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Abstract. A one-parameter additive family of operators acting on the class of functions
regular in the unit disk and normalized at the origin is observed. In restricting its domain to a
subclass related to Carathéodory class, the author determines the range of values of operated
functions in a concentric disk. The case of particular family generated by a special measure is
also considered.

1. Introduction. Let # denote the whole class of analytic functions f
regular in the unit disk E = {|z| < 1} and normalized by f(0) =f'(0)—1 = 0.
In a previous paper [1] we have introduced a linear operator ¢ of the form

Lf(2) = J@da(t}

I

defined on % where o is a probability measure supported on the interval
I =[0, 1]. Since fe# implies Zfe#, the iteration #" for any positive
integer n arises automatically.

It has been shown that there exists the family {.#*} depending on a
continuous parameter A such that it satisfies the additivity ¥* #* = ¥**+#
together with #° =id and that under certain restriction on ¢ every #*
admits the unique integral representation

210 = | Do,

I

with a probability measure o, supported on I.
A particular case generated by o(t) =t is distinguished. Then o, 1s
explicitly determined by

t

1 * 1 i-1
o, = F(I)J (log;) dt

0
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and the operator #* reduces to the fractional integration of order A with
respect to logz, i.e.,

logz

J f(e®)(logz—w)* ' dw,

A

1
A
L=
the path of integration being taken along the half straight line parallel to the
real axis which is contained in the half-plane [Rew < 0}.

2. Range on general case. Let 2(x) with a < 1 denote the Carathéodory
class of order a which consists of analytic functions p regular in E and
satisfying p(0) =1 and Rep(z) > « in E. It is readily seen that f(z)/ze 2(a)
implies f;(z)/ze 2(«); here and also in the following lines we write f, = #*f
for the sake of brevity.

Now, we consider the subclass % (a) of . which consists of functions f
satisfying f(z)/ze 2(x). As shown by Strohhicker [3], the class of convex
mappings is a subclass of # (3). In relation to this fact, we have derived in
[2] some results on the range concerning .% (3). In the present paper we shall
show that these results can be generalized to the class .# (a), though the
method used below is similar as before.

We begin with a general theorem on the range of f;(z)/z for {|z| <r}.

THEOREM 1. Any function fe% (a) satisfies

[fA(Z)_(PA(N a) < Y (r; o)

|z r Sy

~1

for |z| <r <1, where @ and Y are elementary functions in F defined by

- I+z zZ; o ) L+
x(z; )—(l—a) a, (p(z )=X(22 =(1_a)1_22+a
and
'“Zz; D (=224 p(z; ) = T+ 2(1—a)] =

The extremal functions for the estimation are of the form f(z) = &x(ez; o) with
le| =1, unless o coincides with the point measure concentrated at 0. Further,
the range of f,(2)/z for {|z| <r} induced from any function f of this form is just
the closed circle expressed, by the estimation.

Proof. Since fe# (a) implies (f—az)/(1 —a)e# (0), we get in view of
Herglotz representation on Z(0) the expression

n n

i0
fi‘ ~(l—a) Je +zdt(0)+oz— J&;——)d (o),

-7 -n
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where 1 is a probability measure supported on the interval (—n, n]. Now,
the range of x(z; 0)/ze 2(0) for {|z] <r} is contained in the closed circle with
the segment [y(—r; 0/ —r), x(r; 0)/r] as a diameter. Hence that of x(z; a)/z
is contained in the closed circle with the segment [y(—r; a)(—r), x(r; a)/r]
as a diameter, of which the center and the radius are given by

%(x(r; 9 1= a)) gt o2t

r —r 1—r?
and
(1) x(=roy o, o r _¥a)
I( r —r ( a)l-—rz r ’
respectively. Consequently, we have
1z e Yy
4 r r

for |z| < r. On the other hand, by taking the definition of #* into account,
we obtain

n

i 5 ya Pzt L
f*”_¢ﬂ’“%=J(J1%;;;ﬁhum—¢t,”)wuﬂ

z r
I -n
" (e™¥zt; t;
- f( j (X ee—iozzt a)_(p(r;t a))dr (9))(10,1(:).
I -=

Thus, by remembering the above inequality, we have

n

< ( J (W’:t; a)—l)dt((?))dal(t)

’ -

_ ”(l/f(rrtt; a)——l)da,l(t) _Yaliy)

r

5 e

V4 r

Y
I
Concerning the extremal functions it is readily seen that the equality sign at
a point on {|z] < r} and necessarily on {|z| =r} in the estimation holds if and

only if 7 is the point measure concentrated at a single point 6, and hence f
reduces to f(z) = &x(ez; a) with £ = e

3. A distinguished case. We now observe the dinstinguished case
generated by o(t) =t. Then, by taking into account the familiar formula

1

* A=1
[ (onl) "= T2 2

v
0
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we obtain the series form of f;:

i S0z

vl v

fi(2) =

v=1

for any fe#. By making use of this relation, we state a particularization of
Theorem 1.

THEOREM 2. In the distinguished case generated by o (t) =t the estimation
given in Theorem 1 for fe% (x) may be brought into the series form

R (1+2(1—a)z o :’1)1)

Proof. In view of the remark mentioned just above, the expansions of
@(r; ®) and ¥ (r; a) in the power series with respect to r yield readily those of
@, (r; a) and ¥, (r; a), respectively, and hence the desired resulit.

Finally, we supplement a theorem on the range of values of f;(z)/z in the
whole disk E.

THEOREM 3. In the distinguished case the range of values of f,(z)/z with
A>1in E for feF (o) is contained in the circular disk with the segment

an

<20-9 3

(2(1 —a)(l —-%)C(A)—(l —2a), 2(1 —a) {(A)—(1 —20())

as a diameter, i.e., the estimation

M_(l +2(1—°‘)((1 “217)“'1)_ 1))

holds for ze E, where { denotes the Riemann zeta function.

<2(1-2)5; L0

Proof. The range-circle for f;(z)/z (|z} < r) swells as a point set together
with re[0, 1). If A > 1, the center and the radius of the limit circle as
r— 1—0 are given by

°
1+2(1-a) ; TR 1+2(1—a)((1——)§(/1)—-1)

and

1
2(1—a) Z =2(1-0)5; {4,

(2 )*
respectively. Hence the result follows.
When 0 < 4 < 1, the center and the radius of the limit circle as r - 1 -0

diverge both to positive infinity. However, the left endpoint of the diameter
on the real axis of the range-circle remains always finite; in fact, it lies on the
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left of a. Moreover, it tends to the point

) @ r2n a r2n—1
,l'f’_‘o(”z“_“’ (Z 17 L, G ))

n=1

® (_1y-1
=14+2(1-a) ¥ St 2(1~-a) (1—271_—,)((1)—(1 — 2a),

v=2 vl
where {(4) is understood to be analytically prolonged; here the Abel’s
continuity theorem is taken into account. In particular, when A = 1, the limit
point lies at 2(1 —a)log2—(1 —2a). When A =0, while the limit point lies
necessarily at «, the derivative of the limit point as a function of 1 is equal to
(1—a)log(2m) —(1 —2a).

In conclusion, it is noted that the way used here may be regarded as a
model showing how to deal with similar problems concerning linear
functionals of f in a subclass of Z.
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