— b
Replacing ¢,(¢) in (1.4) by the right-hand side of (1.5) we obtain

16(2, ;) (¢ — 1;)™
_Zﬂj d.s'f Ve —¢2 a,

t1+l

and writing

ds ) Vsr_¢*
2 d et ) E—t)"
bj(s) = — ds.of - @t
we have
(2.2) fa(s) = D aiai(s)+ D) ;by(s).



Solving the Abel integral equation
Let us write
(-H!' =0l =1,
. 1-3-...-¢ for ¢ odd,
il =
2-4-...-1 for 7 even.
By induction and by (2.1) we may prove that
© ((—=1)! , .
ti . ?Ts for't,=0,2,...,
8) = f7———?dt = 1)1
2 __ _— |3 S
o V-t (ii”—)s' for+ =1,3,...,
and for j =1,2,...,n we have
8 ti
Ly(s) = f-——dt
ij ; /——82—t2
[ (—1)/2
-1 (2% —
(@ 1) Vs2 Z —bl 7T ppkgim2k-1 for i =1,3,...,
(2k)1t i
k=0
~ ) -1 & 2k —2)!!
— Vei— 2 9k—1 —2k
i —{[ +arcsm( )]s+ sz—tjz(zk ]_)Ht s }
for ¢ =0,2,...

Differentiating these formulae we obtain

G- , . =

T fori—24,..
@ sy o iy’ g T A%
ds ) =1y
C=DY for i =1,3,...,
(z—2)1
d
aLtj(s)
& (2% —3)!

(i—1)11 s [8,._1
(i—2)!! Y ~ (2K

p (2—1)1! ™ . _t_,-
(z‘~2>!!{s [?+a’r°sm( s)]+

i/2

i
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tﬁ"s"‘z"“] for i =1,3,...,

st , 2k—4 A .
+ Vsz——jt-z—[st_z Z :—270—T;”-t’2k-281_2k]} for ¢ = 2, 4:, e
Y k=2
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Hence
! 2 .
-1 )'—'- ;s for:=0,2,...,m—1,
(2.3) a;(s) = _—
ms‘ for: =1,3,...,m

If s>t >0, then

2 d [tt—t)mdt
b =2 4 U,
T ds V2 — 1
4

For s < t; we have (s, t;) = 0 and thus b;(s) = 0. Hence for j =1, 2,

.., » wWe obtain

tt—t)™dt
b(s) = )d WA
l/sz—tz
2 d pd tt'+1
=—20(s, 1 —t)mt .
w j);( )( 4 as ) Vo—v Vog "
Finally, for j =1,2,...,» we obtain
2 -
m .
(2.4) by(s) =—n—0(s,tj>2,(i)(—t,>"“ 5(0),
=0
where
(2.8)  Cy(s)
iJ2
il 8 ; (2E=3)!! . g2k .
(i—l)!! = tz [S—Zwt ] f0r1,=0,2,...,'m,—1,
k=1
ol {si[n + are sin tj)] +
= L — — l — —
(GE—1)N 2 3
(E+1)/2
8t; -1 (k=) s ok .
["I‘m[s —Z '—(2"7—__]-)!—!'t1 s } f0r2=1,3,...,m-
7 k=2

Thus, it is proved that the solution of equation (1.3) may be obtained

from formulae (2.2)-(2.5). Since b;(t,) =0 for r =1,2,...,j—1,

the

solution f,(s) of equation (1.3) for s € 4 may be expressed in the form

r—1
fit,) = Zaiai(tr)-I-Zﬂjbj(t,) for r =1,2,...,n,
=1
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Where
2 il .
. ;mﬁ. fOI"b=0,2, ,m—l,
ai(tr) = in
(i—l)!'t: for ¢ =1,3,...,m,
2 O [m _
b;(t,) = g 2 (’&) (=)™ Cy(t,)
i=0
and

i/2
. N 1 (2% —3)!! (t,)‘-’k]
t —|1— _ =
-1 Vl_u,/t,,z[ ,Z @R \y,

for ¢t =0,2,...,m—1,

L K -+ are sin E—{—
=112 Tt

r

Ci:i (tr) =
(i+1)/2

1 (2k — 4)!! (t,)%-z]
1— ~ 713
* ,/—1+(t,/tj)2[ Zz (2k—1)! \¢, }

k

fori=1,3,...,m.

It is remarkable that the above-described method is exact for all
Spline functions g, of degree not greater than m and that the obtained
Solution f,(s) is not a spline function.

For this reason the present method is not equivalent to the existing
Methods (as described for m = 1 in [3]), where the solution of the integral
®Quation is chosen from the class of spline functions. The proposed method
Tequires to solve a system of m-+n-+1 equations with the m-diagonal
(.m*band) matrix [b;li<ij<mins: (siDCe by = 0 for j>i+4(m+1)/2 and
">J'+(m+1)/2) and then to use formulae (2.2)-(2.5); if a method of the

Pe as in [3] is applied, it is necessary to solve a system with the matrix
“ij]1<¢,5<n+m+l, where a; = 0 only for j=>1i+(m+1)/2.

3. Numerical examples. The proposed method was tested on the
Odra 1204 computer for the following three equations for which we knew
the exact solutions:

t
(3.1 f(s)ds _ 16
) f T =t fl) =3
t
(3.2 f(s)ds ¢ _ 15
) ;f}/ﬁ—sz =, f(s) = 3 352
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14
J(s)ds 32
S

It is known [1] that the interpolating cubic spline function g,(?)
can be given in the form

(3.3)

m
ga(t) = Y Agt*  for tedl, by, i =1,2,...,n—1.
k=0

Since ¢, = 0, we can obtain

akZAlk f0rk=0,1,...,m

and
k-1
ay— g{ (ter1— %) B;
.Bk = = ’
tk+1—tk
where
Ay, 1 —
@ = —2mt_ Ml (A —ap)ty,  for K =1,2,...,n—1.

m

To calculate the coefficients 4., we.used numerically stable methods
described in [1] or [2]. Since the proposed method of determination of
f for £ =1,2,...,n—1 is equivalent to solving a system of equations
having a matrix with only non-zero lower triangle [t;—%]ocicn1<i<i—1
it is also numerically stable ([8], p. 227-231). Note that the equality

0(t,t,)(t—t,)" =0 fortel

implies that the coefficient 8, is unessential in the formula for f,(f) and,
therefore, it need not be determined.

All calculations were performed in single precision with 37-bit float-
ing-point mantissa only for the case m =3 using equidistant nodes
t, = t;_;+ h. The coefficients «; and g; in (1.5) were calculated as described
above. In these calculations the exact values of the derivatives ¢’(¢,) and
g’ (t,) were used. In Table 1 we confront the relative errors (f(s) —f,(s))/f(s)
for two different values of h at five points of the interval {0, 10>.

TABLE 1. Relative errors (f(s)—fa(s))/f(s)

—

Example (3.1) Example (3.2) Example (3.3)
° h=005 | =002 | n=005 | h=002 | =005 | h=002_
2.0 Llg—7 | 1.9—8 | 53,0—7| 850—8 | 15,—6| 2.3,—7
4.0 5.T1g—8 | —4.8,0—10| 2.7,0—7 | =1.70—9 | T.0;g—7 | —3.9,0—9
6.0 | —1.6,g—9 | —7.9;9—10| —6.6,,—9 | —L1;;—9 | —1.8,,—8 | —1.7,—9
8.0 | —7.90—10| —5.7;0—10] —2.9,0—9 | —9.4,0—10| —7.2,,—9 | —1.4,—9

10.0 | —7.3,0—10| —6.5,,—10| —1.7,0—9 | —9.7,0—10 | —4.0,,—9 | —8.1,,—10
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PEWNA NUMERYCZNA METODA
ROZWIAZYWANIA ROWNANIA CALKOWEGO ABELA

STRESZCZENIE

W pracy zostalo podane analityczne rozwiazanie f4(s) réwnania calkowego

Abela, (1.3), gdzie g4 (t) jest funkcja sklejana o wezlach w siatce 4 = {i;,,, ..., ).

Pierajac sie na nim skonstruowano metode przyblizonego rozwigzywania réwnania
calkowego Abela (1.1) oraz zilustrowano ja trzema przykladami numerycznymi.
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