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Models for doubly commuting contractions

by Marek Stocinski (Cracow)

Abstract. The idea of Sz.-Nagy and Foiay model for a contraction is generalized for the
pair of doubly commuting contraction. The operators are described as backward shifts on vector
valued I? and H? spaces on bidisc restricted to invariant subspace defined by some bounded
analytic operator functions.

In what follows H is a separable Hilbert space with inner product (x, y);
x, ye H and norm ||x|| = \/(x, x); xe H-L(H) stands for the algebra of all
bounded linear operators on H. For Te L(H), T* denotes the adjoint of T.
The operator Te L(H) is called contraction if ||T|| < 1. Operators T, and T,
doubly commute if T; T, = T, T, and T* T, = T, T*. In the present paper we
give, using the dilation theory, a functional model for the pair of doubly
commuting contractions on a separable Hilbert space.

First we give the decomposition of the pair of doubly commuting
contraction. Let 7T, and T, be a pair of doubly commuting contractions on
the space H. If the decomposition H = H, ®H, is the canonical decompo-
sition of T, (see Theorem 1.3, 2 of [1]) on the unitary and completely
nonunitary parts, then H, = () Ker D-rnl- where for n>0 DT:; =

(I—T*"TPH"? and for n <0 Dr: :Elo— T/" )12 Since T, and T, doubly
commute, T, and T} commute with (/ — T;*" T") and (I — T} T*') for every
n> 0. Consequently 7, and T;*¥ commute with DT':' for every n# 0. If
xe Ker D,-;l- then DT':' T,x= TzDr'; x =0, hence T, xeKer DT';" Analogically
T¥ xe Ker D,-:ln for xe Ker DT';" This implies that, for every n # 0, Ker Drnl- is

reducing subspace for T, and consequently H,; reduces T,. The same
consideration applied to the pairs Ta,> Tom, and Ty,, Ty, which
evidently are doubly commutative, proves the following:

ProPosITION 1. Suppose that T, and T, are doubly commuting contractions

4
on the space. Then there is a decompostion H = @ H; such that H; reduces T,
i=1

and T, (i=1, ..., 4) and the following conditions hold:
Tyu, and T,y are unitary operators,
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Ti\n, is completely nonunitary and Ty, is unitary,
1|4, is unitary and Ty, is completely nonunitary,
Tyu, and Ty, are completely nonunitary.

Now it is easy to see that to find the model of doubly commuting
contractions it is sufficient to solve this problem in two cases:

(I) T, and T, are completely nonunitary.
(I} T; 1s completely nonunitary and 7T, is unitary.

We begin with case (I). The following result, which is the consequence of
Theorem 2 of [2], will be useful in our work:

THeEOREM 0. Suppose that T, and T, are doubly commuting contractions

on the space H. Then there is the minimal unitary dilation U, U, of the pair
Ty, T, such that

(0.1) the dilation space K has the form K = @ H,;; where

Lj=— %

Ho.o=H, H1.0=(U1—T1)H, Ho,1=(Uz—Tz)H,
H_,o,=Ut-THH, H,_-,=U3-T3H,

H,,=(U,U,-U, ,-U, T,+T, TH))H,

H, _,=UtU,-U,T-U, T*+ T, T))H,
H ,=UtU,-UtT,-U, T*+T*T))H,

H ,.,=(UtUi-UIT?-UIT*+T* THH,
and for n,m>1
H,o = Ut ' H, o, H_,o= UT("_“H-l,o;
Hypm= U,;_IHO.I’ Ho,—m=U§(M_UHo.—1,
Hym=U7"'U"'Hy;; H_,_ ,=Ut'"PUI™YH_, _,,
H, n,=U"'Us""YH, _; H_,n=Ut"""U3"'H_,,,

(0-2) U1 H_ 1.j @Ho.j = Ho.; @Hl,js Uz Hj.—l ®Hj,o = Hj.O ®Hj.l

for every integer number j.

Now, we can define the following spaces:

x

H.j = @ Hi.j’ .}- = i€=‘_>0 Hl’.j (=0,1,2,..),

i=~-x

H,= @ H,;, H:= _@0 H; (=01,2,..),
j=-x j=
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Ki=@H.= @ H

i=0 Jj=— J=0
and
K+=@Hu=@ﬂ+ @H+
i.j=0 i=0

A subspace L< H is called a wandering subspace for the unitary operator
Uon H if U'LLL for every n# 0. Lis called wandering for the pair of
unitary operators U,, U, on H if U] U7 L1 L for every n, m such that |m|+|n|
> 0. If L is wandering subspace for U,, then we can define the spaces M, (L)
and M; (L) as follows M;(L)= @ U!Land M} (L)= @ U’L. If L is

n=-—w n=0

wandering for the pair U,, U,, then M (L) and M* (L) denote the spaces
M(L) = G—) UlUZL and M* (L) = (-D Ut U7 L.

am=— am=0
Now we prove the following:
LEMMA 1. Suppose that T, and T, are doubly commuting contractions on

H. Let Uy, U, be a unitary dilation of T;, T, as in Theorem 0. Then with
notations as above the following conditions hold true:

(1.1) the spaces H_, _, H_y , H, _,, H, | are wandering subspaces for the
pair U, U,,

(1.2) Hy_,, Hy, and H_, o, H, ¢ are wandering subspaces for U, and U,
respectively,

(13) HJ and H are invariant subspaces for U, and U, respectively (i
=0, £1, £2,..),

(14) H,; and H; reduce U, and U, respectively (i =0, 1, £2,..).

Proof. Theorem 0 implies that for n,m>0, n+m >0 we have
UlUZH,,=H{ipn1+m1H;; and consequently U}U%TH,,lH,, for
n,m<0O0 and |n|+|m >0. f n>0, m<O0 and n+|m >0 and x, yeH, |,
then UjxeH,,,, and U;"y=UYyeH, n+, hence (UjU%x,y)
=(Uix,U;"y)=0. Thus UJUTH,,1H,, for n>20, m<0 and n+
+|m| > 0. Consequently U} UZH,,1lH,, for n<0,m>0and [nj+m > 0.
So we have proved that H, , is the wandering subspace for the pair U,, U,.
The rest of (1.1) we prove analogically.

Since for n 2 0, U3 Hyy = Hy .+, Ho,; is @ wandering subspace for U,.
This gives (1.2).

Now we shall show that H} is invariant for U,. It is sufficient to show
that for j >0, U H,; cH} . Ifj>0then U H;;=H;,,;cH}.Forj=0,
by (0.2) we have U, H,; « Hy;®H,; « H] which completes the proof
of (1.3).
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To prove (1.4) it is sufficient to show that for every j, U; H;; < H; and
UtH;;cH; Ifj>1then U H;; =H;,,; cH; If j=0, —1 then by (0.2)
we get U H;;cH,;®H,;cH;. For j< -1 we have U,H;;
=H;,,,cH;. Thus U H; c H;. It is easy to see that (0.2) implies that
UtH,;®H,; = Hy,;®H_,;. By using this, similar proof as above shows
that Ut H; =« H;, which completes the proof of our lemma.

If Lis a subspace of the Hilbert space K we denote by P, the
orthogonal projection of K onto L. Our second result will be the following:

LeMMA 2. Suppose that T, and T, are doubly commuting contractions
on H. Let U, and U, be a unitary dilation of T, T, as in Theorem 0.
IfT,= Pyuy, Uiy, and Ty = Py, (Usy, o, Py is the orthogonal projection
of H; onto M (H_,;) and P,; is the orthogonal projection of H; onto
M,(H;_,) (i=0, £1, +2,...), then the following conditions hold true:

(21) Uyn, and Uyy, are minimal unitary dilations of T,; and T,; respect-
ively i=0, £1, £2,..)),

(22) if T, is completely nonunitary, then T,; is completely nonunitary
(i = 1’ 2’ j = 0’ il’ iz’ "')9

(2.3) if for the contraction T on H and its minimal unitary dilation U, L}

and L; denote the spaces Li =(U—T)H and Ly =(U*-T*H,
then L;l_,- =H,;, Ly, = H_y, L;u =Hyy, Lr,,=H_, (i

=0, £1, £2,..).
Proof. If xeH,; then by (0.2) we get that U, x = x,+Xx, where
x €Hy;. Thus Ty ;x =Py, U;x=1x0. If follows that U,x =T ;x+x,
where x; | Hy;. Using mathematical induction one can prove that U} x
= Ty; x+x, where x, | Ho;. This implies that U,y is a unitary dilation of

[« ]
T,,;- To finish the proof of (2.1) we have to show that H; = \/ UjH,,.

n=—aw

Since Ho; c H;, by (14) we get \/ U}iH,; c H;. Suppose now, that
yeH; and y1 \/ UjH,;. Since K= \/ UjU%7H, we are to show

nR=—a nm=—ao

that (U] UT x, y) = 0 for every integer numbers n, m and xe H = H, ,. Fix
n, m and x. It is easy to see, by (0.2) and definition of Hy ; that UTx = ) x;
j=0

i=
where x;e Hy ;. Since x;e Hy;, by (1.4) we get that U] x;e H; which for j # i
is orthogonal to H; > H,;. Consequently, for j # i, we have (U} x;, y) =0. If

j =i then (U] x;, y) =0, by our assumption that y1 \/ UjH,;. Finally

n=-—w«K

(UjU%Tx,y)= Y (Uix;, y) =0 which completes the proof of (2.1).
i=o
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Suppose now, that xeH,; has the following property: {{T7; x|
=[|T#¥ x|l =||x|| for every n>0. To prove (2.2) it is sufficient to show
that x = 0 if 7T} is completely nonunitary. For i = 0 this is obvious because
Ti,0 = T,. Consider now the case i > 0. If j = —i then by (0.2) we infer that
U} x = xo+ x, where x,e Hy,. Since H,, reduces U, (see (1.4)) we have the
following equalities:

ITRx? = U2 T xII?
= U3" Puy, Ui xlI* =||Pyy U3 UL X2 = ||Pyo, Ut X0+ Pyy Ut x,l1
= 1Pug o US Xo+ Pug , Ul %412 = 1 T0 Xoll* + 11 Ty 412,

In fact, to prove the third and the sixth equality it is sufficient to show that

Pyy y =Py, y for yeH,. Let yeH,. Then y = ). y; where y;eH;;. If
j# Othen H;; L Hy, for every k, hence H;; L H,,,. ft follows that if j # O then
Py,.yi=0.1f j =0 then Py  y, =y, because yoe Ho; = Ho,. Consequently
Py, = Yo. On the other hand, if j # 0 then H;; 1 Ho;, hence Py,,y;=0.
For j = 0 we have Py, Yo = Yo. Finally we have Py .y =y, which proves
that Py, y =Py, y. So we have proved that [Ty x||* =T} xoll*+
+||T¢, x4]|*>. On the other hand, ||x||* = ||[U3"x||?> = ||xol|* +||x,[|*. Our as-
sumption about x implies that |[[xoll®+||x]|* = [T} xoll* + | T7"; x|
< ITF xoll* +|Ix,/|*>.  Consequently [|xo]|* < [IT{" Xol{* < [|xol* which proves
that || T} xol| = |Ixoll for every n >0. Analogically we prove that [|T7 x|
=||xoll for every n > 0. Since T, is completely nonunitary, these equalities
imply that x, =0. Consequently U;'x =x,eH; o1 Hqo. For j< —i we
have Uy x = U4t U3 x c Uy* " Hoy = Hg 14 j+4: LHo 0. We have proved that

Ui xHq o for every j. Consequently x1 \/ U3Hgo. Now, (2.1) implies

that x L H,,. But xe H, , hence x = 0 which ends the proof of (2.2) for i < 0.
For i > 0, the proof is similar.

Now we shall prove that (U;—T, )H,; =H,,;. If xeH,; then U, x
= T,,x+x, where x,eH,; (see the proof of (2.1)). It follows that (U, —
~-T,)x=x,€H,,;, hence L; .<H,; Suppose now, that yeH,; and
.V-LL‘F,.; Now, if xeH,, then 0=(}’"(U1—T1,i)x)=()’, Uy x)=(y, T, )
=(y, U; x). The last equality holds because T;,xeH,; and ye H,;. Let

xcH,;. Then it is easy to see that for n>1, U] 'x=x,+x,; where
o

x,eHy; and x,e @ H;;. It follows that for n>1, Ut x =U, xo+ U, x,
=1

where xoeHo, and U,x,e @ H;; H, ;. Consequently (y,U} x) =(y, U, x¢)+
j=2

J
+(y, U; x,) = 0 for every n> 1. Since for n>0, Hy; LH,,,;, = Ul Hy;, we
have Uf"H,; LH,; for every n> 0. This implies that for n <0, (y, U} x)
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= 0. We have proved that for every integer number n and every xeH;,

(», Ujx) =0, hence yL \/ UfH,,. It follows by (2.1) that ye H,. But

yeH;, so y=0. This pro;ez that Lr = H,;. The rest of (2.3) we prove
analogically, which completes the proof of Lemma 2.
Now, applying Theorems 1.1.4 and L.2.1 of [1] and Lemma 2 to the

operators T;; and T,; we get the following conditions:
(24) H;=M,(U,H_ 1WOR;,, Hi,=M(U;H; _)®R;,;,
(235 H.}L = M: w, H—l.s’)@Rl.h H = M; U, Hc‘.—l)@Rz.&s
(2.6) Hi =H,,®M; (H,)), H =H ,®M;](H,,),
27 Py MI(H ) =M{(U,H_), Py;M3;(H,)cM;(U,H, ),
(2.8) if T; is completely nonunitary then H, = M, (H_,;) v M, (H, ),

if T, is completely nonunitary then H; = M,(H; _,) v M,(H, ),
(29) if T, is completely nonunitary then R,; =(I—P,; )M, (H, ),

‘if T, is completely. nonunitary then R,; =(I—P, )M, (H;,).

Now we need some definitions. Let L__, L_,, L, and L,, be
defined as follows: L__ =U, U,H_, .y, L_,=UH_{,, L,_
=U,H, _,, Ly =H,; and let &, _ be a unitary map of M, (L_,) onto

LHL_) = {f: IS Loy| {lIf@I2dm(z,) < )
r

such that &, -(, > Ujx,) = Z 27 x, where x,e L_,, ®,_ be a unitary

n=-—y n= ¥
x

map of M,(L,_) onto L5(L, _) such that &,_( Z Ujx,) = Z z3x,

where x €L, _, &, be a unitary map of M;(L, .) onto I2(L, ,) such that
P, ( Z Urx,) = Z 2! x, where x,eL,, (i=1,2).

S;n—ce Py, comr_n_utes with U, and P,, commutes with U,, then by
applying (2.7) and Lemma V.3.1 of [1] to Uiimyw— o UMy 4o

P1.1|M1(L++) and U2|M2(L+_)a U2|M2(L++)s Pz.llM;(L++) respectively we con-
clude that there are bounded analytic functions {Q{ (z,), L+, L_,} and
{Q3 (z3), Ly 4, L, _} such that

(210) &,_P, x=Q; ®;, x for every xeM;(L,,) where for every
fGLz(L+ D @ NE) =07 @) f(z) (i=1,2).

a
Deﬁne now Ti = P"O- U”HO’ 7-2 = P"-O Uleo, Pl = @ Pl,i and Pz
@ P,;. Then we can prove the following:

i=~-o
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LEMMA 3. Suppose that T, and T, are doubly commuting contractions on

H. Let U,, U, be a unitary dilation of T;, T, as in Theorem 0. Then the
Jollowing conditions are fulfilled:

31) H,_,, H; and H_,, H,, are wandering subspaces for U, and U,
respectively,

(3.2) K/ is invariant subspace for U, and reduces U ,,
K73 is invariant subspace for U, and reduces U,,

() T= @ T,ad = @ T,

(34) U, is the minimal unitary dilation of T, (i =1, 2),
(3'5) l‘}l =H1.’ L?l =H—1.’ L-;z:H.l! l’;z=H--l’

(3.6) P, is the orthogonal projection of K onto M,(H_,),
P, is the orthogonal projection of K onto M,(H,_,).

Proof. It is a consequence of (1.1) that for i # 0, H,, is a wandering
subspace for U,. Combining this with (1.2) we get that H; is a wandering
subspace for U,. The rest of (3 1) we obtain analogically.

a @ ©

Since K{ = @ Hj = @ H, and K; = @ H'=® H,;, then

j=0

j=-a i=—o

(3.2) follows immediately by (l 3) and (1.4).
Since Py, y = Py, .y for yeH,, and for xeH,;, U, xeH,; (see (1.4))
we have Ty x =Py U, x = Py, Uix =T, x for xe Hy; which proves (3.3).
Since minimal unitary dilation of the orthogonal sum of contractions is
the orthogonal sum of their minimal unitary dilations (see [1]) then (2.1) and
(3.3) imply .(3.4).
It is easy to see that (3.5) is a consequence of (2.1) (2.3) and (3.3).
To prove (3.6) we have to show that xe M,(H_,) if and only if P, x

= x. Let xe M, (H_,). This implies that x = ) U} x, where x,e H_,,. It

B=— m

follows that x,= Y x,, where x,,€H_,, and consequently x

m=— ¥

= Y Ulxyn Let = Y Ulxym Since Xam€EH_ | m,

am=— x n=—%

ymeM(H_, ) =H,. Now Ply..—Puu,,,y...—Pu..y...—y,.., by definition
of Py, Thus P, x=P,( Z V) = Z Py ym= Z Vm = X. Suppose

m= =X m=— @ m=—x

now that P, x = x. Every xe K is of the form x = Z Ym Where y,e H,.
m=-a

Our assumption implies that p; , ¥, = V. It follows, by definition ‘of P, ,
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that y,eM,(H_,,), hence y,= ) U}x,, where x,,eH_,,.

n= - x

Consequently, x

[
™
S
=
3

Since for every n the sum

Y  x,meH_,, we get that xe M, (H_,) and the proof of Lemma 3 is

m= - a

complete.

Now, applying Theorems 1.1.4 and 1.2.1 of [1] by Lemma 3 to the
operators 7; and T, we get the following conditions.

(3-7) K = Ml(U| H-].)('DR:, K= Mz(Uz H.-1)®Rz,
(3.8) K{f =M{(UH_,)®R,, K3 =M35(U,H_)®R,,
(3.9 K{ =H,®M{ (H,), K; =H,®M;(H,),

(310) P, M (H,)=M{y(U,H_,), P,M;(H,)=M;(U,H, _,),
(3.11) if T} is completely nonunitary then K = M, (U, H_,) v M, (H,),
if T, is completely nonunitary then K = M,(U,H,_,) v M,(H ),
(3.12) if T, is completely nonunitary then R, =(I—P;)M,(H,),
if T, is completely nonunitary then R, =(I—P,)M,(H,,).

Now we define the following operators T, o = U, Ty, U3i,n,_, and
To=U T -1 Uybu_, ,- We prove the lemma:

LeEmMA 4. Suppose that T, and T, are doubly commuting contractions on
H. Let U, U, be a unitary dilation of T;, T, as in Theorem 0. Then with
notations as above the following conditions hold:

4.1) U,H,_, reduces U, and P,, U H_,, reduces U, and P,,

(42) Uyu,n,_, is the minimal unitary dilation of Tio,
U H_,, IS the minimal unitary dilation of To,

(43) L__, L,_ and L__, L_, are wandering subspaces for U, and U,
respectively,

(44)  Pyy,u _, is the orthogonal projection of U, H,_, onto M,(L__),
Pyu,u_,, is the orthogonal projection of U; H_, onto M,(L__),
(4.5) if T, is completely nonunitary then T,, is completely nonunitary
(i=1,2),
L;I,O=L+—’ L}1.0=U2H_1'_1,
(4.6)
l’-;z.o=L—+’ l‘}z.(’:UlH—l,—l‘
Proof. Since H_, reduces U, and P, (see (14) and definition
of P,) we have U,U,H_,=U,UH_,=U,H,_, and P,U,H__,
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=U,P,H_, cU,H _,. The last equality is true because P, is the or-
thogonal projection onto M, (H_,) and M, (H_,) reduces U,. Since U, is
unitary and P, is selfadjoint, the proof of (4.1) is complete.

Equality P,U,H,_,=U,P,H_, gives P,U,H_,=U,M,(H_,, )
=M,(U,H_, _,). This implies (4.4).

Let Py, _, be the pro_)ectlon of H__, onto U, Ho,-, and let Py,u, _, be
the prOJectlon of U,H,_, onto U;H, _,. It is easy to see that for Xe
U,Ho -, we have Py,  x=U, Py, _, U;!x. Suppose now that xe
U,Hy . Then x=U,y where yeHy -, and forevery n20 UjxeU,H
(see (14). Now, by (21) we get Thox=U, T8, Usix=U,Tiy =
UzP,,,o__lU’{y = U,PHO'_IU’{U{’x = U,P,,o'_lU;’U','x :— Puz,,o'_lU'{x
is a dilation of T} . Since \/ UjU,H, -,

a= - @

which proves that U,y g, _,

=U,(\V Ul Ho_)=U,H,_, (by (21)), (4.2) is proved.

As an immediate consequence of (1.1) we get (4.3).

If T; is completely nonunitary then by (2.2) T; _, is completely nonuni-
tary. Since T;, is unitarily equivalent to 7, _, we get (4.5).

It is easy to see that Ly  =U,Lr _ . Then by (2.3) we have L}, |
= L, _. The rest of (4.6) we prove analogically. This completes the proof of
Lemma 4.

Now applying Theorems 1.1.4 and 1.2.1 of [1] to the operators T; , and
T;.0, we get by Lemma 4 the following conditions:

4.7 U,H_,=M(L_)®R,, U,H_, =M,(L__)®R,,
(4.8) v, —1 = M1 (L——)@Rn U, Htl. = M; (L-—)@Rz,

U, HZ, = Uy Ho, - ®©M; (L. -),

49
49 UH>,, =U H_ 1 ,®M] (L-,),

PlleH._l Mi'- (L+—) < M; (L——)’
P2|U1H_1_M; (L—+)®M; (L——)’

4.11) if T, is completely nonunitary then U,H _,
=M,(L__)v M{(L,.),
if T, is completely nonunitary then U H_,,
= M, (L__) v My(L_,),

(4.10)

(412) if T, is completely nonunitary then R, =(I—P,)M, (L, ),
if T, is completely nonunitary then R, =(I—P,;) M (L_,).
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Therefore we obtain that there are bounded analytic functions
{07 (z¢), L+ -, L__} and {Q; (z5), L_+, L__} such that

4.13) &,_P,x=Q; $,, x for every xeM;(L,_) where for every
feL¥(L, ) we have (Q f)(z;) = Q5 (z;) f(z4),
&, P,x=0Q;F,.,x for every xeM,(L_,) where for every
feL3(L_,) we have (Q; f)(z3) = Q3 (z2) f(z2)-
®,_ and &,, are defined as follows:
#,_ is a unitary map of M,(L__) onto L?(L__) such that

a0

&, ( § Urx)= Y zIx, with x,eL__ (i=1,2);

n=—a A= —aw

$,, is a unitary map of M,(L,_) onto LZ(L,_) such that

$,.(Y Uix)= Y zix, with x,eL,_;

n=-—o n=-o
$,, is a unitary map of M,(L_,) onto I3(L_,) such that
a P®
$,.( Y Uix)= Y zjx, with x,eL_,.

Our next result is the following:

LeEMMA 5. Suppose that T, and T, are doubly commuting contractions on
H. Let U,, U, be unitary dilations of T;, T, as in Theorem 0. Then the
following conditions hold true:

(5.1) if L is a wandering subspace for the pair U,, U, then M,(L) and
M, (L) are wandering subspaces for U, and U, respectively and M (L)
=M, M,(L) = M, M, (L),

(52) if T, and T, are completely nonunitary then
K=M(H_, ) v MH_, ;) v M(H, ;) v M(H, ,),

(5.3) P, commutes with U, and P,; P, commutes with U,,

(5.4) (I-P)K} cK*, (I-P)K;{ cK*,
(5.5 (I-P)M (Hy) =K*, (I-P)M,(H})<=K",
(5.6) (I-P)(I-P)K cK*,

(5.7) P, P,K =M(L__),

Pi(I-P)K=(I-P)M, M,;(L_,),
P,(I-P)K=(I-P))M;M,(L,_),
(39 (I-P)I-P)K =(I-P)(I-P;)M(L,,),

(5:8)
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(5.100 K=M(L._)®U-P)M M;(L_,)®
S —P))M, My (L, )OI —-P)(I-P))M(L, ),
(5.11) P.K*<cK*, (I-P)K*<cK* (i=1,2),
(5.12) K'=M"(L_)®(I—-P)M, M3 (L_,)®
DU~ P)M{ My (L, )®U —P)(I-P))M(L, ),
(513)  K'oH=M*"(L_,))vM*'(L,_)v(I-P)M M3 (L,,) Vv
v (I—=P)M{ M,(L,.,).

Proof. It is easy to cee that to prove (5.1) it is sufficient to show that
M, (L) is wandering for U,. Let n# 0 and x, ye M,(L). The vectors x

and y have the form x= Y UTx,, y= ) Uy where x,, y,eL. It

m=- k=—-a
@ @
follows that (U3x,y)= Y (U3UTX, Ulyd= Y (U3UT *xm 3.
km=—o k,m=— o

Evidently for every m, k, |n|+|m—k| > 0. Since L is a wandering subspace
for the pair U;, U,, we have (U3U7 *x,, »,) =0 and consequently
(U3 x, y) = 0 which completes the proof of (5.1).

If T, is completely nonunitary then by (2.8) we have H
=M (H_,,)vM(H,) and H_, =M,(H_, -,) v M,(H, -,). Then, if,
additionally, T, is completely nonunitary, by (3.11) we have

K= MZ(MI(H—I.-I) v Ml(Hl.—l)) v Mz(Ml(H-l.l) v MI(HI.I))-

Now by (5.1) we get (5.2).

Since H__ reduces U, (see (1.4)) and U, doubly commutes with U,, we
see that M,(H_,) reduces U,. Thus, by (3.6) we may conclude that P,
commutes with U,. Analogically we prove that P, commutes with U,;. Now
by definition of P, we have that H_, reduces P,. Since U, commutes with
P,, we have that M,(H,_,) reduces P,. Hence (3.6) gives us that P, and P,
commute which completes the proof of (5.3).

Since (I-P,) = (-B (I-P,;) and K5 = (-B H;, by (24) and (2.5) we
have i=-w

(I-P)K; =@ (I-P)H; =D R;«c@® H] =K~
i=0 i=0 i=0

which proves (5.3). Since H{ <cK'<cKj and K3 reduces
U,, M;(H{) = K;. Now (5.4) implies (5.5).

It is a consequence of (5.4) that to prove (5.6) it is sufficient to show that
(I-P,)K = K3 . But this follows from (3.6), (3.7), and (3.8).

By definition of P, we. have that P,H_, =P, _,H_, =M,(H_, _,).

3 — Annales Polonici Mathematici XLV.1



34 M. Stocinski

It follows, by the commutativity of P, and U; that P,M,(H_,)
=M,(P;H_,)=M,M,H_, _,)=M(H_,_)=M(L__). Since P,K
= M, (H_,), see (3.6), we have P, P,K =P,P, K =P, M,(H_,) = M(L__)
which proves (5.7).

By (3.6) we have P, K = M,(H_,). Thus

Pl(l—Pz)K =(1_P2)P1K = Ml((I_PZ)H—l.)’

If T, is completely nonunitary, then by (2.9) we have

(I=P)H_, =(I—-P)M(H_,,).
Consequently

P (I-P)K =(I-P)M, My(H_,,) =(I-P)M, My(L_,)

which ends the proof of (5.8). If T, is completely nonunitary, by (3.12) we
have

(I-P)(I—-P))K =(I-P)(I-P;)M,(H,,).
If additionally T is completely nonunitary then by (2.9),
(I-P)H, =(I-P)M, (H1,1)-

‘Consequently

(I-P)I-P)K =(I-P,)I-P;)M(L, )
which proves (5.9).
Now, by (5.7), (5.8), (5.9), the evident equality

K=P P,K®P,(I-P))K®P,(I-P)KS(—-P)(I-P)K
implies (5.10).
Since K* = K7, by (5.4) we have (I—P,)K* < K*. To prove inclusion

P,K* «cK* = @ HI it is sufficient to show that P, Hf <« K* for every
i=0 :

i>0. But Hf =M{(U,H_, )®(I—-P,;)H,, (see (2.5 and (2.4)). Hence
P Hi =M{(U,H_, )< H} =« K*. So we have proved (5.11). Since H is

invariant for U, and H; is invariant for U, (see (1.3)), K* = é H}
i=0

= @ H! is invariant for U; and U,. By (0.2) we have that L__
i=0

=U,U,H_, -, =« K*. Consequently for every n,m>0, UjUL__ cK"*
which proves that M*(L__)<= K*. Since M, M3 (L,_)=M3 M,(L,_)
c M} (H_,) <K} (see (38)), by (54) we get that (I—P,)M, M (L,_)
< K*. Analogically we prove that (I — P,) M{ M,(L_,) = K*.Finally by (5.6)
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we get that
M*(L__)v(I—=P)M M3 (L, )v(I—P)M{ My(L_,)v
v(I-P)I-P)M(L,,)cK".

Suppose now that xeK*. Then x = x, +x,+x3;+x, where x; = P, P, x,
x, =P, (I—P;)x, x3 =P,(I-P,)x and x, = (I — P,)(I - P,) x. It follows, by
(5.11), that ;e K* (i=1, ..., 4). This implies that x, LU UTL__ if n <0
or m<0. But x, =P, P,xeP, P,K =M(L_-_) (see (5.7)). Consequently
x,eM*(L__).Since x,eK*,(I—P;)x, = x,eUJUTL, ., if n <0.It follows
that x, L(I—P)UTUTL,, if m<0. But x, =P, (I—Py)xeP,(I—P,),
K=(-P)M(L,,). Hence x,e(I-P,)M,Mj;(L,,). Analogically we
prove that x;e(I—P,)M; M, (L, _). Finally '

Xeg={U—P)(I—-Py)xe(I-P,)(I-P))K =(I-P)(I—-P)M(L, ).

We have proved that
K*'=M*"(L. ) v(I=P)M; M3 (L,_)v({I—P)M{ My(L_4) v
v{I-P)I-P;)M(L,.).

Now, (5.12) is an easy consequence of (5.10).

Since M, M3 (L, ,)=M3; M,(L,,)c M; (H,;)= ®H,; c K3, by (54)
we get that (I—P,)M, M3 (L,,)<K"*. Moreover, (I-P,)M; M3 (L,,)
c(I-P,)®PH, < @H,. If follows that H L(I—P,)M, M5 (L,). Analog-
ically we prove that (I—-P)M{M,(L,,)<K* and HL(I-
—P,)M} M,(L,,).By(0.2) wehavethat L_, cK*and L, < K*.ButK”
is invariant for U; and U,, hence M* (L_,) <« K* and M* (L, _) < K*. Since
M*(L_,) =Mj;M{(L_,)cM; (H,)=@H,; and M*(L,.) =« M{ (H,)
= @H,;, we have that H1 M™* (L_,)and H 1 M* (L, _). We have proved that

M*(L_,)vM*(Ly_)vU=P)M M;(L,,) v
v(I-P;)M{ M,(L,,)=cK'OH.

To finish the proof, it is sufficient to show that for every i > 1, H and H;'
are included in

M*(L, )vM*(L_,)vU—P)M;M;(L,L,)v({I-P)M] M,(L,.).

Since for i > 1, Hf = Uy ' H} and the right-hand of inclusion which we
have to prove is invariant for U,, it is sufficient to show that

HicM*'(L_,)vM*" (L, ) vUI—-P)M M3 (L,y) v
v(I—-P)M{ My(L, ).
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Since T, is completely nonunitary, by (2.5) and (2.9) we have
HY=M{(L_,)®I—-P)M(L,,)
< M3 (M{ (L_.)) v M3 (I=P)M, (L, )
=M*"(L_,)v(I-P)M M3 (L,,).
Analogically we prove that HY <« M*(L,_) v(I—P,)M{ M,(L, ,) which
finishes the proof of Lemma 5.

Now we need the following definitions: Let L be a wandering subspace
for the pair U, U,. Then: &, denotes the unitary map of M(L) onto

@ M;(L) (the orthogonal sum of countably many copies of M;(L)) such that
®.( Y Uix,)={x,}, where x,eM;(L) (i=1,2) (je{l,2}\{i})), &,

R= =@

denotes the unitary map of @®M;(L) onto I*(L) (i=1,2) such that
¢1.L({ Z U'l! xn.m})’—‘ Z Z'llz,znxn.m and ' de,L({ Z U'Z"xum})

= Y 2y29x,, where x,,L L*L)={fi TI'*>L such that

nm=—

_[ Ilf (21, z2)lI*dm(z,, z5) < 0}. D, denotes the unitary map of M(L,,) onto

r2
®

[*(L,) such that &,( Y UiUsx,.)= Y ziz%x,, where x,,eL,

(a, b=+, —).
If & is a unitary map L onto L, then @@ denotes the unitary map of

@L onto @L such that (DP)({x,}) = {Px,} where x,eL. With these
definitions the following lemma is not difficult to prove:

LEMMA 6. With the notations as above the following equalities hold true:
61) &__=&,, oDP, 00, =&, oD _od,; _,
(6.2) é_, = 52.1._ +© D@Ly 09;,_ + = 51.1._ ,© DD, _09,,_ 4+
(63 &,_.=&,, o®@b,_08,,, =6, o®P 00, ,
(6.4) b,,= 52.L+ +© DP,. 0¢2.L+ + = 61.L+ 40 D, . O¢1.L+ +°

Suppose now that T; and T, are completely nonunitary doubly com-
muting contractions on H. Let U, U, be their unitary dilation as in The-

orem 0. Let xe M(L,_). Then ®,,;, _P,x={P;x}2_,ifx= i Uj x,
where x, = i UT xpneM,(L; )< U, H_,. Thus, by (4.13)
(D2, ) (P2 _(P1X)(2) = {(P1- P1 Xpm) (D}52 -
= {01 @)(P1+ X)(2)}2 - -
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Consequently, by (6.1) we have

ap

@ - PNz = T AQGE) 3 Hrms

@

=01 () Y hxn =012+ Xz, 22).

nm=—®

We have proved that:
(7.1)  if xeM(L,_) then @__ P, x = Q7 &, _ x where for fe I>(L, ),
(@1 Nzy, 25) = Q5 (2) [ (24, 22).
Analogically we prove:
(7.2) if xeM(L_,) then &__ P, x =Q; ®_, x where for fe>(L_,)

(@3 NNz1, 22) = Q3 (23) f (24, 22),
(73) if xeM(L, ,) then &, _ P,x= Q3 &, , x where for fe L*(L, ,),

(I Zz),= Q3 (22) f (21, 22),
(74) if xeM(L,,) then &_, P, x =Q; @, , x where for feI?(L, ,),

01 f(z1, 21) = Q1 (2) f (24, z2).
NOW, ir XGM(L++) then ¢__ Pl sz = Ql— Qq._ sz =Q|— Q; ¢++ X.
Suppose now, that xe M(L, _). Then we have
(= Py) x> = lIxI* = 1Py xII? = |® - x||*— || P, x}|?
=12, _ x*-IQy @. - I
=(Ps-x, P, _)—(Q; P, _x,0; P, _X)
= (T, - — Q1 E)* Q7 )@ - X)(z1, 22),
(¢-t - x)(zy, Zz))dm(zl, zy).

It follows, by putting x =(®,_)" 'y where y; is the charactersitic
function of the measurable set E, that for almost all (z,, z;), we have
(I., _—Q1 (z)*Q1 (z,))=0. Consequently we can define 4,(z)
=(I., _—0Q7(z))*Q; (z,))'/* and operator 4,: [}(L,_)—- I*(L,_) such
that (4,1)(zy, z3) = 4,(24) f (24, z,) for every fe (L, _).

Now we have that for xeM(L,_ ), |[(I-P,x)l=I|l4,P,-xl.
Consequently we can define a unitary map @, of (I—P,)M(L,_) onto
A, I2(L,_) such that @&, ,(I-P)x=A4,9,_x for every xeM(L,_).
Analogically we can define 4,(z) = (I,_, —Q; (2)* Q3 (2))'/? for almost every
zel', the operator d4,: I(L_,)-I*(L_,) such that (4,/)(z,,z,)
= A,(z,) f(z,,z,) for every feI*’(L_,) and the unitary map @,:
(I-P))M(L_,) onto A,I*(L_.) such that &, (I—P;)x =4,®_, x for
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every xe M(L_,). Suppose now that xe M(L, ,). Then we have
(I = Py)(I— Py) |2
= ||x|1> = |Py XI|* =[P x||* +||Py P, x||?
=@+ 4 XlI>=||®- + Py x>~ ||®+ - Pyx||>+||®- - Py P,y x||?
=Py« A= 1QY @4+ XI*=11Q7 P+ XI*+IQ1 Q3 B+ xII?
= ((1.— Q7 (20* Qf (20— Q3 (@)* 03 (z2)+
r
+07 (22)* Q7 (22* Q1 (2) Q3 (22))(P+ 1+ %)(z1, 22),
(P4 + X)(z4, zz))dm(zl, zy).
It follows, by putting x =(@,,) 'yxz that we can define an operator
function

A(zy, 25) = (I.— Q1 (21)* Q7 (20— Q3 (22)* Q3 (22) +
+03 (22)* Q1 (2)* Q3 (21) Q7 (z7))'V?

and an operator 4: I*(L,,)-I*(L,,) such that (4f)(z,,z,) =
4(zy, 25) f (24, z;) for every fel?(L,.). Now, for xe M(L,,) we have
[l(I—Py)(I—Py)x|| =||49+  x||, hence we can define the unitary map @,, of
(I-P)I-P,)M(L,,) onto AI*(L,.) such that &, (I—P,)(I—P,)x
= AP, , x for every xe M(L, ,).

Let ?=¢__9,09,DP,,. It is easy to see, by (5.10), that & is
unitary map of K onto I*(L_.)®4,[*(L,_)®4,3(L_,)@4*(L, ).
Since there is a unitary equivalence between the spaces H?(L__) =
{f: D?x— L__ such that f is analytic and sup [ f(ryzy, ryz,)||12dm(z, z5)

2
<®,0+r,r, <1} and d

{feI>(L__) such that x,, =0 if n <0 or

m < 0 where x,, are Fourier coefficients of f}

we can say that H*(L__) is a subspace of IZ(L__). Analogically we can
treat the space

I2®H*(L) = {f: I xD — L such that, for almost all z,eT, f(z;, )e H}(L)
and for all z,e D, f(, z;)e [4 (L)}
as the subspace of L?(L) and H*®L?(L) as the subspace of [*(L). Now it is
easy to see by (5.12) that #K* = H*(L_.)®4, 2@H?*(L, . )®4,H*®
®L*(L_,)®AI*(L, ;). Consequently, by (5.13) we get that

PH = HZ(L- @4, LZ®HZ(L+ -4, H2®LZ(L— +)®ALZ(L+ +)©
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©{®x where xeM*(L_,)v M* (L, _){-P )M, M; (L:,) Vv

v (I=P)M{ M,(L, .,)}.
Suppose now that x has the form x = x; ® x, (I — P;) x3 +(I — P;) x4 where
x;€eM*(L,_), x,eM*(L_,), x3eM; M3 (L,,) and x,eM{ M,(L, ).
Then '
x=P, P,x ®P, P2x2®P1(I—Pz)xl-{-Pl(l—Pz)x3+P2(I—Pl)xz+
+Py(I—Py) xg +(I—=P)(I—Py)x3+(I—P,)(I-P3) x,
=Pix;+Pyx;+(I—Py)x;+P,(I=P)x3+(I—P)x;+ Py (I —Py)x,+
+(I =P ) I—Py)x3+(I—Py)(I—-P3)x,.
Consequently
Ox=¢__P, x;+®__Pyx;+P,,(I—Py)x, +
+ @y (I = Py) Py Xy + Dy (I = Py) Xy + @ (1= P,) Py x4 +
+ B, (1= P)(I— P3)(x3+X4)
=010 X1 +Q; P X, +4, P X%, +4,05 Py Xyt
+A4,P_ X34 4,0F Py x+4DP, , (x3+ Xxg4).

Now it is easy to see that &, where xeM*(L,_)v M*(L_,),
(M—P)M M3 (L,,)v(I—Py)M{ M,(L,,) has the form

Ox =(Q1 f1+Qz LD f1+ 4,03 YD(A2f2+ 4,01 f)DA(f3+fs)

where f,e H*(L,_), f,eH*(L_,), fye PH*(L, ,) and f,e H>*I?(L,.). Let
Vi=Ul+. It is easy to see that K*©OH is invariant for V, and V,.
Consequently, H is invariant for V{* and V7. Since U, |y, and U, |y, are
minimal unitary dilations of 7T} and T, respectively, V; lnt =Uila} and
Vilag = Uylyg are minimal isometric dilations of T; and T, respectively.
Since o reduces V¥, and Hg reduces V, we have T¥*x
=Nlap)*x=V*x and T =(V;|y3)*x = V¥ x for every xeH. So we
have to find #V*®~! and dV &~ !. First we shall show that M* (L__),
(I—P)M, M3 (L,_), (I-P)M{ M,(L_,) and (I-P)(I—-P;)M(L,,)
reduce V; and V,. Since these spaces span K* (see (5.12)) it is sufficient to
show that they are invariant for V; and V,. It is easy to see that M™ (L__) is
invariant for U, and U, |, + @)= Vily+ @ - is a unilateral shift. Since the
space M, M3 (L, _) reduces U, by the commutativity of U, and P, we get
that (I—P,)M, M3 (L.-) reduces U,. Consequently Vi|;_p M ML, _)
=Uily-ppumiw, ). By commutativity of U, and P, we get that
(I—-P)M{ M,(L_,) is an invariant subspace for U, and consequently
Vilu-ppm; Mye_ ,) is 8 unilateral shift. Since M (L, .) reduce U, we may
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conclude that V,|;-p, - PZ)M(L++)—U1|(I PYU-PYMIL, 4)- It is easy to

see that for V|, . @ , the space M3 (L__) is the complete wandering

subspace (a wandermg subspace L for the 1sometry V on H is called

complete if H = (—B V"L). Consequently, V;* Z Ut x,) = 1(Z U7 x,— Xo)
n=0 n=0

where x,e M3 (L__). Similarly if x,e M,(L_ +) then

VeU-P)( L Ulx)=UtI-PY( L Ulxe—xo)

n=— @

If x= ) UjUPx,, where x,,eL__ and f=&__x then f(z,, z,)

nm=— ®
a0

= ) z}23xp,. It follows that

nm=— @

@UIx)(21,22) = (@ _ U9z, z9) = @ Y UL UPxan)(z1, 22)

= z z1” l22 =1/21( Z z'l'z'z"xnm)=1/21f(zbzz)-
nm=— o nm=—

= <]

Evidently di( Z U Xom) = 2. 23 Xom =f(0, z;). Consequently, we have
that (@V* ¢*f)(z1, z,) = 1/z, (f(zl, 2;)—f(0, z;)) for every feH?*(L__).
A similar proof shows that ®V*®~! has the same form for fe H2I*(L_,).
It is easy to see that if A, I?H?*(L,_) or if feI’(L,,) then
(®V, 2~ ()21, 22) = 1/2, (f)(z4, z;). Analogically we prove that for
JeH*(L__) or fedLH*(L,_)(®V}D ') f(z1,2;) =1/z, (f(zn zy)—
—f(z,,0) and for fed, H*L(L_,) or feA?}(L,,), (®V,27")(f)(z:, z2)
= 1/z,f(z,, z;). Since at the beginning we could have put T{* and T3* in
place of T, and T,, we have proved the following

THEOREM 1. Suppose that T, and T, are completely nonunitary doubly
commuting contractions on the separable Hilbert space H. Let U,, U, be the
minimal unitary dilation of the pair T,, T,, as in Theorem 0. Then there are
bounded analytic operator functions {Qf,L,,,L_,}, {Q7,L,_,L__},
{Q5,L,4+,L,_} and {Q3,L_.,, L__} such that the space H is unitarily
equivalent to the space

H= HZ(L- -)@4, LZHZ(L+—)®A2 HILZ(L- +)@ALZ(L+ +)O
Q1 1+02 2)DA,fi+4, Q3 H)DA212+ 4,01 f)DA(f3+£4)
where flEHz(L+—),f2‘5H3(L— +):f3€L2H2(L+ +) and fye H*I*(L, +)}
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where

L _=(I-U, T ~U,T}+U,U,T* THH,
L,.=U-T,-U,U,T;*+U, T, T} H,
L.,=U,-T,-U, U, T*+U, T* T))H,
L,.=UU,-U,,-U, 1 +T, T)H,
QiNNz1,2) =Qiz) f(z1,22) (i=1,2, a=+,-),
Aif (21, 22) = 4:(2) [ (21, 22), 4 (D) =(1-Qf 2* Q" ()" (i=1,2),
(A1) (21, 23) = A(24, 25) f (24, 22),
A(zy, 22) = (1-QF (20)* Qf (21)— Q3 (22)* Q3 (z2) +
+03 (22* Q1 (22 Q1 (21) Q3 (22))'/%.

Operators T, and T, are unitarily equivalent to the operators T; and T, on H
such that for f=f,+f,+f,+f, where

fieHNL..), fed PH(L,.). fied, H*I’(L_,), fiedD(L,.),
(T2 22) = 1z, (f1 (21, 22)=£1(0, z)), (TifZ)(zl’ zy) = 1/z,(f2 (24, 22)),
(T.f3) (215 22) = 1)z, (f3(z1, 2 =130, 22)),  (Tifa)(z1, 22) = V2, (fa(z1, 22)),
(1), 22) = 1/23(f1 (21, 22)=f1 (21, O)), (Tzfs)(zu z3) = 1/23(f3 (21, 22)),
(Tof) (21, 22) = Uz, (f2(21, 22) =12 (24, 0)), (Tf) (1, 22) = 1/z2(fa (21, 22))-

Now we consider the case where T; is completely nonunitary and T; is
unitary. If U, is the minimal unitary dilation of T then there is exactly one
extension U, of T, such U, commutes with U; and U, is a extension of T;.
Moreover, U, is unitary and the pair U,, U, is the minimal unitary dilation
of the pair T;, T,. By Theorem VI.2.1 there is a bounded analytic function Q,
L;'-l, U, Ly, such that H is unitarily equivalent to the space

H = H}(L7))®AL}(Ly,)© \Qf+ Af where fe H(L7,))

where 4(z) = (I-(Q)(2)* Q(2))!/? and T, is unitarily equivalent to the oper-
ator T; on such that for f=f, +f,, where fye H}(U, L7)) and feL}(L7,),
(L)@ = 1/z(f1(2)~f1(0) and (T f2)(z) = 1/z(f>(2)). Now if we apply
Lemma V.3.2 to the operators UIMT(UU--FI) and Ul“f“ﬂ’ we get the

following:

THEOREM 2. Suppose that T, is completely nonunitary contraction on H.
Let U be unitary operator on H which commutes with T,. If U, is the minimal
unitary dilation of T,, then there is the analytic bounded operator function
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{Q, L., L.} such that H is unitarily equivalent to the space
H = (H}(L-)®L}(L.))O{Qf+ Af where fe H}(L.)}

where L. =(I-U, TH)H, L,=(U,—-T)H, 4(z)=(I-Q(2)*Q(2))"*
Operators T, and U are unitarily equivalent to the operators T, and U, such
that for f=f,+f, where fyeH,(L_) and f,eAL,(L,) we have

(1)@ = 1/2(/1@-/0), (1)@ =1/z(/2(2)),
Ufl (2)=U_fi(z) and (Ufz)(z) =U.£,(2)
where, for xeH,
U.(I-U;)x=(I-U,T)Ux and U,U;-T)x=(U,-T)Ux.
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