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1. Introduction. If @ is a graph, it follows from a classical result
of Kuratowski [3] that G is planar, i.e., may be embedded in the plane,
if and only if G contains no subgraph isomorphic to a subdivision of K33 —
the utilities graph, or a subdivision of K, — the complete graph on
five vertices. For a summary of other characterizations of planar graphs
see [2], Chap. 11. More generally Kuratowski’s result gives a necessary
and sufficient condition for a Peano continuum with no cut points to
be spherical, i.e., embeddable in S% namely that it contains no subset
homeomorphic to K, or Kj.

Our object is to find suitable methods of determining whether or
not a 2-complex is spherical or planar. Preferably such a characterization
should depend on the combinatorial structure of the complex without
subdivision.

In order to state what is already known in this direction, we must
recall the following definition. Denote by F? that subset of R*® which
consists of all points (x,y, 0) with 2®+%* <1 together with all points
(0,0,2) with 0<z2<1. A homeomorph of F*® is called a disk with
feeler.

Related to Kuratowski’s theorem is the following result, which
seems to be part of the “folklore”:

A connected complex is spherical if and only if it contains no subset
homeomorphic to K;3, K; or F?. If in addition the complex contains
no homeomorph of 8% these conditions are necessary and sufficient
for planarity.

While topologically satisfactory this characterization is not of a
combinatorial nature, for it requires knowledge of all subsets of the com-
Plex. As a goal, then, one might strive to restrict one’s attention to sub-
complexes; one might start, for example, by considering such canonic
subcomplexes as the 1-skeleton and the vertex stars.

In Theorem 1 we do reduce the determination of sphericity for a
2-complex to a property of its 1l-skeleton. This property is apparently
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not in itself purely combinatorial however, since it requires that there
be a special kind of embedding of the 1-skeleton in S% The existence
of such a reduction is intrinsically interesting, because it suggests a di-
rection for further investigation.

One line of attack would be to stipulate that the 1-skeleton of the
complex be planar. Obviously some further condition is needed. As sug-
gested earlier we might impose this upon the vertex stars by insisting
that the complex be locally planar. This leads to a combinatorial de-
scription of locally planar complexes in Theorem 3. The combination of
local planarity together with the planarity of the 1-skeleton is still not
sufficient to ensure the sphericity of a connected complex. Two simple
examples are given to illustrate this. We conclude with a question, sug-
gested by these examples, concerning a possible combinatorial characteri-
zation of planar 2-complexes.

2. Definitions. We shall consider a complex to be a collection of
geometric simplexes with the usual face properties. If C is a complex,
then |C| denotes the associated polyhedron considered as a space with
the CW-topology. In line with common usage we shall suppress the
notation |C|. Usually it will be obvious from the context whether the
complex C is being considered as a collection of simplexes or as a poly-
hedron. The n-skeleton of C will be represented by O™,

For two complexes C and D the join CxD is a complex E defined
as follows:

There are disjoint copies C' of C and D' of D in E such that each
pair of simplexes s of C' and ¢ of D’ are skew in some Euclidean space;
the simplexes of F are the linear joins st with se ¢' and te D, under the
convention that the empty set acts as an identity under join: s = s
and @t = t. If C is the singleton {v}, then {#}*D ix called the cone over D
with vertex v.

If s is a simplex of C, then the star of s in C, St(C, s), is the sub-
complex of C determined by the collection of all simplexes which have s
as a face. The link of s in C, Lk(C, s), is the subcomplex of St(C, s) con-
sisting of all simplexes ¢ such that snt =@. Of course {s}*Lk(C, s)
= St(C, 8). The boundary of a simplex s will be written as 0s.

For spaces X and Y, X ~ Y will mean that X and Y are homeo-
morphic. The disjoint union of X and Y will be written as X+ Y. It
may be seen that F* ~ {v}=(8'+ {w}). For a subset 4 of a space X, Cl4
will denote the closure of 4 in X.-

All complexes hereafter considered will be assumed to be finite unless
otherwise stated.

Let ¢ be an nm-complex and M be an #-manifold: An embedding
f: ¢ DM will be called regular if for every n-simplex se C, f(C®~ —g)
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is contained in one component of M —f(0s). This is equivalent to requir-
ing that for each m-simplex s, f|(C™V —s) is null homologous in di-
mension 0 reduced homology with respect to M —f(ds). A special class
of regular embeddings was studied in [4].

3. A characterization of planarity. In this section we shall carry
out the reduction of determining when a 2-complex is spherical or planar
to a requirement upon the 1-skeleton.

THEOREM 1. A 2-complex C may be embedded in 8* if and only if there
is a regular embedding of CV in S2

THEOREM 2. A 2-complex C is planar if and only if C # S and there
is a regular embedding of CV in R

Proof. We demonstrate both theorems by first proving Theorem 1,
and then building upon this to complete the proof of Theorem 2.

The necessity is obvious in both cases, for if ¢ < 82 (or R?), the
identity map is regular on OV,

Assume f: CW—-8 is a regular embedding. Let t,,...,%, be the
2-simplexes of C. Then for each %, 1 <¢ <k, 82—f(d¢;) is the union of
disjoint domains U; and V; such that ClU; and C1V, are 2-cells. Since f
is regular, either U; or V, is free of points of the image of f; suppose that
in each case U; does not meet f(C"). Accordingly, f may be extended
over t; to an embedding f; of CMut; onto f(CM)LU,. If i #j, then,
because f(dt;)NU; = @, the image of f; does not meet U;. From this it
follows that the image of f; intersects the image of f; precisely in the
image of f. Thus the extensions f,, ..., f;, and their inverses are respec-
tively mutually consistent, so that

k
F=Ufi

i=1
embeds C in S8°. This completes the proof of Theorem 1.

Now consider 8* as the one-point compactification of R’ Then if f
is. a regular embedding of C") in R? it is regular with respect to S8® as
well. By Theorem 1, C may be embedded in 8. Since C % 8%, the embedding
leaves a point xe 8* free, hence the image of C lies in 8 —{z} ~ R

Remark 1. Note that the proof works equally well if C were assumed
to be a countable locally finite 2-complex.

Remark 2. The methods of Theorems 3 and 4 of [4] may be adapted

to give a proof, analogous to the proof of Theorem 1 above, of the fol-
lowing

THEOREM 1'. A countable locally finite 3-comples C may be em-
bedded in S* if and only if there is a regular embedding of C® in S°.
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The proof requires extensive use of piecewise linear topology, in-
cluding the 2-complex approximation theorem of Bing (see [1]). Similarly,
there is a 3-dimensional analogue to Theorem 2.

We illustrate how Theorem 1 may be used by applying it to the
case of a 2-complex which is a triangulation of a connected 2-manifold M
which cannot be embedded in S?. For example, M could be a closed surface
of genus different from that of the 2-sphere. We assume that M has been
triangulated in an arbitrary manner. Let s be a 2-simplex of this trian-
gulation. From classical results, it follows that M —s is connected. This
implies that M® —ds is connected. Therefore any embedding of M"
in a 2-manifold is regular. By Theorem 1, M" can never be embedded
in §2. Thus by Kuratowski’s criterion, M) must contain K;; or K.

4. Locally planar complexes. The existence of a regular embedding
of C in 82 allows a straightforward exploitation of the Jordan-Schoen-
flies Theorem. On the other hand, these results suggest that planarity
for a 2-complex should depend on the planarity of its 1-skeleton together
with some additional global combinatorial hypothesis. As discussed in Sec-
tion 1, the assumption of local planarity is a natural condition to consider.

A complex C will be called locally planar if every vertex v of C has
a neighborhood XN, in C such that N, is planar. Since the star of v in C
is topologically invariant under subdivision, it may be seen that C is
locally planar if and only if every vertex star of C is planar. The following
lemma can be proved in dimensions 2 and 3 by use of piecewise linear
topology. It seems useful, however, to have an elementary combinatorial
demonstration of the lemma and the consequent theorem.

LEMMA. A cone C = {v}+D may be embedded in R* or 8* if and only
if D may be embedded in S'.

Proof. C may be embedded in R? if and only if it may be embedded
in 8% This is because a cone is contractible, so an embedding in S* must
leave a point free.

The sufficiency is, of course, trivial. Therefore we assume that C
is planar. Then .D cannot contain a triod 7, since {v} * T would then contain
a homeomorph of F?. Similarly, if D contains a circle 8§ ~ 8, it follows
that D = §; otherwise C would again contain a disk with feeler. Suppose
then that D contains no circle. As a polyhedron, D has a finite number
of components. Each nonempty component is a compact connected
acyclic and atriodic polyhedron of dimension < 1, that is, a closed arc
or a point. Therefore once again D embeds in S

This leads immediately to a simple combinatorial determination of
local planarity.

THEOREM 3. A complex C is locally planar if and only if for every
vertex v of C, Lk(C, v) embeds in S'.
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Proof. This theorem is a consequence of the lemma since St(C, v)
= {v}* Lk (C, v).

It might seem reasonable to conjecture that a complex C is planar
if and only if the following three conditions hold:

(I) C contains no homeomorph of §?

(IT) ¢W is planar,

(III) C is locally planar.

But this is immediately disproved by the following counterexamples.

The first counterexample is depicted in Fig. 1. In R?® we select a
2-simplex |abe| lying in a plane R? and points d above and e below RZ.

d

/

Fig. 1. A counterexample 0; with Kj 3

Consider the polyhedron C,; which is the union of the 2-simplex |abc|
and the six edges |da|, |db|, |dc|, |ea|, |eb] and |ec|. By Theorem 3, it may
be seen that O, is locally planar. It is obvious that C, satisfies the other
two conditions of the statement. Taking the straight segments joining
the barycenter of |abc| with the vertices a, b and ¢, we can exhibit a subset
of C, which is homeomorphic to K, ,.

For the second counterexample we require a more elaborate con-
struction. Once again let R® be a plane in R®. We select six maximally
independent points in R?, labeled a through f, so that the following prop-
erties hold: @, b, ¢ and f lie in R® with f exterior to the 2-simplex |abe|;
and again d is above and e is below R? As illustrated in Fig. 2, the poly-
hedron O, is the union of three 2-simplexes- |abe|, |acd| and |abe| together
with four edges |af|, |bf|, |bd| and |de|. By inspection of this figure it
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may be observed that, for each vertex, the components of the link are
arcs or points. Hence C, is locally planar by Theorem 3. An inspection
of Fig. 2 taking only the vertices and edges as drawn, enables one to
see an embedding of C{ in the plane. We already have an embedding

d
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Fig. 2. A counterexample C; with Kj

of K, in the 1-skeleton in the following way. Consider the four vertices
a, b,d and e together with the six paths |af|U|fb|, |ad|, |ae|, |be|, |bd]
and |de|. _ ,

Finally Fig. 3 shows how the above embedding of K, may be ex-
tended to an embedding of K, in C, by using the barycenter of |abc| to
correspond to the fifth vertex; the required extra paths are also shown.

That the third canonic pathological figure cannot appear is demon-
strated in our final result.

THEOREM 4. A complex is locally planar if and only if it contains
no disk with feeler.

Proof. As previously observed, we have a cone representation
F* ~ {v}*(8'+ {w}). It may thus be observed that v lies in disks with
a feeler, of arbitrarily small diameter.

Now suppose h embeds F? in . Let = h(v), using the represen-
tation above. The interiors of the vertex stars form an open covering
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of C. Therefore one vertex star contains « in its interior. From our previous
observation, this star contains a disk with feeler. Consequently, C is
not locally planar.

RZ

Fig. 3. An embedding of K5 in O,

To establish the converse, we assume that C contains no disk with
feeler. Let v be a vertex of C. Then, as in the proof of the Lemma, we
recognize that L = Lk(C, v) contains no triod. If L contains a circle S,
again we must have L = 8. Lastly, if L contains no circle, then as in
the proof of the Lemma we conclude that L embeds in S'. Hence C is
locally planar.

The results of this section lead to the posing of our closing query.

Question. What natural combinatorial property must be added
to properties (I), (II), and (III) above, in order to characterize planar
2-complexes? (P 988)
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