FASC. 1

THE RATE OF CONVERGENCE OF ITERATES OF THE FROBENIUS-PERRON OPERATOR FOR PIECEWISE MONOTONIC TRANSFORMATIONS

BY

M. JABŁOŃSKI AND J. MALCZAK (KRAKÓW)

1. Introduction. Lasota [5] and Jabłoński [2] have shown that the sequence $P_{\tau}^n f$ of iterates of the Frobenius-Perron operator $P_{\tau}: L^1 \to L^1$ given by an expanding transformation $\tau: M \to M$ of the differentiable manifold into itself is uniformly convergent for a certain class of functions $f: M \to R$. A similar theorem has also been stated by Krzyżewski [3]. But the above authors have assumed in their theorems that the transformation τ is continuous. The purpose of this note is to give an analogous theorem in the case where the transformation $\tau: [0, 1] \to [0, 1]$ is piecewise C^2 with some point of discontinuity.

The paper is divided into two parts. In Section 2 we give the convergence theorem for the Frobenius-Perron operator P_{τ} : $L^{1}(m) \rightarrow L^{1}(m)$, where m is a Lebesgue measure. In Section 3 we prove a theorem concerning the rate of convergence of the iterates of the Frobenius-Perron operator P_{τ} : $L^{1}(\mu) \rightarrow L^{1}(\mu)$, where μ is an absolutely continuous measure invariant under τ .

2. Convergence theorem for τ piecewise C^2 . Let $([0, 1], \Sigma, \nu)$ be a probability space with measure ν and let $L^1([0, 1], \Sigma, \nu)$ be the space of all integrable functions defined on [0, 1]. For a nonsingular transformation $\tau: [0, 1] \to [0, 1]$ $(\nu(\tau^{-1}(A)) = 0$ whenever $\nu(A) = 0$) we define the Frobenius-Perron operator

$$P_{\tau}\colon\thinspace L^1([0,\,1],\,\varSigma,\,\nu)\to L^1([0,\,1],\,\varSigma,\,\nu)$$

by the formula

$$\int_{A} P_{\tau} f dv = \int_{\tau^{-1}(A)} f dv,$$

which is valid for each measurable set $A \subset [0, 1]$. It is well known that the operator P_{τ} is linear and continuous and satisfies the following conditions:

- (a) P_{τ} is positive: $f \ge 0 \Rightarrow P_{\tau} f \ge 0$;
- (b) P_{τ} preserves integrals:

$$\int_{0}^{1} P_{\tau} f dv = \int_{0}^{1} f dv, \quad f \in L^{1}(v);$$

- (c) $P_{\tau}^{n} = P_{\tau}^{n} (\tau^{n} \text{ denotes the } n\text{-th iterate of } \tau);$
- (d) $P_{\tau} f = f$ if and only if the measure $d\mu = f dv$ is invariant under τ , that is $\mu(\tau^{-1}(A)) = \mu(A)$ for each measurable A.

In the sequel we denote, for convenience, by \bar{P}_{τ} and P_{τ} the Frobenius-Perron operators defined on $L^{1}([0, 1], \Sigma, \mu)$ and $L^{1}([0, 1], \Sigma, m)$, respectively.

A transformation $\tau \colon [0, 1] \to R$ will be called *piecewise* C^2 if there exists a partition $0 = a_0 < a_1 < \ldots < a_p = 1$ of the unit interval such that for each integer i $(i = 1, 2, \ldots, p)$ the restriction τ_i of τ to the open interval (a_{i-1}, a_i) is a C^2 -function which can be extended to the closed interval $[a_{i-1}, a_i]$ as a C^2 -function. τ need not be continuous at the points a_i .

Lasota and Yorke [6] have proved that for a piecewise C^2 -transformation τ with $\inf |\tau'| > 1$ there exists an absolutely continuous measure μ invariant under τ and the density of μ is of bounded variation.

Denote by

$$\bigvee_{a}^{b} f = \bigvee_{[a,b]} f$$

the variation of f over the interval [a, b].

We shall show the following convergence theorem:

THEOREM 1. Let $\tau: [0, 1] \rightarrow [0, 1]$ be a piecewise C^2 -function such that

$$(1) s = \sup_{i,x} \left| \frac{\varphi_i''(x)}{\varphi_i'(x)} \right| + \sup_{i,x} |\varphi_i'(x)| \left(1 + \sum_{i=1}^p \delta_i \right) < 1,$$

where $\delta_i = 2 - \text{card} \{\tau(a_i +), \tau(a_i -)\} \cap \{0, 1\}$ and $\varphi_i = \tau_i^{-1}$ (i = 1, 2, ..., p). Then there exists exactly one probabilistic, absolutely continuous measure μ invariant under τ and for any $f \ge 0$ with bounded variation we have

(2)
$$|(P_{\tau}^n f)(x) - ||f|| f_0(x)| \leq s^n (\bigvee_{i=0}^{1} f + ||f|| \bigvee_{i=0}^{1} f_0),$$

where f_0 is the density of the measure μ .

Proof. A simple computation shows that the Frobenius-Perron operator P corresponding to τ may be written in the form

(3)
$$(P_{\tau}f)(x) = \sum_{i=1}^{p} f(\varphi_{i}(x)) |\varphi'_{i}(x)| \chi_{i}(x),$$

where χ_i is the characteristic function of the interval $J_i = \tau_i([a_{i-1}, a_i])$. By its very definition the operator P_{τ} is a mapping from $L^1([0, 1], \Sigma, m)$ into $L^1([0, 1], \Sigma, m)$, but the last formula enables us to consider P_{τ} as a map from the space of functions defined on [0, 1] into itself.

Let f be a function with bounded variation such that

$$\int_{0}^{1} f dm = 0.$$

We have

(4)
$$\bigvee_{0}^{1} P_{\tau} f \leqslant \sum_{i=1}^{p} \bigvee_{i} (f \circ \varphi_{i}) |\varphi'_{i}| + \sup_{i,x} |\varphi'_{i}| \sum_{i=1}^{p} \delta_{i} |f(a_{i})|.$$

In order to evaluate the first sum we write

$$\begin{split} \bigvee_{J_i} \left(f \circ \varphi_i \right) |\varphi_i'| &= \int_{J_i} \left| d \left(\left(f \circ \varphi_i \right) |\varphi_i'| \right) \right| \leqslant \int_{J_i} \left| f \circ \varphi_i \right| \left| \varphi_i'' \right| dm + \int_{J_i} \left| \varphi_i' \right| \left| d \left(f \circ \varphi_i \right) \right| \\ &\leqslant \sup_{i,x} \left| \frac{\left| \varphi_i''(x) \right|}{\left| \varphi_i'(x) \right|} \int_{J_i} \left| f \circ \varphi_i \right| \left| \varphi_i' \right| dm + \sup_{i,x} \left| \varphi_i'(x) \right| \int_{J_i} \left| d \left(f \circ \varphi_i \right) \right|. \end{split}$$

Changing the variables we obtain

(5)
$$\bigvee_{J_i} (f \circ \varphi_i) |\varphi_i'| \leq \sup_{i,x} \left| \frac{\varphi_i''(x)}{\varphi_i'(x)} \right| \int_{a_{i-1}}^{a_i} |f| \, dm + \sup_{i,x} |\varphi_i'(x)| \bigvee_{a_{i-1}}^{a_i} f.$$

Since $\int_{0}^{1} f dm = 0$, we have the obvious inequality

$$|f(x)| \leqslant \bigvee_{0}^{1} f.$$

Applying (6) and (5) to (4) we obtain

$$\bigvee_{0}^{1} P_{\tau} f \leqslant s \bigvee_{0}^{1} f$$

and, consequently, by induction we have

$$(7) \qquad \qquad \bigvee_{0}^{1} F_{\tau}^{n} f \leqslant s^{n} \bigvee_{0}^{1} f.$$

Now, we shall show that the absolutely continuous measure μ invariant under τ is unique. To the contrary, assume that μ_1 and μ_2 are two different probabilistic measures invariant under τ with densities f_1 and f_2 , respectively. Since

$$\int_{0}^{1} (f - ||f|| f_{1}) dm = 0 \quad \text{and} \quad \int_{0}^{1} (f - ||f|| f_{2}) dm = 0,$$

by (7) for f of bounded variation we have

$$\bigvee_{0}^{1} P_{\tau}^{n} (f - ||f|| f_{1}) \leq s^{n} (\bigvee_{0}^{1} f + ||f|| \bigvee_{0}^{1} f_{1})$$

and

$$\bigvee_{0}^{1} P_{\tau}^{n} (f - ||f|| f_{2}) \leq s^{n} (\bigvee_{0}^{1} f + ||f|| \bigvee_{0}^{1} f_{2}),$$

which is impossible because each convergent sequence has only one limit. Since

$$\int_{0}^{1} (f - ||f|| f_{0}) dm = 0,$$

inequality (2) is a simple consequence of (6), (7), and (d). This completes the proof of the theorem.

3. Convergence theorem for τ piecewise convex.

Theorem 2. If τ is a piecewise C^2 -transformation of the unit interval into itself such that

(i)
$$\tau_i = \tau|_{[a_{i-1},a_i]}$$
 $(i = 1, 2, ..., p)$ are convex,

(ii)
$$\tau_i(a_{i-1}) = 0$$
 $(i = 1, 2, ..., p),$

(iii)
$$\tau([a_0, a_1]) = [0, 1],$$

(iv) τ satisfies (1),

then there exists a unique τ -invariant absolutely continuous measure μ with density $f_0 = d\mu/dm$ satisfying the inequality

(8)
$$0 < 1/c \leqslant f_0 \leqslant c \quad \text{for some } c.$$

Proof. The uniqueness of μ is a consequence of Theorem 1. Now, we show (8). By induction, from (i), (ii), and (3) it follows that $P_{\tau}^n f$ are decreasing functions whenever f is decreasing. Consequently, by Theorem 1, there exists a sequence $P_{\tau}^n f$ of decreasing functions convergent to f_0 . Therefore, f_0 is decreasing, and so supp $f_0 = [0, a]$ for some $a \le 1$. Now, applying the inclusion (see [10])

$$\tau(\operatorname{supp} f_0) \subset \operatorname{supp} f_0$$

we can easily seen that

(9)
$$supp f_0 = [0, 1].$$

Since f_0 is decreasing, by (d), (3), and (9) we have

$$f_0(x) \ge f_0(a_1) \varphi_1'(a_1) > 0$$
 for $x \in [0, 1]$.

This completes the proof because f_0 is of bounded variation.

Theorem 3. If τ satisfies the assumptions of Theorem 2, then for any $f \ge 0$ of bounded variation we have

$$|(\bar{P}_{\tau}^{n}f)(x) - ||f||_{L^{1}(\mu)}| \leq s^{n}(M_{1}||f||_{L^{1}(\mu)} + M_{2} \bigvee_{0}^{1} f),$$

where $M_1 = 2c \bigvee_{0}^{1} f_0$, $M_2 = (\bigvee_{0}^{1} f_0 + c)c$, \overline{P}_{τ} is the Frobenius-Perron operator of the space $L^1(\mu)$ into itself, and μ is a measure invariant under τ .

Proof. By the equalities

$$\int_{A} \bar{P}_{\tau} f d\mu = \int_{A} (\bar{P}_{\tau} f) f_{0} dm$$

and

$$\int_{A} \bar{P}_{\tau} f d\mu = \int_{\tau^{-1}(A)} f d\mu = \int_{\tau^{-1}(A)} f f_{0} dm = \int_{A} P_{\tau}(f f_{0}) dm$$

we obtain

$$(\bar{P}_r f) f_0 = P_r (ff_0)$$

and, consequently,

(10)
$$\bar{P}_{\tau} f = \frac{P_{\tau}(f f_0)}{f_0}.$$

Let $f \ge 0$ be a function of bounded variation. By Theorems 1 and 2 and (10) we have

$$|\bar{P}_{\tau}^{n} f - ||f||_{L^{1}(\mu)}| = \left| \frac{|P_{\tau}^{n} (ff_{0}) - ||ff_{0}||_{L^{1}(m)} f_{0}}{f_{0}} \right| \leq s^{n} c \left(\bigvee_{0}^{1} |ff_{0}| + ||ff_{0}||_{L^{1}(m)} \bigvee_{0}^{1} f_{0} \right).$$

Since

$$\bigvee_{0}^{1} f f_{0} \leq (\sup f) \bigvee_{0}^{1} f_{0} + (\sup f_{0}) \bigvee_{0}^{1} f \leq (||f||_{L^{1}(\mu)} + \bigvee_{0}^{1} f) \bigvee_{0}^{1} f_{0} + c \bigvee_{0}^{1} f$$

and $||f_0||_{L^1(m)} = ||f||_{L^1(\mu)}$, from the last inequality we obtain

$$|\bar{P}_{\tau}^{n} f - ||f||_{L^{1}(\mu)}| \leq s^{n} c \left[\bigvee_{0}^{1} f \left(\bigvee_{0}^{1} f_{0} + c \right) + 2 ||f||_{L^{1}(\mu)} \bigvee_{0}^{1} f_{0} \right]$$

$$\leq s^{n} \left[M_{1} ||f||_{L^{1}(\mu)} + M_{2} \bigvee_{0}^{1} f \right].$$

This completes the proof.

REFERENCES

- [1] N. Dunford and J. T. Schartz, Linear operators, I. General theory, New York 1958.
- [2] M. Jabłoński, On convergence of iterates of the Frobenius-Perron operator (to appear).
- [3] K. Krzyżewski, On expanding mappings, Bulletin de l'Académie Polonaise des Sciences, Série des sciences mathématiques, astronomiques et physiques, 19 (1971), p. 23-24.
- [4] and W. Szlenk, On invariant measures for expanding differentiable mappings, Studia Mathematica 33 (1969), p. 83-92.
- [5] A. Lasota, A fixed point theorem and its application in ergodic theory (to appear).
- [6] and J. A. Yorke, On the existence of invariant measures for piecewise monotonic transformations, Transactions of the American Mathematical Society 186 (1973), p. 481-488
- [7] G. Pianigiani and J. A. Yorke, Expanding maps on set which are almost invariant: decay and chaos, ibidem (to appear).
- [8] A. Rényi, Representation for real numbers and their ergodic properties, Acta Mathematica Academiae Scientiarum Hungaricae 8 (1957), p. 477-493.
- [9] V. A. Rohlin, Exact endomorphisms of a Lebesgue space, Izvestija Akademii Nauk SSSR, Serija Matematičeskaja 25 (1961), p. 499-530.
- [10] Tien-Yien Li and J. A. Yorke, Ergodic transformations from interval into itself, Transactions of the American Mathematical Society 235 (1978), p. 183-192.

Reçu par la Rédaction le 20.7.1980