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We study the structural properties of functions with a prescribed order of
best approximation by algebraic polynomials in weighted spaces.

I

It is well known that the order of best uniform approximation by polyno-
mials on the interval [—1, 1] for a function f €Lip,[—1, 1], i.e.

If(x)-—f(y)ISMlx—yI“, X, yE[—l, 1],

is equal to 1/n*; however, conversely one can only show that functions with
that order of best uniform approximation are in Lip,, [ —1, 1]. This means
that in this case there is a gap between the direct and inverse theorems.
From the results of Nikol'skii [11], Timan [14] and Dzyadyk [2] it follows
that in order to obtain a constructive characterization of the class
Lip,[—1, 1] one has to consider the order of approximation at each
individual point of [—1, 1]. Analogously, in order to obtain a structural
characterization of the class of functions with a given order of best uniform
approximation on [ —1, 1], -one has to take into account the smoothness of
the function at each point of the interval. For the I’[ —1, 1] norm, this idea
was investigated in M. K. Potapov’s papers [12], [13].

Denote by L*(I, o) the space of all Lebesgue measurable functions f such
that the product fp is integrable with exponent p on the interval I of the real
line. This is a Banach space with the norm

I lea. = (fIf (x) e (x)IPdx)'/?,  p>1.
T

[119]
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We also introduce the following notation:
e(x) = exp(—|x]"),
Xp=Lp((_w, w), Q)’ Xw=Lw((_w’ w)7 Q)9

n—1
E,,(f)xp=lnf”f(X)— Z Chxkuxp.
K k

=0
Our main result is the following.

THEOREM A. A function f € X? satisfies
En(f)xp=0(1/na)a n—w,

for a given a > 0 if and only if
145 (f, 2)llxp = o), h-0,,

where AL(f, x) is the r-th difference of f with step h >0, y 22, B =ay/(y—1),
Xf = I*(I, o), and "

L =[-(/R" =0, 1/t~ D].

The method used below for proving Theorem A admits further general-
izations to a class of weight functions ¢ satisfying certain conditions. In
particular, if ¢ satisfies Dzhrbashchyan’s conditions [1], then the assertions
of Theorem 1 and 2 below remain valid. On the other hand, if ¢ satisfies
Freud’s conditions [5], then Theorems 1, 2, 3, as well as Theorem A, hold.
The proofs -are similar to those given below for the weights ¢(x)
= exp(—|x"), 7= 2.

Note that Dzhrbashchyan’s conditions are weaker than those of
Freud and therefore embrace a larger class of weights. The function g(x)
=exp(—|x|"), 1 <y <2, does not satisfy Freud’s conditions, however, The-
orems 1 and 2 hold for it; as for Theorem 3, the question remains open.
A more general and evidently more difficult problem arises: for what weight
functions ¢ do the direct and inverse theorems of approximation theory fit
exactly each other? As shown in (8] and [3], in proving the direct and
inverse theorems for the weight o(x) = exp (—|x|) one has to take into
account the order of approximation and order of smoothness at each point
of the real line, which complicates the solution of the above problem
considerably. Let us also note that in [4] this problem was solved for the L7
norm on the real line and for the sup norm on the half-line for the weights
o(x) = |x|*exp(—|x|’), y = 2, with a singularity at zero.

II

In this section we prove a number of auxiliary statements which improve
somewhat the well-known inequalities proved by Freud.
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Lemma 1. Let a, = cn'’?, ¢ > 0, and let A, be the Christoffel function of the
weight o, i.e.

An(§) = min [ Pi(x)e(x)dx,
Pud=1 -a,

where the minimum is taken over all algebraic polynomials P, of degree at most
n with P,(£) = 1. Then there are c,, c; > 0 depending on ¢ and y only such
that

An(§) < 2 (1/n)~ 17 g (g)
for £ e€[—al, al], where a} = ¢, n'".
Proof. Let x',{'e[—1,1] and F,(x) = T,(x) T,- (&)~ T,-, (x) T,(&),

where T,(x') = cosnarccos x’ is the Chebyshev polynomial. Put

N F)
&0 =Ry

It is not difficult to check that the polynomials Q, satisfy the inequality (see

[7)
,l( Qi(x)dx < cy/n, &e[-1,1],
-1

where c; > 0 is an absolute constant.
Let x, (€[ —a,, a,] and x =a,x', ¢ =a,&, S,(x) = Q,(x). Then

S:O=1, | SI9dx<cy (1m0,

Choose ¢, > 0 so that
r(x) = ysign(@ " (x=&) = —n

for xe[—a,, a,] and ¢ e[ —a), al]. The function

l m
R,,(x) = exp(I£]'/2) (1 +2—mr(x)> ,  m=[n2]+1,
is an algebraic polynomial of degree m with
RL(§) =exp(i€1),  Ra(x) < exp(lx])

for xe[—a,, a,] and ¢ €[ —a}, al]. Therefore if

Pn+ 1 (x) = Sm (X) Rm (X) R; ! (é)
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then

Ins1 (O < [ Prrr(e(dx < (§) | SA(x)dx < ca(1/m)™ D7 e(0),

which completes the proof of Lemma 1.

LEMMA 2. Let the function I'y be defined by I':(x) =1 for x > &, I'y(x) =0
for x < & Then there is ¢, > 0 depending on ¢ and y only such that

E,(Tox! < ¢ (1/m)"~ D g(§),
where X} =IL'(1,, o), I, = [—a,, a,).

Proof. Let n=2m—1. Then there are points ¢,€l,, v=1,..., m, in-
cluding a given point ¢ =¢,, such that the following quadrature formula
holds for all algebraic polynomials of degree at most n [9]:

[Pa)e(dx = ¥ AP.(E).
l" v=1

Using Markov’s interpolation lemma [9], we find algebraic polynomials P,
and Q, of degree n—1 such that

1’ v=1,...,ﬂ_l,
Pn(év)={0 V=l[ m

1," V=1,---,#’
Qn(c\')-{o, v=”+l, ceey m,

Pn(x)gré(x)sQn(x)’ ern'

Computing the integral by the above quadrature formula we obtain

E,(I'Yxt < [[Qn(x)—Pu(x)]e(x)dx = A%,
Iy,

< Am(&) < ¢, (/M) V7 g(9),

where ¢, comes from Lemma 1 and ée[—al, al], a} = c, n'". The same
estimate is valid for ¢ e[ —a,, a,]\[—al, al], since then

a0
E,(Toxt < [e()dx <y 'IE"" " e(?),
14|
where the last inequality is easily verified by integration by parts. The proof
of Lemma 2 is complete.

‘LeMMA 3. Suppose f is a function locally integrable with exponent p,
1 <p<oo;if p=oo we assume f to be locally bounded. Denote by v, (f, x),
m = [(n—1)/2), the de la Vallée Poussin means of the Fourier series of f with
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respect to the orthonormal system of the algebraic polynomials P, with the
weight ¢ on I, =[—a,, a,]. Then there is ¢, > 0 depending on ¢ and y only
such that

lom(Nlixz < e 1 fllxe, X7 = L1, @)

Proof. We first consider the case p = co. From the recurrence formula
for the orthonormal system P,:

d
v+l v

v— 1 (.V),

where d, > 0 is the leading coefficient of P,, we obtain

djd, ., < ’[[yP e ()*dyl2 < cn'l.

Denote by V,,(x, y) the kernel of the de la Vallée Poussin means:

2m-1 &k

Valx, y) =m™" Z ZOP(x)P(y)

Applying the Christoffel-Darboux formula and the above inequality, we find

that
2m-1

Z — Py 1 () Pe()
dk+1

= *) Ve, llx2 <

Xn

2m-1
kzm dk+l
< ¢ (1/n)"= DI 25,02 ().
Moreover, by the Parseval identity,
Vo, M2 < 432 ().
Hence the Schwarz inequality yields

om(f, 2 = § Va(x, 3) £ 0) @ () dy|
In

+m™!

Py (%) Py q (1)

iSO
“x_'l"'"w_llx,f

< Mx=yl+n'"" Y Vo (x, )llx2

K eanTRAZ 2 fllxge-

As shown by Freud [6], the estimate from below of the Christoffel function
has the same order as the estimate from above given in Lemma 1, the only
difference being that the former holds for all ¢ €l,. Thus Lemma 3 is proved
for p = o0.
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If p=1, by the extremal property of the norm we obtain

lom(f, DNixt = sup  [oa(f, x)g(x)* (x)dx

loll x®<1 i

= sup [ S(90g, ¥ dx < c1 1St

loll x®<1 i

Thus Lemma 3 is valid for p=oc and p=1. In the case 1 <p <oc it
suffices to apply the Riesz-Thorin interpolation theorem, which completes
the proof.

I

In this section we prove three theorems which imply Theorem A.

THeEOREM 1. Suppose that a locally absolutely continuous function f has a
derivative which is locally integrable with exponent p if 1 < p < co, and locally
bounded if p = co0. Then there is ¢, > 0 depending on ¢ and y only such that

En(f)x,': <c (1/mt~ l”y”f(l)”xﬁ-

Proof. We first consider the case p = 1. Suppose f has a locally bounded
variation; this is true in particular for functions satisfying the assumption of
the theorem. By Nikol'skii’s duality theorem,

E,(f)x} = sup [ f(x)g(x)e*(x)dx,

EEY:O I,
where Y,” is the set of all measurable functions g orthogonal to all algebraic
polynomials P,_, of degree at most n—1 with llgllx;n < 1. Put

G(x) = [T.()g)e*®at,

1,

where the function I', is defined in Lemma 2. Then it follows from Lemma 2
that for all xel,

G| = | [ [T(0) = Po-y 019 () * @) dt|
"I
< E (T)x! < ¢z (1/n)" ™7 (x).
Consequently, integration by parts gives

E.(f)x! = sup {~ [ f(0dG(x)} = sup | G(x)df (v}

ge)’:’ Iy, aeY:) I,

< ¢ (1/n) =D [ o (x) |df ().
I’l
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Let now p =00, m =[(n—1)/2]. Put

Po_y () = [om(F™, dt+ £ (0).
0

Then P,_, is an algebraic polynomial of degree at most n—1 and

S)=Ppy(0) = [[G.()=Cnm®OILS" () —0m(f"; D] (1) dt,

I,

where Q,, is an arbitrary polynomial of degree at most m and G, (f) = 9~ 2(1)
for t €[0, x], G,.(¢t) = 0 for t ¢[0, x]. Hence using the above-proved assertion
for p=1 we find that

Em+ 1 (Gx)X} < €3 (l/n)(}’— iy [ Q(t) Ide (t)l

"I
< e (1m0~ D {1+07 () +207 (%) - 2)
<63 3(1/n)" e ().

Consequently, Lemma 3 and the above representation of the difference f(x)
—P,_,(x) show that

If (%)= Py ()llx 2 < €a (m)¥~ D7) f D) g,

Thus the assertion of Theorem 1 is valid for p=1 and p = .
Let 1 < p < . Then Lemma 3 yields the well-known property of the de
la Vallée Poussin means:

If = 0m(lxe < €5 Em(f)xe-
By the above, for p=1 or p = oo this yields
If = Om (Pllxz < e (1/m)*= D f V|0,
Applying now the Riesz-Thorin theorem to the operator
A(F,x) =[f()—vm(f, ©]e(x), F@)="(x)e(x),
we obtain for 1 < p<

E;n(Nxr < cy (1/mr =10y ”fm”xg-

Since 2m < n, Theorem 1 is proved.

Note that under the assumptions of Theorem 1 we have

E,(Nxp < ¢ (/)= V7| f D) x5

provided fV e X?. In the proof of Theorem 2 we will indicate a method of
extending the estimates of best approximations from the intervals I, to the
whole real line.
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For every function f locally integrable with exponent p if 1 < p < o,
and locally bounded if p = oo, we define the modulus of continuity by

o, (f, Oxr = sup 145(f, Vg,
0<hs<é

where
Xp=0UUy 0, I,=[-1/m""Y, (1/hto=1],

19 = T =0 () e,

THEOREM 2. Let f satisfy

;'wr(f’ t)XP
° ts+l

where s is a positive integer with 0 < s <r. Then there is ¢, > 0 depending on
p,y and r only such that

dt < 0,

(a/mr— iy

I w, (.f’ t)xP

+1
o t

Proof. If F,, is an rth indefinite integral of f, then we have the following
integral representation:

E,(f)xp < ¢y (1/n)@= DY dr.

4L (Fgy, x) = h’}f(x+ ht) I1.(t)dt,
0

where II, is the Peano kernel for the rth divided difference, with the
properties

m,@ >0, [M()dt=1.
0

Put
9509 = [LF ()+( =1 sl f, %) T, (1) dt.
0

Using the above integral representation, we find that g; has a locally
integrable rth order derivative, and we have the identity

" r\ 1
ga(x) = (g) vgl(_l)v+l ( )?A:Sv/r(F(r)’ X).

v

Differentiating this identity r times and using the Minkowski inequality, we
obtain

& llgdllxg < 2r) @, (f, d)xe,
If —gsllxg < 0, (f, O)xe.
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We now use g; as an intermediate approxirnation of f in the following way:
E,(f)x? < E,(f —gs)xp+ En(gs)x?

< I1f =gallxe+ ¢ (1/m)7~ V77 g lIxe,

where in the last inequality we have used Theorem 1. Let & = (1/n)?~ V07,
Then the above inequalities show that

E,(f)xe < c3o,(f, (1/n)=D)xp.

We now show how to extend the estimates of best approximations from
the intervals I, to the whole real line.

For a given positive integer n, choose m so that 2" < n <2™*! and find
an algebraic polynomial P, of degree at most n—1 such that

En(f)xgn = ||f—Pn”x‘2’n

Recall that X2 = IP(l,, 0), I, =[—cn'", cn'’"]}, ¢ > 0. As shown in [10],
there is ¢ > 0 such that for all algebraic polynomials Q, of degree at most
n—1 we have

IQullxe < callQallxe,

where ¢, > 0 depends on p and y only. Set Q, = Py, Qv = Pyv—Pyv-1.
Then

[« ] [* o] [c &)
” Z QzV”xP <SG Z ”Qz"”xpv < 2¢4 Z Eyv (f)x“’v,,1
v=m+1 v=m+1 2 v=m 2

[ o]
< cs Z co,(f, 2-(\;+1)(y—1)/v))“D

v=m

2—-(m+1)y—-1)/y
w, (f t)XP
—(m+ 1)s(y—1)/y . r\Js
< ¢62 .“ 1

0

dt < o0.

Consequently, the series Z:’;OQZV i1s convergent in the X? norm and

(]/n)('y—l)/yw'( 5 t)
Ex(xo < IS —Qanllxs < cltmy=vn [ 2wy,

0

which completes the proof of Theorem 2.
THEOREM 3. If f € X? satisfies
E,(N)xr < o((1/m)~Y7), n=1,2,.

where w is a function of the type of the r-th modulus of smoothness, then there
is ¢, > 0 depending only on p, y, r and @ such that

o) ,

@, (f, d)xr < 5 let,ﬂ
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Proof. For a given h >0 we choose a positive integer m such that
2-mr=DIy <« p £ 27 m= DO~ DY gnd find algebraic polynomials P, of degree at

most n—1 satisfying
E,(N)xp = If = Pillxe.
Further, put Q, = P;, Qv = P,v—Pyv-1. Then
145, (Nllxp < 1450 = Pomllxp + 145, (P pm)lxp

S 2ZE,(f)xe+ X 145(229)lIxp-

v=1

Since

h h
A4 (Qyv, X) = [... [QD(x+1,+ ... +1,)dry ... d1,,
0 0

it follows by applying Freud's inequality [6] for the derivative of an
algebraic polynomial:

”Qg{-“xl’ < 2T Q oy,
that
145(Q29lIxp < €3 B 27~ D@l xp.

Consequently, by the assumptions of the theorem,

Z ||A;(Q2")”x£ < Ca h Z 2rv(7‘ l)/)'w(z—v()'— l)/}’)
v=1 v=0
1
t
<csh —%l)—dt,
2—m(y—1)/y
1
t
Esm(Nyxr S @™~ ) L cg i [ a:fl)dt.
2—m(y~-1)fy
This finishes the proof of Theorem 3.
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