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STATIONARY OPTIMAL PROCESS
IN DISCOUNTED DYNAMIC PROGRAMMING

In this paper we investigate a discounted dynamic programming
problem. Our model is a slight generalization of the models of Blackwell [2]
and Strauch [9]. Any policy =, together with an initial distribution p,
generates a random process of successive states. This process is called
optimal if the policy = maximizes the expectation of the total discounted
reward. It is proved that under certain assumptions there exists an optimal
process which is stationary. The proof is based on representation of a dy-
namic programming problem in measure spaces and on the Fan-Kakutani
fixed-point theorem.

Sutherland [10] studied similar problems in a deterministic model
of the economy. He proved the existence of a stationary optimal program.

1. Preliminaries. In this section we give general notation and defini-
tions following those of [2].

A standard Borel space (abbreviated to SB-space) is a -Borel subset
of a Polish space, endowed with the induced topology and the Borel o-field.
Let X and Y be non-empty SB-spaces. By XY we mean the Cartesian
product of X and Y. We always consider XY with the product topology
and with the product o-field.

A probability measure on X is a probability measure defined over
the Borel o-field of X. The set of all probability measures on X is denoted by
P(X). A transition probability from X to Y is a function ¢(-|-) such that,
for each z € X, ¢(-|x) is a probability measure on Y and, for each Borel
subset B = Y, q(B|-) is 2 measurable function on X. The set of all tran-
gition probabilities from X to Y is denoted by @(Y |X). For p € P(X)
and q € Q(Y | X), m : = pq denotes the probability measure on XY such that

m(4B) = [ ¢(B|)p(dz)
A

for all Borel subsets A < X, B < Y. Conversely, every m ¢ P(XY) has
a factorization m = pq, where p € P(X) is the marginal distribution of
the first coordinate variable under m, and ¢ € Q(Y | X) is a version of the
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conditional distribution of the second coordinate variable, given the first.
A measure p € P(X) is invariant under the transition probability q € @ (X | X)
if pg(XA) = p(4) for all Borel subsets 4 < X.

By C(X) we denote the set of all real-valued bounded continuous
functions on X. C(X) with the sup norm is a Banach space. Let X be
compact. Then P(X) is a subset of C*(X), dual to C(X). The space P(X)
is metrizable and compact in the weak* topology of C*(X) (see Partha-
rasaty [7], p. 43 and 46). A sequence {p,} of probability measures on X
converges to p € P(X) in this topology iff, for each u € C(X),

lim [u(@)p,(dz) = [u(x)p(do).
n x X

Denote by N the set of positive integers.
A multifunction ¢ from X to Y is a function defined on X, whose
values are non-empty subsets of ¥. We call ¢ closed if its graph

{(@,9) e XY: y e p(w)}

i8 closed. ¢ is upper (lower) semicontinuous if, for any closed (open) subset
B < Y, the set

{xeX: p(x)NnB #* OB}

18 closed (open). ¢ is continuous if it is upper and lower semicontinuous.
Every compact-valued and upper semicontinuous multifunction is closed
(see Berge [1], Theorem 6, p. 117). If Y is compact and ¢ is closed, then ¢
is upper semicontinuous (see [1], p. 118).

Let ¢ be a multifunction from X to X. An element x € X is a fized
point of ¢ if € p(x). We use the Fan-Kakutani fixed-point theorem (see
Fan Ky [3]):

Let X be a convex compact subset of a locally convex topological
linear space. Then every convex compact-valued and upper semicontin-
uous multifunction ¢ from X to X has a fixed point.

2. Model. A discounted dynamic programming model is specified
by a system of six objects (S, 4, ¢, ¢, 7, B) defined as follows:

(i) S8 is a non-empty SB-space, the set of states of some system.
(i) A is an SB-space, the set of actions.

(iii) ¢ is a multifunction from 8 to A, ¢(s) is the set of all admissible
actions if the system is in state s. We assume that the graph of ¢,

@:={(s,0) € 84: aep(s)},

18 a Borel subset of S84, and ¢ has a measurable selection, i.e. there is
a measurable function g: 8—A such that g(s) e ¢(s) for all s € 8.
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(iv) ¢ is a transition probability from SA4 to 8, the law of motion
of the system.

(v) r is a bounded from above, real-valued, measurable function
on SAS, the reward function.

(vi) B is a discount factor, 0 < B << 1.

If the system is in state s and we take an action a € ¢(s), then the
system moves to a new state s’ according to the probability distribution
q(-|s, a), and we receive a reward r(s, a, 8’). The process is then repeat-
ed from the new state s’. We discount our future rewards with the factor g,
so that a reward of one unit, n stages in the future, is worth ” now. We
intend to maximize the expectation of the total discounted reward over
the infinite future.

We write H,:= 8§ and H,,,:=GH, for n e N. H, is the set of all
higtories of the system at time n. A policy n is a sequence {x,, x,, ...},
where

7, €Q(A|H,) and m,(p(s,)|h) =1
for all b = (8, 4,,8,...,8,)€H,, neN.

If we use a policy =, we choose the n-th action according to the prob-
ability distribution =, (-|k), where h is the history of the system up to
time n. A policy = is Markov if each =, € Q(A|S); in this case the action
at time » depends only on the integer n» and on the n-th state of the system.
A stationary policy is @ Markov policy such that #, = o for some o € Q(A4|8S).
The stationary policy defined by ¢ is denoted by o). Denote by IT the
set of all policies. The set of all Markov policies is denoted by ITy;.

Any policy = € Il, together with an initial distribution p e P(8),
defines the probability measure

p = DTy QT ...

on H := SASA ... (More precisely, we must first extend each =, to a tran-
sition probability from SASA ... S (2n—1 factors) to A.) By E, . we
denote the expectation under ¢, ,. The total reward funmction is defined
on H by

R(h):= D B"7'7(Sus Gny Sn4a),  Where b = (s;, a1, 8,, s, ...).
neN

Denote by §, and a, the projection from H into the n-th state space
and the n-th action space, respectively. The random variables §, and a,
describe the state of the system and the action at time n.

Any pair (p, =), where p € P(§8) and = € II, defines the probability
measure ¢, , € P(H) and, therefore, the random process {8,}- E, . R is the
expected reward corresponding to this process. A process generated by
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the pair (p, n*) is called optimal if
y D
B, R =supE, . R.
n

This process maximizes our expected reward for the initial distri-
‘bution p. For any = eIl and p € P(S), there exists =’ € [y such that
E,.R = E, R (see Strauch [9], Theorem 4.1). Thus we may restrict our
attention to Markov policies.

Let = = {=,} be a Markov policy, and let T be a Borel subset of 8.
By the properties of conditional expectations, we have

ep,n(§n+l€ T|'§17 sery én) = an(AT|'§n) = ep,n(§n+1€ Tlgn)

Hence, {s,} is a Markov process whose transition probabilities are

given by
pr(-1s):=m,q(A-|s), se8,nel.

Consider the process {s,} generated by an initial distribution p and
& stationary policy o/®. This is a Markov process with the transition
probability

bo(-18):=0q(A-]s)

independent of n. The process {s,} is stationary if, for any = e N, the
Pprobability distribution of the random vector (s;, 8.y, ..., 8;;,) does not
depend on t. The process generated by (p, ¢/) is stationary if and only

if the initial distribution p is invariant under u,.
The optimal reward function v* is defined by

v*(s):=supE, (R|5, =), sef.
7

v* (8) is the optimal expected reward if the system starts from the state s.
In general, v* is not measurable. Strauch has shown (see [9], Theorems 7.1
and 8.2) that v* is universally measurable, i.e. measurable with respect
to the completion of every p € P(8), and satisfies the optimality equation

v*(s) = sup f(r(s, a,t)+pv*(t)q(dt]s,a), seS.
aeg(s) §

For any p € P(8),
(1) s%pEp,,,R = [v*(s)p(ds)
S

(see Hinderer [4], Theorem 14.2, p. 100).

Remarks. I. Hinderer [4] calls a policy = 7p-optimal if the process
generated by (p, #) is optimal.

II. If a dynamic programming model satisfies assumptions A1-A3
(stated in Section 4), and the reward function r is upper semicontinuous,



Discounted dynamic programming 479

then for any p € P(8) there exists a (deterministic) stationary policy o
such that the generated process is optimal (see [6]).

3. Associate deterministic problem. From our dynamic programming
problem we can obtain an equivalent deterministic problem by considering
the probability distribution on 8 as the new state of the system.

More precisely, consider the model (P(8), P(@), v, f, w, ﬂ), where y
is a multifunction from P(S) to P(@) defined by

p(@):= {meP(G): m(TANG) = p(T) for all Borel subsets T < S},
f is a function from P (@) to P(S) given by
f(m)(T) : = mq(GT)
(T is a Borel subset of 8), w is the real-valued function on P (@) defined by

w(m):= f( fr(s, a,t)q(dt|s, a))m(d(s, a)),
G 8
P(8) is the set of states, P(G) is the set of actions, and y(p) is the set of
all admissible actions in state p.

If we take an action m € p(p) in state p, then the system moves to
a new state p’ = f(m), and we receive a reward w(m). The process is then
repeated from the new state p’. Future rewards are discounted with the
discount factor §, the same as in the stochastic model. We intend to maxi-
mize the total discounted reward over the infinite future.

A program starting from p € P(8S) is a sequence {m,} of probability
measures on G satisfying m, € v(p,), where p,:= p, and p, := f(m,_,),
n > 1. A program is stationary if m, does not depend on n. The stationary
program defined by m € P(G) is denoted by m!®. Let M (p) denote the
set of all programs sta:ting from p. The optimal reward funmction in the
deterministic model is given by

V(p):=sup D p'w(m,), peP(8).

M(p) neN

It satisfies the optimalily equation
V(p) =::(€)[w(m)+ﬁV(f(m))], p € P(8).
A program {m;} € M(p) is called optimal if
DB~ w(my) = V(p).

neN

The program {m,} € M(p) i8 optimal if it satisfies
(2) V(p,) =w(m,)+BV(f(m,), mneN,
where p, := p, and p, := f(m,_,), n > 1.

5 — Zastosowania Matematyki 15.4
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We show that there is a one-to-one correspondence between Markov
processes {8,} and programs {m,}. For the process generated by (p, =),
where p € P(8) and = € II, we define a sequence of probability measures
on G:

(3) My i= PRy,  Myy, i=f(m,)7,,,, n eN.

It is clear that {m,} e M (p). Conversely, consider a program {m,}
starting from p. Each m, has a factorization m, = p,x,, where p, € P(8),
P, =p,7%, €Q(A|8), and w,(p(s)|s) =1 for se8 (cf. [6], proof of
the Lemma). # := {=,} is a Markov policy and satisfies (3). Note that
Pn i = f(m,_,) is the distribution of the random variable §,,.

We next show that the process {s,} is stationary iff the corresponding
program is stationary. Let the process generated by (p, ¢*) be stationary,
and let m : = po. Since p is invariant under the transition probability u,,

fm)(T) = paq(GT) = pu.(8T) = p(T)

for all Borel subsets T < S. Hence, m is the program corresponding
t0 (p, o). Conversely, for any stationary program m(®, there exist
p € P(8) and o € Q(A4|8) such that m = po and ¢ is a policy. Since m(™
is a program, f(m) = p. Then p is invariant under yu,, and the process
generated by (p, o) is stationary.

Rewards associated with the process {s,} generated by (p, #) and the
program {m,} defined by (3) are equal to

E,.R = ) " w(m,).

neN
Therefore, for p € P(8),

(4) supE, . B = V(p).

Hence, the process {s,} with an initial distribution p is optimal iff
the corresponding program {m,} € M(p) is optimal.

, Remark. Jeanjean [5] and Schél [8] used a similar representation
of a dynamic programming problem in measure spaces.

4. Stationary process. In this section we prove the existence of a sta-
tionary process of successive states of the system. We agsume the following:

Al. The set of states 8 is compact.

A2. The multifuncgtion ¢ is upper semicontinuous and compact-valued.

A3. The transition probability q is continuous, i.e.- for each u € C(8
the function v: G—R defined by

(5) v(s,a):= [u()q(dt|s, a)
S

18 continuous.
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THEOREM 1. If a discounted dynamic programming problem satisfies
assumptions A1-A3, then there exist an initial distribution p and a stationary
policy o' such that the generated process is stationary.

Proof. It suffices to show the existence of a stationary program
in the associate deterministic model.

Not every m € P(Q) generates a stationary program. Let v, be the
multifunction from P (&) to P(G) defined by

pi(m) : = p(f(m)).

LEMMA 1. A measure m € P (@) defines a stationary program iff m is
a fixed point of v,.

This lemma is an immediate consequence of the definition of a pro-
gram.

We show that P (@) and v, satisfy the assumptions of the Fan-Kakutani
fixed-point theorem.

P(G) is a convex subset of C*(@), dual to 0(G). Under assumptions Al
and A2 the set \

@(8):= U o(s)
geS
i3 compact (see Berge [1], Theorem 3, p. 116). Hence, G is compact as
a closed subset of S¢(S). Then P(@) is compact and metrizable in the
weak* topology of C*(@). Throughout the remainder of the proof we con-
Sider the spaces P (@) and P(S) with the weak* topology.

Now we prove that the multifunction ¢, is upper semicontinuous
and compact-valued. Since P(@G) is compact, it suffices to show that ¢,
is closed. By the definition of y,, if f is continuous and y is closed, then ¢,
is closed.

We first show that the functlon fis continuous. Let m,, m € P(G@),
limm, = m, and let p, := f(m,), p := f(m). For any u € C(8S)

n
fu 1) p,, (dt) f(f u(t)q(dt|s, a)) d(s, a) f@(s a)m, (d(s, a))
Where v is defined by (5). Since v is continuous, we have
lim [u(t)p,(dt) = [o(s,a)m(d(s,a) = [u()p (@)
n g Q S

Hence

limf(m,) = f(m).

n

Next we prove that the multifunction y is closed. Let
P.,p €P(8), m,, meP(@d), m,ey(p,) IfornekN,

limp, =p and limm, = m.

n
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We must show that m € p(p). Consider the probability measure p’
on S defined by

p'(T) : = m(TANG),

where T is a Borel subset of S. Note that m e y(p) if and only if p’' = p.
For any € C(8) and ne N,

[u(s)palds) = [u(s)m,(d(s, a)).
S (]
Hence

fu(s)p(ds) = [u(s)m(d(s, a)) = fu(s)p'(ds).,
S G S

Thus it follows that p’ = p.
Let m,, m, € p(p) for some p € P(S), and let 0 <A< 1. We show
that Am,+ (1 — A)m, € y(p). For any Borel subset T < 8§,

(Amy+ (1 —A)ymy) (TANG) = Am,(TANG) +(1—2)my(TANG) = p(T).

Therefore, y(p) is8 a convex subset of P(G).

By the Fan-Kakutani theorem, the multifunction ¢, has a fixed
point. Hence, there exists a stationary program in the deterministic
problem, which completes the proof.

Theorem 1 shows that in every system satisfying our assumptions
there is a possibility of long-run stationary behaviour. Simple examples
show that we cannot weaken assumptions of this theorem.

Example 1. We have

0 e ore

Let 8§ =N, ¢(s) = {1} for all 8, q(T|s,1) = Ip(s+1), where I,
is the indicator function of 7' = 8. The model satisfies all assumptions
of Theorem 1 except the compactness of S. It is obvious that there is no
stationary process in S. -

Example 2. We have

OEREE € €02 2 O
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Let

1 .
8 = =Oy 175’ ’--"}: p(s) = {1}, q(T|0,1) = I,(1),

w| -

and

1 (1
q(T!;,l) =1T(n+1) for ne N.

Tlllisv time all assumptions except the continuity of ¢ are satistied, and
again there is no stationary process.

Example 3. This is the reformulation of Example 2. Let

§—4 ={0,1,%,%, }, 2(0) = {1}, q;(i) ={

} for n e N,
n

n+1
q(T|s,a) =Ip(a) for T 8,seS,acAd.

All assumptions of Theorem 1 except the upper semicontinuity of ¢
are satisfied, and there is no stationary process in §.

5. Stationary optimal process. We show the existence of an optimal
process which is stationary. Consider the following assumptions:

A2'. The multifunction ¢ is continuous and compact-valued.
A4. The reward function r is conlinuous.
We need the following lemma:

LEMMA 2 (cf. Jeanjean [5], Theorem 3.1.2). Under assumptions
Al, A2', A3 and A4 the optimal reward function v* is continuous.

Proof. Let L be the operator defined on C(S) by
Lu(s) := 31:(1:)@(8, a), wueC(8), sef,
where
v(s, a) := f(r(s, a,t)+pu(t))q(dt]s, a).

S

We show that v is continuous.

Let (s,,a,), (8, a,) €@, and lim(s,, a,) = (S, a). Now
T n .

[v(8,, a,) —v(8,, a)| < f [7(Spy @yy B) —17(Soy @y, t)|q(dt]s,, a,)+
g )

+ l f[r(so, @y 1)+ Pu(t)1[g(de|s,, a,)—q(dt|sy, ay)].
S
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By the continuity of ¢, the second term on the right-hand side of
this inequality converges to zero as n—oo. Since r is continuous on the
compact @8, for any ¢ > 0 there exists n, € N such that

78y @ny 1) —7(89, @y, )| < e for all n>mn,, ted.

Then the first term also converges to zero.

From the continuity of v and assumption A2’ it follows that Lu is
continuous (see Berge [1], p. 122). Hence, L is an endomorphism of C(S).
It is easily established that L is a contraction. By the Banach fixed-point
theorem, there exists %, € C(S) such that Lu, = u,. Since v* is a unique
bounded solution of the optimality equation (see Strauch [9], Theorem 8.2),
w, = v*. This completes the proof.

THEOREM 2. If a discounted dynamic programming problem satisfies
assumptions Al, A2, A3 and A4, then there exist an initial distribution p
on 8 and a stationary policy o™ such that the generated process {8,} is sta-
tionary and optimal.

Proof. By the correspondence between the stochastic and de-
terministic models, it suffices to prove the existence of a stationary
optimal program. Let ¢, be the multifunction from P(G) to P(G@)
defined by

pa(m) : = [m’ € py(m): V(f(m)) = w(m’)+BV(f(m))}.

LEMMA 3. A measure m € P(Q) defines a stationary optimal program
iff m is a fived point of v,.
This is an immediate consequence of Lemma 1 and (2).

We apply the Fan-Kakutani theorem to P(G) and y,. P(@) is a convex
compact subset of 0*(G) endowed with the weak™ topology (see the proof
of Theorem 1). Now we show that the multifunction v, is closed and
convex-valued.

Since the function [r(s, a,t)q(dt|s, a) is continuous on G (see the
8

proof of Lemma 2), w is continuous on P(@G). It follows from (1) and (4)
that

Vip)= [v*(s)p(ds), peP(S).
S

By virtue of Lemma 2, v* is continuous on 8. Thus V is continuous
on P(8). In the proof of Theorem 1 we have shown that f is continuous
and v, is closed. The function w(-)+ BV (f(-)) is continuous, and hence
attains its supremum on y,(m). By the deterministic optimality equation,
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this supremum is equal to V( f(m)). Consequently, y,(m) is non-empty
for m e P(@).
Let

m,, m e P(@), m, €p,(m, for neN,

limm, =m and limm, =m'.
n n

Since y, is closed, m' e yl(m). For each n e N,

V(f(m,) = w(my,)+BV (f(my)).

By the continuity of w, f and V, we have

V(f(m)) = w(m')+BV(f(m')).

Hence, m’' € p,(m), which proves that y, is closed.

Let m,, m, € p,(m) for some meP(G), 0 <i1<1, and m := Am,+
+(1—A)m,. Since y,(m) is convex, m’' € p,(m). It is easily established
that the conditions

V(f(m)) = w(m)+BV(f(m)) (i =1,2)
imply
V(f(m)) = w(m’)+ BV (f(m").

Consequently, m’ € p,(m).
In order to complete the proof, it suffices to apply the Fan-Kakutani
fixed-point theorem and Lemma 3.

Theorem 2 can be applied to the stochastic model of economic growth.
There are many random factors which affect the production, e.g. weather,
prices on external markets, technological progress. In every stationary
stochastic economy satisfying our assumptions there exists at least one
optimal growth process which is stationary.

The following example shows that assumption A2’ cannot be weaken-
ed to A2:

Example 4. We have
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Let

11 1 1 )
=A={0917§’§’-“}a ¢(0) = {0, 1}, ‘P(_):{n—‘ ne N,

n
q(T|s,a) =Ip(a) for T = 8, seS8, acd, r(s,a,t)=1t.

All assumptions of Theorem 2, except the continuity of ¢, are satis-

fied and there is no stationary optimal process. Note that ¢ is upper semi-
continuous.

Remark. In general, the best stationary process (i.e. maximizing

one-step expected reward among stationary processes) is not optimal over
the infinite future. In Example 4, the sequence {0, 0, 0, ...} is & unique
stationary process, but it is not optimal.
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STACJONARNY PROCES OPTYMALNY
W PROBLEMIE PROGRAMOWANIA DYNAMICZNEGO Z DYSKONTEM

STRESZCZENIE

W pracy rozpatrywany jest markowowski proces decyzyjny z dyskretnym czasem.
Dowolna polityka =z, wraz z rozkladem poczatkowym p, definiuje proces stochastyczny
W przestrzeni stanéw. Proces ten nazywamy optymalnym, gdy polityka # maksymali-
zuje wartosé oczekiwang calkowitej dyskontowanej wyptaty. W gléwnym twierdzeniu
Pracy podajemy warunki wystarczajace na to, aby istnial stacjonarny proces opty-
malny. Jest to przeniesienie na przypadek stochastyczny wyniku Sutherlanda [10].
Nasz dowé6d oparty jest na twierdzeniu Fana-Kakutaniego o punkcie statym. Pomoc-
Diczo wykazana zostala réwnowaznoéé rozpatrywanego modelu stochastycznego
i modelu deterministycznego zbudowanego w przestrzeniach miar.



