ANNALES
POLONICI MATHEMATICI
XXXI (1075)

On infinite systems of differential equations
with deviated argument I

by BoeDAN RzEPECKI (Poznan)

Abstract. The aim of this paper is to indicate some effect caused by the deviated
argument in infinite systems of differential equations. We give theorems on existence
and uniquenesg of the solution of the system

2 (1) = fa[ts 7 () 2y (@2 (1) s 21 (0D (1) -2n
T (1), Z(@ (1)) 2o (@87 (1) o oes -

oooooooooooooooooooo

@y (8), 23 (91 (1) 2 (ws (1)«
a3 (1), =3 (v (1)), 2 (v (1))5 <o -

with initial conditions z,(0) =0, » =1, 2,...

In [2] a discussion is made on the existence and uniqueness of the
solution of the differential equation .

#' (1) = f[t, a(t), m(%(t)); crey m(‘l’u(t)); @' (1), o' (‘Pl(t))s seey -’”I('I"m(t))]

with the initial condition #(0) = 0. The purpose of this paper is to point;
out some effects which the deviated argument causes on infinite systems
of differential cquations.

Infinite systems of differential equations were considered by A. N.
Tichonov [7], [8], and K. P. Persidski [5], [6]. Results of these authors
are generalized in [9] for the systems of equations whose right-hand
sides contain also variable parameters. Infinite systems of integral-differ-
ential equations were studied in [3].

The purpose of this paper is to discuss the existence and uniqueness
problems for infinite system of differential equations

(I ‘L':;(t) =y [tS z, (1), wl(‘{”n(t)), ml(q’lz(t))) tevy
@y (1), wz(‘ﬁn(t))a wz(‘?’zz(t)), cesyeen
2 (), mf("/’n (t))’ 371('1”12 (t))a ceey
(1), mé(’#m(t)) ) @ (%Uaz(t))a REEEY ]
(n=1,2,...)
with initial conditions z,(0) =0, # =1,2,...



160 B. Rzepceki

In the proofs of existence of ut least one solution for the above stated
problem we use the following form of Tichonov's fixed point theorem:
If in Byspace a continuous operator maps a closed convexr and compact
set into diself, then it has a fived point.

1. Liet ¢ denote the space of all sequences of real numbers with the
usual metries g. The sets

8, = 8X8X ...y, S =1[0,a]%x8, 85 =[0,a]X8 X%

are considered with the “produet” metries g,, 0, and g, respectively.

Let ||'[] be a norm in C[0, ¢]. In the vector space I = C[0, a] x
x C[0,a]x ... define a sequence (p,) of semi-norms p,(P) = [p,l, where
® = (@1, s, .--). Then (cf. [1]) thé functional ||[-]|] defined by
oo 2l
el = 2= e
md 1+ llpa i

1

is o paranorm in E. It is known (see [4]) that the space ¥ equipped with
this paranorm is a By-space. '

The convergence in the introduced spaces is equivalent to the coordi-
nate-wise convergence. Given a non-negative constant R, let my be the
set of real sequences bounded by R. Then evidently the product Z = mp X
X Mg, X ... 18 & compact subset of s;. Let @ = (£, &)es,, where & = (%,)
€81y Uy = (%;,) 8. A funetion f: §,—(— oo, o) is continunous at the point
if and only if, for every £ > 0 a number n > 0 and natural numbers
N,y N,y ..., Ny exist such that

(85 %11y taay oo 5000) =F(B5 Tygy Bngy oeej o) <ogy

whenever [t — <, |uyu—%l <y fori=1,2,...,N,, b =1,2,..., M.
If A=(1¢7esy &£ =(7,), 7 = (7)'.!1)581, Uy = (W), ?_Jz'_‘= (71,) €8, then
a function F: s;—(— o0, oo) is continuous at the point 4 if and only if
for every e > 0 there exist a number »> 0 and natural numbers ¥,, N,, ..
..y Ny and N,, N,, ..., Ni such that

|F'(8; %11y Uany +-e5 Osay D12y o) = F (35 Taay Tagy oov Bray Bpay -0 0)| < &,
when [—il<mn, |uw—Tdyl<n for ¢+ =1,2,..., N, k=1,2,..., M
and Ivkid_ﬁkil< 7’ fOl‘ /l: - 1, 2, ceey N;‘:, k = 1, 2, very .K.

2. We prove here the existence theorem for problem (I) in the
following special case:

(I0) &, (1) = fo[t; 2.0, 2, (0 (D), B2 (@12 (D), -5
Ty (2), mz(‘Pn(t)): mz(%e(t))a cee) ] (n=1,2,..)
with #,(0) =0, » = 1,2,... We introduce
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ASSUMPIION (A). Suppose that
1° the funetion f,: sa—>(—o0, o) (0 =1,2,...) is condinuous,
2° there exists an » > 0 suech that
SUP |f, (85 Uy, Mgy onj Uagy tasy oea ...)] S T@™!

Jor n=1,2,...,1e[0,al, luyl<n, ,j=1,2,...,

3° the function ¢;: [0, a]—[0,a] (i,j =1,2,...) is continuous.

THEOREM 1. Under Assumption (A) there exists at least one solution
of the initial-value problem (II); this solution consists of uniformly bounded
continuous functions on the interval [0, a].

Proof. It is obvious that problem (II) is equivalent to the following
infinite system of integral equations

4
(1) @, (t) = ffnls; %, (8), -"’1(‘}’11(3)); a’l(‘l’la(l"))a cerd ---]ds
n=1,2,...)

considered in E. We shall first prove that if #;,¢C[0,a] (i =1, 2,..),
then the composition

R(t) =f,,(t; z, (1), a;l(tpn(t)), coe a(E), a:;.(qv,n(t)), cei}es )
is continuous in the interval [0, a]. Let
&, = (b3 21(0)s Ba(Pra (8))s @al@ra ()]s -5 - )i
t = (fo; @1 (t)5 B1(021 (1)) s @1 (Pr2to))y +vv3 1)

Then for (¢.)—1,, {€[0, @] we get limaz,(#,) = 2;(4) and limwi(qn;j(tk))
= @@y (%)) (i, =1,2,...). This means that lim g,(a, a;) = 0. Hence
(B (3))~ 1 (%) Ly the continuity of f,,.

If T is an operator whose coordinates are defined by right-hand
sides of system (1), and K, denotes the set consisting of U = (2, @5, ...)ell
such that

Il || < 7y e, (1) — @, (2,)] < ra” |ty — 1]

for #,,t,¢[0,a] and 2 =1,2,...,

then 7: K,—K,. We shall prove now that the operator T is continuous
on K,. Let (U,)—U, where U, = (%, @a,...), U = (@, @ay ...)eH,.
We must prove that

Win— 4 I=0  with k>0 (n =1, 2,...),
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where

t
Y (t) = ffn[-s'i L1 (8) -’1’1.-1(‘?’11(3)); mk,x(‘Pm(S)): ceed ...]ds,

t .
Ynl(t) = ffn[s; @1 (8), ‘51(?’11(3))7 m1(¢?’12(3))v vee) "']ds'

Because lim |z, (8) — 24, (8)] = 0, for § > 0 the number N exists such
that

S -0 -1 I«’.U]m(S)-*wn(S)l
2.2 [2 1F (00 (5) — 2, 6)]

n=1

+ yo_{ lwlm(qjon 1(3) %n,(ani 1(8 )I ]< 8

:J l+|m]m(¢n,{-l(3 ) n(q)ni 1(8 )I

for k> N and se[0, a]. By uniform continuity of the function f, on the
set Z, = [0, a] X m, xm,x ... we can find, for ¢ > 0, such a number ¥
that

Ifn(s; mkl(s)! mkl(qjll(s))a w),;;(?’]g(v?)), el ...)—-
—Fa(85 3208, @1 (pna (), Bal@ra(8), -5 - ) < e

whenever &k > N, se[0; a]. Hence |y, (f) —v,(#)| < ea for &k > N, t¢[0, a],
n =1, 2, ... Thus 7'is continuous in K. Since for |Im,-nu < 7y |2, () —wm(t,)
< rat[t, —1t,|, where t,, t,e[0,a),2 =1,2, % =1,2,...andfor 0 < a1
we have

”(1 - a) mln_{' awz;;,” < 7y

(1 — a) @y, (31) + oy, (1) — (1 — @) @1, (B2) — @@, ()] < 7° < 71a7 it — 1),

K, is a convex set. It can be easily proved that K, is compact. Indeed,
let (U,) be an infinite sequence such that U; = (2, 2, ...)¢K,. Let k
be a fixed number. Let us consider the sequence (xf)). The functions
of the above sequence satisfy the inequality

20 (t) —aff (L) < ra~tit—t  (1=1,2,..)

for %,,%,¢[0, a]. Hence these functions are equally continuous and we
know that they are uniformly bounded, thus we can apply the Arzels

theorem. Hence we can substract from the sequence (m(‘)) a subsequence
(t)

(a:1 ) converging to some ;. Similarly, from (wgl) & subsequence

1&‘))

(#;° ) converging to some x, can be substracted. Analogously we can
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verify that the sequence (U
since

ap(K)) 15 convergent to U = (, @, ...) e Ky,

k)
limw?&' (¢) = x;(t) uniformly in [0, a]

for every ¢ = 1,2, ...
Now, Theorem 1 is implied Dy the Tichonov fixed-point theorem.

Remark 1. Theorem 1 is a generalization of the result of paper [2],
where a theorem on the existence of solutions of the equation

@' (1) = flt, 2(1), @(@s (D), - -+, 2(@ (1))
was established.

3. In this section we shall consider the initial-value problem for (I),
under the following

AssumperioN B. Suppose that
1° the funclion f,: s3—>(—o0, o0) (n =1,2,...) is continuous,
2° there exists a positive number v such that

SUP | fo (25 Wpny Mny eevy oees Vppy Vpny oeey )| ST

forn =1,2,...,te[0, al; [ugl<re, o<, i,j =1,2,
3° the fmwtwns foy #=1,2,..., are equally contz-m:,ous on the set
Zy, =[0,a] 2" xZ", where Z' = Mg X Mgp ¥ vvy Z'' = My X My X .o,
4° there ewist non-negative constants ul) (n =1,2,...),4,§ =1,2,...,
such that the inequalilies

o g
falty & m) —Fulty ;< D) Yl oy — 1,
i=1 j=1
(o= >~
,u=sup{221u 1,2,...}<1,
i=1 j=1

are satisfied for any te[0, al, £, = (v,), 7 = (F,) €81, V; = (Vy,), By = (Dg) €8,
5° the functions ¢;: [0, al—[0,a], i, =1,2,..., are equi-conlin-
noUS,
6° the funetion wy: [0,a]l-[0,a] (i,j =1,2,...) is continuous,
7° for any t,, t,€[0, a] the following inequality holds

lpy(h) —py @) < 6 —t] (5,5 =1,2,...).

THEOREM 2. If Assumption (B) is satisfied, then there ewists at least
one solution of the initial-value problem (1); this solution consists of uniformly
bounded continuous functions on the interval [0, a].

4 — Annales Polonlei Mathematici 31.2
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Proof. We reduce problem (I), by substitution ,(¢) = 1u,(1)
(n =1,2,...) to the following system of equations
¢ e11(8) P1alt)

(2) 'u.n(t)=f,,,[t; [w@)ds, [ w(s)ds, [ wls)ds,...;...

¢

wy (1), (93 (1), wa(Paa(®)); -5 -]
(n=1,2,...).

Let T Dbe the operator whose coordinates are defined by the right-
hand sides of system (2) and let

Ky ={U = (U, Uy, ... )eH: u, i<, 0 =1,2,...}.

From Assumption (B) it follows that the operator T is continuous
in K, and T: K,—XK,.

Let F,: Eyx[0,a]x[0,a]>(—oc0, ) (# =1,2,...) be the func-
tion of variables U = (uy, Uy, ...)eK,, T, 7€[0, a]. This function arises
from the right-hand side of equation (2), if we replace in the last group
of the terms

(1), ""i("/’n (t)), "i(’;"iz @), ... (=12,..)

the variable ¢ by 7. Consider the restrictions of f, to the set Z,; then for
every & > 0 there exist 5(¢) > 0 and natural numbers N{”, N, ..., NG} ,
such that

IFo (U, 8y, 8) — F (U, 8y, 4)|[ < &
for every UeK, and every 1, %,¢[0, a], for which
(3) =t <y, rlp)—e)l<<n forall geF,

wlhere & denotes the set of functions:

Pargis J=1,2,..5 N -1 (n=1,2,..).

For our 5 = #(e) there exists » = »(y) > 0, such that r|g(t) —¢(l)] < 9y
for peF and |t; —1,| < ». Therefore inequalities (3) hold for any ¢, t,¢[0, a],
|t; —t) < 8, where 6 = min(yn, ™, »). Thus we see that: there exists
a funetion é: (0, c0)—>(0, oo) such that iff UeK,, ¥;,1,e[0,al, {t;—1%,
< 6(e), then '

B (U by, 4) =T (U by )l < e forn=1,2,...
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Consider the set Hi of those U = (uy, ts,...)e K, which have the
following property: for every e> 0 and t,1,¢[0,a], [t,—1.<< d(e),
sup {|i, (h) —w,(t): v = 1,2, .. < (L —p) e

holds.

Now we can prove the inclusion 7T[K;] « Kj. In fact, if
U = (13, Us, ...)e Ky and TU = (Tu,, Tu,,...), then

1Tt (81) — Tty ()] < e+ 1Fu(Uy by 3)) = Fo(Uy T,y 1))

|

< e+ _5_7 [l"%)l“a‘(tl) —u;(t,)] -+ E#S")'L)l'"'t(’l’i.j—l(tx)) — '7"i('l’i.j—1(t2))
j=2

i=1
oo oo
Set(l—p)7e D) V< et (1—p)ten = (1—p) e,
i=1 j=1

for £>0 and [{,—1,) << d(e).

Thus we see that the continuous operator I' maps the convex com-
pact set K into itself; therefore, according to Tichonov’s fixed-point
theorem there exists at least one fixed point of 7. This fixed-point is
evidently a solution of system (2).

Remark 2. Theorem 2 is a generalization of a result from [2], where
the existence of solutions of the equation

#'(t) = f(ta ©(1), m((pl(t))) ceny ‘v(‘Pn(At))a 2' (), w’(yh (t))) ey & (V’m(t)))
was established.

‘We shall formulate another theorem on the existence of a solution
of problem (I).

AssuMPTION (C). Suppose that
1° conditions 1°, 3%, 4° 5° and 6° of Assumption (B) are satisfied,
2° there ewists a constant ¢ = 0 such that

fa, &, 0)<q m=1,2,...)

for any te[0, ], Ees,, where 6 denotes the zero element of the space $;.

TeoREM 3. If Assumption (C) is satisfied, then there exists at least
one solution of the initial-value problem (I).

Proof. Let T be the operator defined in the proof of Theorem 2.
Given r > 0, the inequality |Tu,(t)| < ¢+ wr bolds for all U = (u,, %, ...)
eB, Ju, () <r (n=1,2,...). Choosing 7,> 0 so that ¢4 ur,< 79, We
see that 7': Ky,—~I,, where

Ky = {U = (Uy, tay...): fpli<rg, n=1,2,...}.

Then we proceed similarly as in the proof of Theorern 2.
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4. In this section we shall establish theorems on the existence of
a unique solution of the initial-value problem (II).

AssunmprioN (D). Suppose that

1° Assumption (A) 18 satisfied,

2° there ewxists a function geC[0, a] such that

Ifa(ty &) —fult, E)I < g(8) - sup{ly — Uy, W —Tply ...0 0 =1,2,...}

for every m =1,2,...,1¢[0, al,. & = (u,), & = (%,)esy, where n; = (1),
Uy = (Uyp) €8,

3° the function @y (i,7 =1,2,...) fulfils the inequality

@i(t) <t for every te[0, al.

AssumprioN (). Suppose that

1° conditions 1° and 2° of Assumption (D) are satisfied,

2° a-lgll < 1.

TurOREM 4. Under Assumption (D) there exists a unique solution of
problem (II). This solution consists of uniformly bounded and equi-contin-
uous functions defined on the interval [0, al; it is the limit of the sequence
of Picards successive approximotions

(1) —
(4) @y, (1) 0,

t
P (1) = f.f'n[s; oD (s), 2D py (8)s 2 pu(8))y -5
0

w(zk_l)(s), ‘1’(2]:—1)(9"21 (3))a $S.5k—l)(‘i’22(3))1 cee) '
ds

for t =1,2,... (»n =1,2,..))

Proof. For any fixed m, let us consider the sequence (i) of the
functions defined by formulas (4). The functions are continuous and
bounded by 7 on the interval [0, a], and

" 14 tk+1 . k
7 {lgil® || < (l gll@)

1) 4y — 2 (4)] < — K ‘

Since the series
o)+ (@) — o)+ .. 4 (@ —a®) L
is uniformly convergent on [0, «], we also have
(B) limae®(t) = ,(t) uniformly on [0, a].

Now it is easily seen that the functions z,, » = 1,2, ..., satisfy
Bystem (1).
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-1

Since

e, (0] < 1£ (250,05 .05 0,005 ..+
+g(t).sup{|mi(t)], lmi(‘pz'l(t))l! |mi(¢'i2(t))!1 vttt =1,2, }
< 7'a'_l+ lgll» (n=1,2,...),

our solution of (1) consists of equi-continuous funetions.

Suppose that (z,, 2,,...) and (¥, ¥a,...) are two solutions of (1).
By (b), for every n we have

PR 4 tk+1 . k
71lg|I* [5] < r(llglia)

¥ () — @ ()] <
[y, (1) — a5 (2)] (I’,Uv‘l'l)' S (E+1)!

for te[0,al,k =0,1,2,... Hence u,(t) =lima® () =, () for » =
=1,2,... Thus completes the proof.
Let us further state

TrmorEM 5. Under Assumption (E) the conclusion of Theorem 1 is
valid and, moreover, if a® (n =1,9,...) are defined by formulas (4), then

|2, (8) — 2 (1)] < ra® gl

for te[0,a], 5 =0,1,2,..
5. We now want to formulate a theorem on the existence and uni-
gqueness of the solution of problem (I).
AgsumrrioN (F). Suppose that
1° conditions 1°, 2° and 6° of Assumption (B) are satisfied,
2° the funetion oy [0,a]—>[0,a] (i,j =1,2,...) i continuous,
3° there ewist functions g,eC[0, a] and g,¢C0, a] such that

Ifn (s &y n)—Fulty E: EH

< ¢, (@) sup{luw; — @nl, lwn— ,ql, et i =1,

[S-]
o
_.I_

+ga () sup{|vy —Til, 0s—Tnl, .0t 1=1,2,...}

for m =1,2,...,te[0,al, & = (1), 1 = (v.), & = (%,), 7 = (P,) €81, where
g = (Up)y U = (Vin)y Uy = (W), T = (Vy) €8y

4° allgyll+ llgall < 1.

THEOREM 6. Under Assumption (I') there exisis a unique solution of
problem (I). This solution consists of uniformly bounded and equi-contin-
uous functions defined on the inlerval [0, a]; it is the limit of the sequence
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of Picard’s successive approvimations

20(t) =0,

1B(k) ffn[s 'U(k l)(s (k 1)(9"11(‘9) m(lk_l)(?’lz(s))’ e

o=(s), -’lrEk—l)(%l(s))a wg—“(%z“))’ e

=0 (8), & (en (8)), 2 (p1a(8))s - 5
#70(s), a8 (a1 (), A5 e (),

for k=1,2,... (n =1,2,..))

Proof. For any fixed n, let us consider the sequence (2*?) of the
functions defined by formulas (7), and the sequence (&) of their deriv-
atives. Since

(8) 2 () —afi (1) = f [ () —af ) (5)] ds,
it easily follows that
188+ — 01 < (allgall + lgol) sup {1 — & ~: 4 =1, 2,...}.
Hence, by induction on =,
(9) &+ — a8 < 21 (allgyll + llgal)
I'rom (8) and (9) it follows that
o) — o=V < 2ra(aligall + llgal—,

therefore the series

oo
2 4 2 (@) — g&=1y 0 Z(ﬂqp_(bg«-—l))

k=1 k=1
are uniformly convergent on [0, a], provided that a|lg,|+ |lgall < 1. Hence
lima®(#) = 2,(t), lma® () = 2,(%)
uniformly on [0, a]. .
Continuing similarly as in the proof of Theorem 4, we verify that
the limit functions z,, n =1, 2, ... satisfy the following system of in-

tegral equations
t

@, (1) = ffn[si # (8}, ‘1’1(%1(3)), wl(%z(s)); ceryens

#(8), -’i'l(?’u(s))a 9.71('])12(3))’ K -‘]ds (n=1,2,..)
and have all the properties asserted in the theorem.
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