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Semigroups of binary relations (i.e., sets of binary relations closed
under the operation of multiplication of relations) form an important
class of semigroups containing such subclasses as the class of semigroups
of full or partial transformations. It is well known that every semigroup
is isomorphic to a semigroup of binary relations. Every semigroup of
binary relations is naturally ordered by the set-theoretical inclusion of
relations and this ordering is stable, i.e., compatible with the operation
of multiplication. In 1959, Zareckii [13] proved that every ordered semi-
group (by the definition, the order relation of an ordered semigroup is
stable) is isomorphic to an inclusion-ordered semigroup of binary relations.
Since then the following problem has remained open: does there exist
an isomorphism of an ordered semigroup onto an inclusion-ordered
semigroup of binary relations which preserves the greatest lower bounds
existing in the given ordered semigroup. The main result of this paper
gives an affirmative answer to this problem. Various corollaries follow from
this result. Suppose that a set @ is a semigroup with respect to a multi-
plication - and a semilattice (i.e., an idempotent and commutative semi-
group) with respect to an operation A, and the order relation of the semi-
lattice (@G; A) is stable with respect to the multiplication in (G; -) (in other
words, the semigroup (G@; -) is ordered in such a way that any pair of
elements g, h of G has the g.l.b. gah. Then the algebra (@; -, A) is iso-
morphic to an algebra of binary relations of the form (®; 0, n), where &
i8 a set of binary relations closed under the operations o of multiplication
and N of intersection of relations. Moreover, all the relations in @ can be
chosen so that they satisfy certain special conditions.

Another important corollary is a representation theorem for lattices.
If & is a set of quasi-order relations on a fixed set, then, for every ¢, y € 9,
the intersection ¢ Ny is a quasi-order relation while the product yog need
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not be a quasi-order relation. However, if we suppose that both ¢ny
and yog belong to & for any ¢, p €®, then one can easily verify that the
algebra (®; 0, N) is a lattice in which the product yog is the join ¢vy.
If & consists of equivalence relations, we obtain a subclass of the class
of all modular lattices. This subclass was characterized by Jénsson [2].
We prove that every abstract lattice can isomorphically be represented
as a lattice of the form (®;0, N), where all the elements of @ may be
chosen to be (partial) order relations (moreover, one can choose the ele-
ments of @ to be strict, i.e., irreflexive, and dense order relations). Thus
every lattice can be represented by simple set-theoretical objects. Till now
there have been known “good” representation theorems for special classes
of lattices only (e.g., the theorems on representation of distributive lattices
as rings of sets and of Boolean algebras as fields of sets). The only gen-
eral result on representation of arbitrary lattices is the theorem of Whit-
man [12] stating that every lattice is isomorphically embeddable in a par-
tition lattice on an infinite set. However, the join operation in partition
lattices is of a rather complicated nature and cannot be expressed by means
of a first-order predicate calculus formula involving the joined partitions.
Therefore, the Whitman representation is not a representation of lattices
as relation algebras in the sense of [8]. The representation of arbitrary
lattices given in this paper is a representation by relation algebras. This
representation theorem has been published in a separate note [9] (the
present paper was written in the summer of 1971 but could not be pub-
lished for the reasons not under the authors’ control).

Now we introduce several definitions. A binary relation on a set A
is any subset ¢ of the Cartesian square A X A. The converse (for g) binary
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relation is denoted by o (i.e., (a,,a,) € o iff (a,, a,) € p); 0c0p denotes
the product of the relations ¢ and o (i.e., (a,, a;) € 6o iff (a,, a) € g and

(a, ag) € o for some a € A) A relation g is called asymmetric if gng =0

and antisymmetric if gng c 4,, where A, denotes the t¢dentity binary
relation on A, i.e., 4, = {(a,a): a € A}. A relation p is called reflexive
if 4, < o, and transitive if pop < p. A reflexive and transitive binary
relation is called a quasi-order relation, and an antisymmetric quasi-order
relation is called an order relation. A relation g is called trreflexive if pnA4,
= @. An irreflexive and transitive binary relation is called a strict order
relation. It is obvious that for tramsitive relations irreflexivity is equiva-
lent to asymmetricity. If p is a strict order relation, then guA4 , is an order
relation. Conversely, if ¢ is an order relation, then o\4, is a strict order
relation. A relation o is called full if for every a € A there exists a, € A

-1
such that (a, a,) € o. If both ¢ and ¢ are full, then p is called effective.
A strict order relation o is called dense if, for every a,, a, € A for which
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(ayy @3) € 0, there exists a € A such that (a,, a) € ¢ and (a, a,) € ¢ (i.e., if
g < o). An order relation o is called dense if the corresponding strict
order relation o\ A4, is dense.

An isomorphism f of an ordered semigroup (G; -, <) into an order-
ed semigroup (H; -, <) (by the definition, an isomorphism of ordered semi-
groups preserves both the operation of multiplication and the order rela-
tion) is called preserving intersections if, for every non-empty subset F < @
for which the greatest lower bound \/ F exists, f (V F) is the greatest lower
bound of the subset f(F) in the ordered semigroup (H; -, <).

THEOREM 1. For every ordered semigroup there exisls a preserving
inlersections isomorphism into the inclusion ordered semigroup of all binary
relations on a set. A8 images of the elements of the given ordered semigroup

under the above isomorphism one can choose effective asymmetric binary
relations.

The proof of this theorem consists of a series of lemmas.

In this paper an ordinal number is a set of all smaller ordinals so
that 0 =9, 1 = {0},..., o ={0,1, ...}. An ordinal is called initial
if it is infinite and if it is the smallest ordinal in the class of all ordinals
having the same cardinality.

LEMMA 1. For every initial ordinal a there exists a partition (a;;); icq
of the set a\2 such that all subsets a;; have the same cardinality as a and
i, j<ming;; for every a;;.

Proof. Since a\2 is infinite and infinite cardinals are idempotent
under multiplication, there exists a partition (f;;);;<. of the set a\2
into subsets f; ; having the same cardinality as a. Suppose that

a;; = fyn[max{i,j}+1,a),

where [f,a) = {y: <y <a} for (i,]) #(0,0),
and suppose that

@G0 = BooV U By ay;.
(6,9)%(0,0)

The family (e ;);;<, satisfies all conditions of the lemma. Thus
Lemma 1 is proved.

Let (G; -, <) be an ordered semigroup. Adjoin a new element oo to G
and suppose that oo = ocox = oo and 2 < oo for all x e G* = GU {o0}.
Let a be an initial ordinal whose cardinality is not less than that of
the set G* x G*. Suppose that the set G® x G@” is well ordered and its
ordinal type is not larger than a. Let an element g € G be fixed as well as
a family (a;;); ;<. satisfying the conditions of Lemma 1. Using transfinite
induction we define a family % = (g, ;); ;. of elements of G*.

Base of induction. Suppose that g,, =g, = g1, = co and
910 = G-
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Inductive step. Suppose that all g, , for 7, j < f < a have already
been defined for some g > 1. Then f € a, , for some p, ¢ < a. Therefore,
p,q9<p, i.e, g,, has already been defined. The set a, , is a subset of q,
hence it is well ordered by the order relation induced by that of a. Suppose
that g is the y-th element in the set a,, , (here y is an ordinal). Since @, , < aq,
the ordinal type of a, , does not exceed that of a; since a, , has the same
cardinality as ¢ and « is an initial ordinal, the ordinal type of a,, is a.
Therefore, y < a. Suppose that in the set of all pairs (u,v) e G X G
such that g, , < wv there exists a pair (z, y) which is the y-th element of
the set. Then put ¢g,, = « and g,, = y. Otherwise, set g,, = g5, = <.
If p#£i<p and q #j<PB, 86t g, = g;p9pp 3N gg; = G549, Let

gﬂ,ﬂ = 00.
Thus the family U has been defined. Now we are going to find certain

properties of this family.
LEMMA 2. For every 1 < a, g;; = oo.
The proof is by an obvious transfinite induction over i < a.
LemMA 3. If B is the y-th element of the set a, ., then g, ,< 055954-

Proof. Either (g,,, g5, = (#,¥), where (z,y) is the y-th element
in the set of all the pairs (u, v) € 3 X G such that g, , < uv, or (g, 5,95,,)
= (00, 0o). In both cases g, , < 9p,595,¢-

LeMMA 4. If g, <oy for some i, k<a and z,y € G”, then there
exists an ordinal j < a such that g;; = x and g; ; = ¥.

Proof. Suppose that g;, < xy and the pair (, y) is the f-th element
of the set of all the pairs (u, v) € @ X G* for which g, ;, < wv. Let j be the
f-th element of the set a; ;. By the definition of U, g;; = zand g;, = ¥.

LeMMA 5. For every i,j, k<< a, at least one of the elements g,; and
95 18 00, and g < 95,59k

The proof will be given by simultaneous transfinite induction over
n = max{i,j, k}. If » <1, the statement of the lemma can easily be
verified by a straightforward computation. Suppose now that the lemma
istrueif ¢, j, k < B, where f > 1. Then § € a, ,. By Lemma 3, g, , < 9,,595,¢-
Maultiplying this inequality by g;, on the left and/or by g,; on the right
and using the induction hypothesis, which implies that

Iik < 909,56 <S 95,090,090,k
and the equalities
9is = 9409, 04 Gpr = Gpq04,k
we obtain

9ik < 9i,5951  for every i, k< 8.
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In particular, using Lemma 2, we obtain oo = g,;< ¢;,95¢ Which
shows that at least one of the elements g; ; and g, ; i8 co. If ¢ =jorj =k,
then

9ix S © = G595
If i =k =B, then

Gik = © = 95,3956 = 94,i .k

Therefore, it remains to consider the case where ¢+ # j # k and one
of the elements ¢, k is # while the two remaining elements are less than f.
Let k = 8. If ¢+ = p, then

Ip.6 S ® = 90,1909 = Ip.191.8°
If ¢ # p, then, using the induction hypothesis, we obtain

91,6 = 94,p9p,p < 9i.i95.09p,6 = 9,195.5+
Now let ¢« = . If k = ¢q, then

980 © = 95,994,790 = 95.i9).k*

If & # ¢, then, by the induction hypothesis, we obtain

95,k = 98,090,k < 98,494,395k = 95.19),k-

Here we have supposed that j +# p in the case where k¥ = f, and that
j # q in the case where ¢ = g. Otherwise,

9i8 = 9i,p9p,5 04 95, = 95,941

Thus we have proved that Lemma 5 is true for ¢,j, k< g which
completes the proof.

LEMMA 6. For every x € G® and every i < a there exist j, k < a such
that g;; = g;; = @.

Proof. Let e @ and ¢ < a. Suppose that the pair (z, oo) is the
p-th element and the pair (oo, z) is the ¢-th element of the set of all pairs
(uy v) € @* x @ such that co =g, , < wv. If j is the p-th element and &
i8 the g¢-th element of the set a;;, then, by the definition of U, g,; = =
and g, ; = x. Thus Lemma 6 is proved.

Now we define a mapping P of @ into the set of all binary relations
on the set a (i.e., on the set of all ordinals less than a). By the definition,

(i, 5) € P(2) <> g;; < @.

LemMA 7. P is a preserving intersections isomorphism of (GQ;-,<)
into the imclusion ordered semigroup of all binary relations ¢n a. For every
z e@, P(x) is an effective asymmetric binary relation.
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‘Proof. If (i, k) € P(ay), ie., if g;; <y, then, by Lemma 4, there
exists j < a such that g;; =« and g;, = y. Therefore, (2, j) € P(z) and
(j, k) eP(y), whence (i, k) € P(y)oP(z). Conversely, if (i, k) € P(y)o P(x),
then (4, j) € P(x) and (j, k) € P(y) for some j < g, i.e., g;; < and g; , < y.
Multiplying these inequalities and using the second statement of
Lemma 5 we obtain g¢,,<¢:;9;: <2y, whence (¢,%)eP(zy). Thus
P(zy) = P(y)oP(x) for all z,y e@.

We have proved that P is a homomorphic representation of (@; -)
by binary relations on a. The form of the last equality is due to the fact
that factors in a product of two elements of an abstract semigroup (G; -)
are written from the left to the right, while the factors in a product of
two binary relations are written from the right to the left, so that we
prefer the above form to P(zy) = P(z)o P(y).

Suppose that P(z) = P(y). By Lemma 6, there exist i,j < a such
that g, ; = . Therefore, (¢, j) € P(x), whence (¢, j) € P(y), i.e.,z = g;; <.
If P(z) = P(y), then P(») = P(y) and P(y) = P(»), so that <y and
Yy <&, ie.,, ¢ =y. Thus P is a one-to-one mapping.

Let a subset H — G have the greatest lower bound z = A H. If

(¢,5) e N P(h),
heH

i.e., if (¢, j) € P(h) for each k € H or, which is the same, if g; ; < h for each
h € H, then (and only then) g¢;; < #, i.e., (¢, ) € P(2). Therefore

P(NH) = N P().
heH
If <y, then 2 = zAy, whence
P(z) = P(z)nP(y), 1ie., P(z) < P(y).

Therefore, # < y<>P(z) = P(y) and P is a preserving intersections
isomorphism of (@;-, <) into the inclusion ordered semigroup of all
binary relations on a.

To complete the proof it remains to notice that, by the first state-
ment of Lemma 5, if (¢, j) € P(z) for some ¢,j < aand z €@, i.e., if g, ; < 7,
then g;; # oo so that g;; = co. By the definition of P, (j,%) ¢ P(«) (more-
over, (j, t) ¢ P(y) is true for each y €@). Therefore, P(x) is asymmetric. By
Lemma 6, P(x) is effective for each x €G-

Evidently, Lemma 7 completes the proof of Theorem 1. In fact,
we have proved a somewhat stronger assertion (see Corollary 1).

Let (4 ; <) be a strictly linearly ordered set (i.e., A is a set, < is a strict
order relation on 4, and < is linear, that is, for every a,, a, € 4, ¢, < a,,
or a, = a,, Or a, < a,). Binary relations on A can be considered as mulii-
valued transformations of A: (a,, a;) € ¢ = A X A means that a, is an image
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of a, under the multi-valued transformation ¢. If (a,, a,) € ¢ implies a4, < a,
(1.e., if o is included into the strict order relation < or, which is the same,
if any image of any element is greater than the element itself), o is called
strictly extensive.

PROPOSITION 1. Let D be a set of binary relations on a set A. Then on A
there exists a strict linear order relation such that all elements of D are strictly
extensive if and only if the semigroup ¥ of binary relations on A generated
by the set @ consists only of asymmetric binary relations.

Proof. Necessity. Let @ be a set of strictly extensive binary relations
on a strictly linearly ordered set (4 ; <). It is easy to see that the product
of two strictly extensive binary relations is strictly extensive (in effect,
ifp « <and y c <, then yop = <o < < <). Therefore, all the elements
of the semigroup ¥ are strictly extensive. Now all strictly extensive binary
relations are asymmetric, since < is asymmetric.

v Sufficiency. Let all the binary relations from the semigroup ¥
generated by @ be asymmetric. Let v denote the transitivity relation [5]
of 7, i.e., v is the set-theoretical union of all the relations from ¥. Clearly,
is transitive (if (a,, a,) € T and (a,, a,) € 7, then (a,, a,) € ¢ and (a,, a;) € y for
some ¢, y € ¥ and, therefore, (a,, as) e yop € ¥ and (a,,a3) € 7). If (2, a) € 7,
then (a, a) € ¢ for some ¢ € P. Therefore, v is irreflexive, i.e., v is a strict
order relation on A. By the Zorn Lemma, every strict order relation on A is
included into a maximal strict order relation. It is easy to see that maximal
strict order relations are linear. Let < be a linear strict order relation on 4
in which z is included. For every ¢ € @, it follows from (a,, a,) € ¢ that
(a,, a;) € 7, thus &, < a,. Therefore, @ is a set of strictly extensive binary
relations on a linearly strictly ordered set (A4 ; <), which completes the
proof.

COROLLARY 1. For every ordered semigroup (@; -, <) there exists a pre-
serving intersections tsomorphism onto an inclusion ordered semigroup of
strictly extensive effective binary relations on a densely linearly strictly order-
ed set (4 ; <) having no endpoints. The cardinality of A can be chosen to be
countably infinite for finite G and the same as the cardinality of G for infinite Q.
If G is finite or countably infinite, then (A ; <) can be chosen to be the chain
of all rational mumbers.

Proof. Let P be the isomorphism of (G; -, <) onto a semigroup of
binary relations on a set B which has been constructed in the proof of
Theorem 1. Let v = {JP(g). It follows from the last lines of the proof

=z

that v is a strict order relation on B. Let < be a linear strict order relation
on B, v c <. If QT is the set of non-negative rational numbers, then one
can order the set 4 = B x @t lexicographically:

(b1y q1) < (b2yqs) i b, < by Or b, = b, and ¢, < ¢,.
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Clearly, (A;<) is a densely linearly strictly ordered set. Now A
has the smallest element iff B has such an element. However, B cannot
have the smallest element (otherwise, the binary relations P(g) for g € @
would not have been effective, since the smallest element of B cannot
have an inverse image under P(g)). Now, since 4 has no largest element,
the chain (4; <) has no endpoints. For every g € G define the following
binary relation P’(g) on A4:

((b1y 1)s (B2 @2)) €P'(g) iff (b, b,) €P(g) and ¢, = ¢,.

Then one can readily verify that P’ is the needed isomorphism.
The last sentence of the corollary follows from the Cantor Theorem:
any densely strictly ordered countable chain without endpoints is iso-
morphic to the chain of rational numbers.

COROLLARY 2. An ordered semigroup (@G;-,<) has an isomorphism
satisfying the properties listed in Corollary 1 and such that to every element
of @G there corresponds a strict order relation under this isomorphism if and
only if g% < g for every g e@.

Proof. If ¢ is such an isomorphism, then

?(9%) = @(9)op(9) = ¢(9),

since ¢(g) is a strict order relation. Therefore g% < g. Conversely, if P’
is the representation constructed in the proof of Corollary 1 and ¢2 < g,
then

P'(g9)oP'(g9) = P'(g),

i.e., P'(g) is transitive. Thus P’(g) is a strict order relation.

COROLLARY 3. An ordered semigroup (G;-,<) has an isomorphism
satisfying the properties listed in Corollary 1 and mapping each element of G
onlo a strict dense order relation if and only if (@; -) is an idempotent semi-
group, i.e., satisfies the identity g* = g.

Proof. In fact, an irreflexive binary relation is a dense strict order
relation iff it is idempotent. This fact together with Corollary 1 imply
Corollary 3.

A binary relation p on an ordered set (A4 ; <) is called extensive if o < <,
i.e., if (a,, @,) € o implies a, < a,. An ordered semigroup (G; -, <) is called
positively ordered if g, < g,9. and g, < ¢,9, for all g,, g, €G.

COROLLARY 4. An ordered semigroup (@; -, <) has a preserving inter-
sections tsomorphism onto an inclusion ordered semigroup of reflexive,
antisymmetric and extensive binary relations on a densely linearly ordered
set (A ; <) without endpoints if and only if (G; -, <) 18 positively ordered.

Proof. One can easily verify that every ordered semigroup isomor-
phic to an inclusion ordered semigroup of reflexive binary relations is
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positively ordered [13]. Conversely, let (G; -, <) be positively ordered,
let P’ be the isomorphism constructed in the proof of Corollary 1, and
let P"’(g) be the reflexive closure of P’(g), i.e.,

P’(g) = P'(g)ud, for all g e@.
Then
P’ (h)oP" (g) = P’'(h)oP'(g)UP'(g)UP' (k)L 4,
=P (gh)UP' (g)UP (R)yud, = P'(gh)ud, = P"(gh).

Clearly, P’ satisfies all properties listed in Corollary 4. As a densely
linearly ordered set one can take (A; <), where (4;<) has been con-
structed in the proof of Corollary 1.

COROLLARY 5. An ordered semigroup (G;-,<) has an isomorphism
satisfying all the properties listed in Corollary 4 and mapping every element
of G onto a dense order relation on A if and only if (@; -, <) is an idempotent
positively ordered semigroup or, equivalently, if and only if (G; -) is a semi-
lattice (t.e., a commutative tdempotent semigroup) and < is the converse
natural order relation of this semilattice, i.e., ¢ < h iff gh = h for all g, h € G.

Proof. If (G; -, <) has an isomorphism satisfying all the properties
mentioned in Corollary 5, then, by Corollaries 3 and 4, (@; -, <) is an idem-
potent positively ordered semigroup. If (G;-, <) is an idempotent posi-
tively ordered semigroup, then g < gh and k < gk for all g, h € G. Multi-
plying these inequalities we obtain hg < (gh)> = gh. Interchanging the
roles of g and h we obtain gh < hg, i.e., gh = hg. Thus (G; -) is a semilat-
tice. If g < h, then gh < h. However, since the order is positive, h < gh.
Therefore gh = h. Conversely, if » = gh, then g < gh = h. Thus < is pre-
cisely the converse natural order of the semilattice (@; -). Now suppose
that (G; -) is a semilattice and g < h iff gh = h. Let P be the isomorphism
constructed in the proof of Corollary 4. Then P” has all the properties
listed in Corollary 5, since < is a positive order.

If (@; -, <) is a semilattice with the converse natural order, then gh
is precisely the least upper bound of g and & in (@; <), i.e., gh = gVh.
Thus (G; v) is an upper semilattice. Therefore, Corollary 5 can be formu-
lated in the following equivalent form:

COROLLARY 6. For every upper semilattice (@; V) there exists a preserv-
ing intersections isomorphism onto a semigroup of extensive binary relations
on a densely linearly ordered set (A4 ; <) without endpoints; this isomorphism
maps every element of G onto a dense order relation on A.

It is known [6] that every semilattice is isomorphic to a semigroup
of binary relations whose elements are equivalence relations.
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A semilattice ordered semigroup is an algebra of the form (@;-, A),
where (@; -) is a semigroup, (G; A) is a semilattice whose natural order
relation is stable on (G'; -) (the latter condition is equivalent to the iden-
tities x(yAz) = z(yAz)Azy and (zAY)z = (2AY)2AYZ).

CoROLLARY 7. Every semilattice ordered semigroup is isomorphic
to an algebra of binary relations of the form (®;0, N), i.e., to a semigroup
(P; 0) of binary relations closed under the binary intersection N.

Of course, in Corollary 7 we could demand that all greatest lower
bounds of subsets of G existing in (G; <) were mapped onto intersections
of corresponding binary relations from .

The next corollary to Theorem 1 is formulated as a theorem.

THEOREM 2. An algebra of binary relations of the form (P;o, N),
where @ is a set of quasi-order relations on a set A, is a lattice. Conversely,
every abstract lattice (G; v, A) is isomorphic to an algebra of binary relattons
of the form (®;0, N), where all the elements of @ are quasi-order relations.
Moreover, one can choose (D; 0, N) in such a way that all the elements of P
are extensive binary relations on a densely linearly ordered set (A ; <) without
endpoints and they are dense order relations on A; the isomorphism can be
chosen to preserve inmtersections.

Proof. We need to prove only the first sentence. Suppose that
(P;0, N) is an algebra of quasi-order relations and ¢,y € @. Clearly,
@,y < pog, since ¢ and y are reflexive. Therefore, (P; 0, N) is positively
ordered. Moreover, all the elements of @ are idempotent. By Corollary 5,
(P;0) is a semilattice. It follows that (P;0, N) is a lattice. Thus Theo-
rem 2 is proved.

A semigroup (®; o) of binary relations is called 1-fold [7] if, for any
two distinct binary relations ¢ and y from @, pny = G.

COROLLARY 8. Every semigroup s isomorphic to a 1-fold semigroup
of binary relations.

Proof. Let (@; -) be a semigroup. Suppose that @ is ordered by 4.
We can add to G the greatest element oo which is the multiplicative zero
a8 it has been done in the proof of Theorem 1. We obtain an ordered
semigroup (G*; -, <). Now we add a new zero element 0 to the semigroup
(G; +). This element is defined to be the smallest element of the set G*°
= G°uU {0}. In particular, 0co = o000 = 0. Thus 0 is the smallest and oo
the largest elements of @°, the remaining elements being pairwise incom-
parable. Consider the representation P constructed in the proof of Theorem 1.
Then P(0) = @. Now, P is a representation of the semigroup @° = Gu {0}
which preserves intersections. For any two distinct elements g, h e @
their greatest lower bound is 0. Therefore,

P(9)nP(k) = P(gah) =P(0) =0,
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i.e., P is an isomorphism of the semigroup (@; -) onto a 1-fold semigroup
of binary relations. Moreover, all the relations P(g) are effective and
asymmetric.

The following problem is well known (see [3] and [1]): which lattices
are isomorphically embeddable in lattices of all topologies on sets? The
problem has been solved in the affirmative for all lattices (see [11], [4],
and [10]). Embeddability of arbitrary lattices in lattices of topologies
follows from the Whitman representation theorem. It follows from our
Theorem 2 as well.

CORBROLLARY 9. Every lattice 18 isomorphically embeddable in the lattice
of T,-topologies on a suitable set.

Remark. Clearly, T,-topologies form a sublattice in the lattice of
all topologies on a set.

Proof. Suppose that (L; v, A) is a lattice and R is a dual isomor-
phism of this lattice onto a lattice (P; o, N) of order relations on a set A.
A subset B = A is called stable relatively to o = A XA (or p-stable) if
o(B) = B, i.e., if b € B and (b, a) € o imply a € B. Let Sto be the set of
all p-stable subsets of A. Clearly, Stg is a topology. Moreover,. this is
a T,-topology for every order relation ¢ and the intersection of any family
of open sets is open (these two properties characterize topologies Stp
corresponding to order relations g). The mapping ¢ —Ste is a dual iso-
morphism of (®; 0, N) into the lattice of all topologies on A, i.e.,

St(yop) = StpnSty and St(pny) = Stev Sty.
In effect, if B € StonSty, then ¢(B) =« B and y(B) = B, whence
yog(B) = p(p(B)) < y(B) = B, ie., BeSt(yoy).

On the other hand, if C € St(yo¢), i.e., yop(C) = C, then, using the
reflexivity of ¢, we obtain ¢(C) o C, whence

¥(0) < p(p(0)) = yop(0) = C and O eSty.
Using the reflexivity of y we obtain
9(C) < p(p(0)) = yop(C) = C and C eStp.
If B €Stg, then
(pny)(B) c9(B) =« B and BeSt(pny).
Analogously, Sty < St(pny), whence

Stev Sty = St(pny).
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Let C € St(pny). Then
(pny)(C) = C
and
C = (pny)(0) =deJg (pNy) b =bg(¢<b>ﬂw<b>) e Stev Sty,

since @ (b) € Sty and y(b) € Sty. Here o<{b) = {a: (b, a) € o}.
Thus the mapping R, such that R,(#) = St R(x) is an isomorphism
of (L; v, A) into the lattice of T,-topologies on A.
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