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I. Introduction

The aim of this paper is to suggest a new theory of Operatlonal Ga.leulus,
as general as possible.
Existent theories of Operational Calculus are based mostly on’ the

Laplace Transformation
«Q

) F(s) = [ e *f (t)at

0
or on the Laplace—Carson Transformation

2) Fp) =p [ e f()at

which is an nnessential modification of (1). To such theories one objection
can be made, that they exclude all such functions f(¢) for which the inte-
grals (1) and (2) diverge. Thus, in problems which admit such functions,
they do not give the possibility to prove that solutions obtained are unique,

J. G. -Mikusinski ([2]), [3]) constructed — without use of the transfor-
mation (1) or (2). — a theory of Operational Calculus, which enables the
introduction of all functions f(?) integrable in every finite interval 0 < ¢
< 7, i. e, also functions, for which the integrals (1) and (2) diverge. Fun-
tions F'(s), obtained - as Laplace transforms (1), correspond to .operators
{f(#)} in the theory of Mikusinigki. Only in cage of rational and certain
exponential functions F(s) operators of Mikusinski are denoted by symbols

bus™ + ... +bis+b

(@my ovvy @o3 bpyy oo vy Doy A — numerical coefficients), where, however, ¢ does
not denote a variable but an operator. Hence many methods useful on
the bage of Laplace Transformation have no analogue in the themy of
Mikusinski.

The theory presented in this paper enables — like the theory Qf_:le
kusinski — the introduction of all functions f(¢) integrable in every
finite interval 0 < ¢+ < T and moreover, the use of all methods and theorems
from the theory of Laplace—Carson Transformation (or Laplace Transfor-
mation) in the smaller class of functions, for which the integrals (1) and
(2) converge.




6 A new theory of Operational Calculus

The principal idea is the following. We shall divide a class of functions
F(p,1?) into abstract classes in such a way that:
1° the functions

{
1
[F@,7)dr  and ;F(p,t)
0

will be equivalent, i. e, they will belong to the same abstract class,

2° a continuous function f(f) will be equivalent to zero, if and only
if it equals zero identically.

The first condition is an extension of the well-known fact that the
functions

1
[f@z)@z  and i;—f(t)

must correspond in the Operational Calculus. The second condition is
necessary to enable a pass from a solution given as an equivalence to
a solution given as an equality.

It follows that every function

¢
(3) Hp,t) =Fp,0)~p [ Fp,7)dr

must be equivalent to zero. But the identity (3) has an unique solution
[
(4) F(p,t) =H(p, )+ pe" [ ™ H(p,7)dr.
0

Therefore we must construct such a class of feasible functions F(p, t),
that the equality H(p, t) = f({) where f(¢) is a continuous function, will
imply f(f) =0, according to the second condition.

Let us notice, that if we defined the class of feasible functions as the
class of all such functions #(p, ?), that for sufficiently great fixed p

lime”F(p,t) =0
t—o00

and f(!) was a function for which — p being sufficiently large and
fixed — the integral

o2}

[ emfyar

0
converges with '1ime‘7"f(t) = 0, then putting H(p,?) = g(p)—f(1) we
l—00
should obtain from (4)

(P, 1) = e g(p)— () + p f 67 g(p) dr—p f o~ f(r)d

= g(@)— e Pf(t)—p f 6" f(v)dv
0
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and as { - oo

)= [ e f(z)dr
0

according to (2). Thus, the simple first condition would already imply
the formula (2).

But in this paper we shall deal with a larger class of feasible functions.
It will be also convenient to define this class by means of formula (4)
instead of (3).

I want to express my personal gratitude to Professor C. Ryll-Nar-
dzewski, for his useful suggestions during the final preparation of the
mapuscript.

II. Ring #. Subring #

Let us consider such a class of functions #(p, t), real or complex,
of a real or complex variable p and a real variable ¢, that for every F(p, 1)
there exists such a real non-negative number ay that for every fixed p,
satisfying the condition Rep, > ap the function F(p,,?) iz defined for
almost every ¢t >0 and integrable in the Lebesgue sense in every finite
interval 0 < i< T. Putting F(p,?) = 0 for Rep < ap, we obtain a class
of functions F(p,t), which for every fixed p satisfying the condition
Rep > 0 are defined for almost every ¢ > 0 and integrable in the Lebesgue
sense in every finite interval 0 << T (Y). '

In our class of functions F(p, ?) we introduce a multiplication defined
as follows

¢
(5) Fy(p, )X Fo(p,t) =p [ Fa(n;t—7)Fa(p, v)dr.
0

(1) For the sake of this theory it would be sufficient to consider a fixed sequence
Ays Ay, ... of Teal positive numbers, satisfying the following two conditions:

*® 1]
YT
2° dpg1—Mp>6>0(n=1,2,..)

and to assume that for every function F(p,?) there exists such a positive integer Np
that for every n > Np the functions g,(t) = F(4,,%) are defined for almost every
1> 0 and integrable in the Lebesgue sense in every finite interval 0 < ¢{< T. In such
8 way it would be sufficient to consider sequences of functions py(t), px+1(l), ...
instead of functions F(p,?), but then we should not be able to include the whole
theory of Laplace Transformation and all its methods.
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In virtue of Convolution Theorem ([1], p. 110) for every fixed p (Rep > 0)
the integral (5) exists for almost all ¢ > 0 and it is integrable in the Le-
besgue gense in every finite interval 0 < i< T.
It is easy to prove that the multiplication (5) is associative, commuta-
tive and distributive with respect to ordinary addition.
Tt follows that our class of functions ¥ (p, ?) forms a ring with respect
to ordinary addition and multiplication (5). We shall call it ring Z. _
¥ F(p,t) =f(t) and F(p,?) «#, we shall write simply f(t) e%. Simi-
larly, if #(p,t) = g(p) and P(p,?) «#, we shall write g(p) «Z.
" DEFINITION. A function F(p,t) will be called feasible, if and only if;
1° F(p,t)eZ,
2° there exists such a real non-negative number «, that for every ¢ > 0
11
(6) lim [~ F(p,7)|dv =0,

n—>00

where we shall always assume, that 2 — oo along the real axe.

Let # be the set of all feasible functions #(p, t). We shall prove that
# forms a subring of 4.

Indeed, let F,(p, t)eF and Fy(p, t) #. It means that there exist such
real non-negative numbers a, and a, that

4
lim [ |6~ Fy(p, )ldv =0 (b =1,2).

P00

Putting a = max(a;, ;) we obtain for every t>0

| .
f le=* " [F1(p, ©) £ Fa(p, 7)]| dv
0
¢ 4
< [l Fu(p, D)lde+ [ 16=2F, (p, )l ax
0 0
¢ . 17
= g (TRP [lgmep By (p, 1) dot e~ 0F (| F(p, 7)) dv
0 0

11 i
< [1e7 Fy(p, o) dv+ [ |6 Fy(p, 7)) dr.
0 0

Hence

¢
Lm [ e~ [Fy(p, 7) £ Fa(p, 1)]ldr =0

p—mo

and
Fi@, )+ Fo(p, ) eF, Fi(p,t)—Fy(p, 1) eF.
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Putting any f > a,+4 a, we have further
i

[e#p [ Poto, 0—0) Fut0), 1 a

t o
< [ [le?pFy(p, o—7) Fy(p, 7)| drdo
0 0

t ¢
= [ [le?pF(p, 0—7)Fy(p, 7)| dodr

0 =z

] -t
= |pe~=oa=e?| [ Ty (p, 7)) [ e~ Fy(p, 0)| dbdv
0 1] '

¢ t
< |pe~Cmm?| [ |o=® Fy(p, 7)|dr [ |6~ P Fy(p, 9)|do.
0 0

Hence

P—>00

i c
lim [lep [ Fy(p, 0—) Falo, 7)dz|do =0
0 0

and
Fo(p, 1) xFo(p, t)F.

Thus & forms a ring with respect to ordinary addition and multipli-
cation (5). It iz a subring of Z.

Let us notice, that in virtue of (6) if F(p, !)e# then also |[F(p, )| «ZF.
Moreover, if #(p,t) = f(t), where f(?) iy a function integrable in the Le-
besgue sense in every finite interval 0 < ¢ < T, then f(f)e#.

It is also easy to show, that if F(p, ) = p°, a being an arbitrary real
number, then F(p, i) eF.

TeEOREM 1. If F(p,t)eF and G(p,t) = g(p)eF, then

g(p)F(p,t)eﬂ'.

Proof. By assumption, F(p,?)eZ# and g(p)eZ%. It is obvious, that
also g(p)F(p,t)e.

By assumption, there exist such real non-negative numbelrs a; and a,,
that for every ¢ >0

¢ t
lim [|e=P(p,v)|dr =0, lm [le~Pg(p)ide =0.
D00

P—>0 0

But
¢
[l g(p)|dz = 16~ g(p)|
0 .
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and thus for every ¢t >0
lim [e7"Pg(p)| = 0.

-0

Hence for every ¢ >0
1 13

lim [ |6~ g(p) F(p, 7)|ds = lim |e=*Pg(p)| [le=*® F(p, v)|dz =0
D N

D00 g P—00

and the function g(p)F(p, ?) is, really, feasible, which was to be proved.
THEOREM 2. If F(p,t)eF then also

¢ i ‘ .
[F@,v)dxe# and p [Flp,7)dveF.
0 0

Proof. Let Fy(p,?) =1. Since 1 =p°, we have F(p,?)e# and
hence
I1XF(p,t)eF.
But ;
1xF(p,t) =p [F(p,)dr.
0
It follows that
t
Fo(p,t) =p fF(p, T)dreF .
g 0
Since

t
[Fp,0d == 7y, 1
0 P

and 1/p = p~1e%, we obtain

H
[B@, ndreF
0

in virtue of Theorem 1. This completes the proof.

III. Class #. Distributions. Congruent functions

The class of all functions f(f) continuous in every finite interval
0<t< T will be called class %.

It is obvious that f(t)e% implies f(f)e#. On the other hand, f(f)<#
implies '

¢
[f@)dves.
0
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Let & be the class of all such functions Z(p, t)«%#, for which there
exigts such a function a(f)e¥, a(t) # 0, that

(7) e X a(t)yxXZ(p,t)eF.

THEOREM 3. Class Z forms an ideal of ring #.

Proof. First, we shall show that & is a group with respect to addition.
Let Z,(p,t)e Z and Zy(p,t)eZ. Thus, there exist such functions a,(t), a.(t)e?,
a,(t) # 0, ay(?) % 0, that

"' X, (1) XZ;(Pyt)eF and 6 Xay(t) X Z,y(p, 1) eF .

Hence — in virtue of Theorem 1 —

e”‘x[% a,(2) Xaz(t)] XZy(p, 1) eF,

et X [% @, (1) X a, (t)] X Zy(p, 1) eF
and also
e”‘x[% s (1) X aa(t)] X [Z(B, )+ Zs(p, )]

Since
1 1 Z !
—a 2 — —_— -— 3 = — 2 Gg
pa(t)xa(t)l pofpa,l(t 1) a,(7) dv Dfal(t 7)ay(7)dz

and in virtue of Theorem of Titchmarsh ([3], p. 15)

ftal(t—r)az(r)dr # 0,
it follows that 0
Z,(p, )+ Zy(p, 1) eZ.
I Z(p,t)eZ, then also —Z(p,?)eZ, because
X a(t)X Z(p,t) = X [—a(d)]xX[—Z(p,1)].

Thus, & forms a group with respect to addition.

Now, it is sufficient to show, that if Z(p, t) eZ, then for every F(p, ) e
we have Z(p,t) X F(p,t)eZ. Indeed, by assumption, there exists such
a function a(t)e%, a(t) # 0, that

X a(tyXZ(p,t)eF.
Hence
[6" X a(t) X Z(p, )] X F(p, 1),

X a(t) X [Z(p,t) X F(p,1)]eF.
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But it means that
Z(p, )X F{p,t)eZ.

We see that, really, class 2 forms an ideal of ring £.

The ideal & divides the ring & into classes, which form the residue
class ring &#/%. We shall call these residue classes distribufions(¥) and
each function F(p,1) belonging to a distribution 4 will be called a re-
presentative of this distribution, which will be written in the form

A ={F(p, t)} ‘
The ring &# /2 will be called Distribution Ring or, simply, ring 2.
If any functions F,(p,1)eF and F,(p,l)eF are representatives of
the same distribution, they are congruent and we shall write
(8) Fy(p,t) ~ Fy(p,1).

Such & relation holds if and only if 7, (p, t)—F,(p, t)eZ. The congruence
I(p,1) ~0 means that F(p,?)eZ.

The relation (8) is a congruence modulo Z, i. e. it has the following
properties:

(1) F(p,1) ~ F(p,t);
(i) i Fy(p,t) ~ Fo(p,?) then Fy(p,1) ~ Fi(p,1);
(iii) if F,(p, 1) ~Fy(p,?) and Fa(p, 1) ~ Fy(p, ) then
Fi(p,t) ~ Fy(p, t);
(iv) if F(p,1t) ~Gu(p,t) (k =1,...,%) then

7 n
DT, 0) ~ D G(p, 1);
k=1 k=1

(v) if Fp(p,1) ~@(p,1) (k=1,...,n) then

Fi(py )X oo X Fp(p, 1) ~6Gi(p, 1) X ... XGy(D, 1);
(vi) it Fy(p,t) ~G(p,1t) and Hy(p,1)eF (k = 1,...,n) then

T% n

%Hk(p,nxf'k(p,t) ~ D H, (0, )X G(0,1).

= =1

THEOREM 4. If F(p,t)eF and & X F(p, 1)eF then F(p, 1) ~ 0.

Proof. If & x F(p,{)e# then for any a(l)e%, a(l) £ 0, we have
a(t)eZ and e X F(p,1)Xa(l)eF. It means that F(p,?) ~ 0.

(3) Here, the word “distribution” has not the meaning used in the theory of
distributions. '
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THROREM 5. If F(p,t)eF then
¢
(9) F(.P;t)NPfF('p,r)dr.
0

Proof. Let us consider the function
H(p,t) = F(p, t)——ij(p, 7)dr.
In virtue of Theorem 2 we have H(p, t) #. Furthermore
X H(p,1). =X F(p, t)'—e”‘xpfF(p, 1) dr
0

= "X F(p, t)—e?' X1 x F(p, 1)
="' X F(p,t)—("—1) X F(p,t) = 1xXF(p, ) eF.

By Theorem 4 we obtain H(p,t) ~ 0, i. e. (9), which was to be proved.
THEOREM 6. If g(p)eF and F(p,t)eF then

gy X F(p,1) ~g(p)F(p,1).
Proof. In virtue of Theorem 1 we have g(p)F(p,t)e# and by The-
orem B
t
g@)XF(0,1) =p [9(0)F(p, v)dr ~g(p)F(p,?)
0

which was to be proved.
THEEOREM 7. If F'(p,t) ~ H(p,1) and g(p)eF, then
g@)F(p,t) ~g@)H(p,1?).

Proof. According to property (vi) of congruences, we have

g(p) X F(p, 1) ~g(p) XH(p,1).
Hence by Theorem 6 and property (iii) we obtain the assertion.

THEOREM 8. A necessary and sufficient condition that a function f(t)eF
safisfy the relation

(10) f(@) ~0
18 that the relation
(11) f@&) =0

be true for almost all t > 0. .
Proof. It is obvious, that (11) implies (10), because by Theorem 5

4
f&) ~p [f(x)dr = 0.
(]
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We shall prove that, conversely, (10) implies (11). Multiplying (10)
on both sides by 1/p we obtain
t
—l—xf(t) ~0 ie K =ff(r)dr ~0.
p 0
Sinee h(t) = 0 implies f(t) = 0 for almost all ¢ > 0, it suffices to prove,
that the congruence

(12) h(t) ~0
where h(f) «%, implies
(13) R(t) =0.

The congruence (12) means, that there exists such a function a(t)e%,
a(t) £ 0, that

¢
Fixat)xh(t)eF ie.  p[fEIb(r)dreF
0
where
[
(14) b(1) = [a(t—7)h(r)dre?.
0

¢
Since 1/pe#, we have by Theorem 1 p [e?“~?b(r)dveF. It means thab
0

there exists such a real non-negative number a that
t (-]
(16) lim [|6™%p [ ?t=b(z) dr| do = 0.
D=0 g 0
Hence

¢ o
lim| [ =% p [ ¢#~9p () drdo| = 0
0

-0 g
and
] ta
(16) lim [ [ """ (v) drdo = 0.
P=o0g

But for every t >0

t o

(L7)  lm [ | pe" == (7)drdo
3y
i ¢
= lim | e"PC+Dp (1) [ peP? dod
lm | (%) [ pe dode
t

t
= lim [ ?=*=9p(v) dr—Llim o~ [b(r)ar.
o0 0

p—>w0
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If (15) is true for a = 0, then it is true also for every a > 0. Therefore
we can assume that a > 0. Then for every ¢ > 0

t
lim e—"”fb(-r)d-; ~0
>0 0o
and, in virtue of (16) and (17), we obtain for every ¢ > 0

t
(18) lim [ 6™-"=9p(v)dr = 0.

D—00

Now, let be ¢ > a. Then

1
(19) lim [¢"¢~""Vb(7)dr

p—00
t—a 0
=lim [ " b(l—a—7)dv+lim [ b(t~a—r)dr.
P00y P20 _q

Since b () e %, the function b (f—a—7) is bounded in the interval —a < v < 0
for every t > a. Therefore
0

lim femb(t—-a—t)dr =0

P00 g
and by (18) and (19) we obtain for every ¢t >a
t—a .
lim [ ¢ b(l—a—1)dr =0
P—r00 g

i, e. for every t >0

i
lim [ ¢**b(1~7)dr = 0.
D00 g

In virtue of Theorem on bounded moments ([3], p. 395), we obtain
b(t—t) =0 for every v from the inferval 0 < t<¢, i.e b(z) =0 for
every v from that interval. Since ¢ can be arbitrarily great, we obtain
b(t) =0 and, by Theorem of Titchmarsh and (14) 2() =0 because,
by assumption, a(t) # 0. This completes the proof.

COROLLARY. The congruence f,(t) ~ fu(t) holds if and only if for almost
all >0 f,(t) =f.(0). |

We obtain this assertion immediately, when we replace the function
f(?) in the previous theorem by f,(t)—7f.(?).

THEOREM 9. If g(p)e#F and

(20) g(») ~0
then for every t >0
(21) liminfe™g(p) = 0.

p—roo
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Proof. By assumption, there exists such a function a(?) %, a(?) = 0,
that

e"‘xa(t) Xg(p)F,

i. e. there exists such a real non-negative number a that for every ¢ >0
. t T
(22) lim | [e—@pﬂg(p) [ h(a)ds| dr = 0
B0y 0

¢
where (1) = [a(r)dre?, (1) £0.
0

On the other hand, by assumption, there exists such a real non-ne-
gative number g, that for every ¢ >0

1
lim [|e~"g(p)|dr = lim tle~™g(p)| =0
n—ec g

700 |
which implies
lim ¢~#g(p) = 0.

p—>00

Thus, for any real positive é > max(a, ) we have for every ¢ > 0

t v ,
(23) lim g(p) [ [pe"=""Vh(0)dodr = 0
L 00
and
(24) lim ¢~%g(p) = 0.
P00
But
iz
lim g(p) [ [ pe”*==1(0) dodz
rreo 00

[ t
= lim g(p)fh(a)fpe”““’"’)drda
P—oa’ 0 4

] ¢
=lim g(p) [ t"Dh(0)do~Lim 6~Pg(p) [ (o) do.
P—00

! 0

In virtue of (23) and (24) we obtain
t
(25) lim ¢(p) [~""Ih(o)do = 0.
D00 0

Now, let us suppose that there exists such a ;iteal non-negative number

y that (21) is false for ¢ = y. Then, there would exist such two real positive
numbers x and » that '

(26) €9 (p)] > p
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for real p >v. By (26) and (26) it would follow
t

lim [ #t="-(g)do = 0
D0

and, analogically to (18) we should obtain h(t) = 0, which contradicts
the assumption. '
THEOREM 10. If for every t > 0

(27) lim ¢”g(p) =0
=0
then g(p)e# amd
(28) g(p) ~0.
Proof. By assumption, we have for £ =0
lim g(p) =0
n—>00

and for any 6 > 0 and every ¢ >0

i
lim [ |6~ g(p)|dr = lim e~ g(p)| = 0.
—00 g

D=0
Therefore g(p)e#. We have, further, for any ¢ > 0 and every ¢ > 0

: ¢
. . |1
hmfle‘“’”e“”gtp)ldr =.111n‘; e “Cg(p) fpe’"dr
P00 o

ﬂ—mo

1
= lim‘— e~ " g(p) ‘—hm ’—1— 0'“”9’(,?)! = 0.
It means that

¢ g(p)eF .

It follows that
¢
' xg(0) =p [ g(p)6 dx = "g(p)—g(p)eF -
0

By Theorem 4 we obtain (28). It completes the proof.
ExAMPLES. (1) For any a >1 we have ¢7? ~ 0, because for every
>0
Lim e”e? = 0.
D00
(2) If any function g(p) satisfies the condition g(p) = 0 for sufficiently
great real p, then g(p) ~ 0.
From the second example we conclude, that, if any functions g, (p)e#
and g,(p)e# satisfy the condition

g1 = ¢.(p)

2 — Dissertationes Mathematicae LXXX
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for sufficiently great real p, then already

91(p) ~ g:(p).

This conclusion can be generalized. Namely, the following theorem is
true.

THEOREM 11. If there exists such a real positive number u, that for every
real p > u a function T (p, t)eR satisfies for almost all ¢ >0 the condition

(29) F(p,?) =0
then
(30) Fip,t)eF and TF(p,1) ~0.

Proof. We have for any real positive « and every ¢ >0
H

lim [ o= F(p, v)ldv = 0.

p—00g
Therefore F(p,t)e#. Furthermore
(31) P X F(p,t)eF

because for any real positive a and every ¢ >0
¢ T
]J'.m”e’“”pfe”("“)l?’(p, o)da\ dr =0.
oy 0 .

By Theorem 4, (31) implies F(p, t) ~ 0, which was to be proved.

COROLLARY. If there ewists such a real positive number u, that for every
real p > u functions F,(p,1), Fy(p, 1) eF satisfy for almost all ¢ >0 the
condition F,(p,t) = Fo(p,1) then, already, F,(p, 1) ~ Fy(p,1).

We obtain this corollary immediately, when we replace the function
F(p,t) in Theorem 11 by F,(p,t)—I.(p,1).

We see, that for any function F(p,t) only its behaviour for real p
as p — oo decides, whether F(p,t) belongs to a distribution A or not.

TueorEM 12. If F(p,t)eF and for every real mon-negative number o
there exists such a real non-negalive number u that the integral

(32) [T, bt = [ e ™ F(p, 1+ )t
é 0

converges uniformly with respect to real p > u, then

(33) gp)=p[ e PP(p,t)dteF

and u

(34) g(p) ~ F(p,t).
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Proof. First, we shall show that
(35) Pp,t) =p[ " F(p, 1) dveF.
i

By a.ssumption there exists such a real non-negative number « that for
every 7 >0

T
lim [ o~ F(p, 1)|dr = 0
p—)ooo

i. e. for every T >0, every ¢t > 0 and evely e > 0 there exists such a real
non-negative number » that

*“T’le(_p, )|dr<% for real p >v.

It follows that for every u from the interval 0 < u < T and real p >»

(36) 6="P

T T
[ert-vp(p, t)dr‘ <™ [ |F(p,v)dr

T
<o [ |P(p, )| dr < —.
) Y

On the other hand, by assumption, for every ¢ >0 the integral
[ P (p, 7)de
14
converges uniformly with respect to real p > u, where x depends on .
It means, that for every ¢ > 0 and every ¢ > 0 there exist such real non-ne-
gative numbers x4 and 7 > ¢ that
U ! F(p, r)drl <—2% for real p >u
T

Thus, for every » from the interval 0 < %4 <{< T and real p > u

(37) 6P

fe—ﬂ(r—u)F(-p, 7) d.,,., < ’ fe—p(r—u)F(P’ T),d.rl
T T
= g7t fep("")F(p, 7) dr|
T

< ‘f&”("')F(p, r)drl < ESZ



20 A new theory of Operational Calculus

It follows from (36) and (37) that for every 0<u < t-and real
P >max(u,?)

e~ 7

® - g
[ @ B, vdr| < -
U
ie.
t o te
e‘“”ﬂ [ eI F(p, r)dr| azu,<fT du = e.

0 u 0

But it means that for every ¢ > 0
¢ 00
p]jf; Of Eai uf &~ F (p, 7)dz| dw = 0

i e. (35). .

Now, we shall show that g(p) «#. Indeed, by assumption, the integral
(32) with 8 = 0 converges for real p > u. Thus, the integral (33) converges
for real p > u. Furthermore, by Theorem 2

t
(38) H(p,t) =P, t)—p [P@,7)dreZF.
0
But

o0 { o0
Hp,t) = f eI P (p, 1)dr—p? [ [ I B (p, 7)drdu
0 u
t
-pfe?’("')l?’(p T d‘i:—_’pfep“" F(p,1)dr—
—p* f f I F(p, 1) drdu+p? f f PR (p, 7)dvdu
00 00
t
= "g(p)—p [P (p, 1) dv—
0
A L ¢
—pg(p) f P dut p f TR (p, 7) [ pe* dude
= g(p)— pfe”“ "(p, ) dr—

4
—g(p)+g(p)+p f IV F(p, vy dr—p [F(p, 1)de
0 0

t
= gp)—p [ F(p, 7)dz.
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' ¢
Thus, g(p)e# becanse by Theorem 2 p [F(p, v)dveF and
. 0

?
(39) 9p) =H(@,)+p [ F(p, 7)dr.

Furthermore, by Theorem & and (38) H(p,t) ~0 and by (39) g(p)
/ ,

~pP of F(p,v)dv. Thus, by Theorem 5 g(p) ~ F(p,t). This completes

the proof.

TEEOREM 13. If f(t)eF and there ewists such a real non-negative number
W that the integral

(40) 9@) = [ e (bt

converges for p = u, then

(41) gp)eF and  g(p) ~[()
Proof. It follows from the equality

(42) fe"'—”‘f(t-l— 8)dt = "pfs-""f(t) dt
0 4

that the integral (42) is convergent for p = w and any real 6 > 0. In
virtue of Fundamental Theorem for Laplace-Transformation ([1], p. 36)
the integral (42) is uniformly convergent with respect to real p > u. Thus,
we obtain (41) by Theorem. 12. |

Theorem 13 enables us to use all methods and theorems known for
Laplace-Transformation (strictly speaking Laplace—Carson Transforma-
tion) in the smaller class of functions f(¢), for which the integral (40)
converges. But many of these methods and theorems can be generalized
for all functions F(p, t)e#, e. g. Theorems 5 and 8 .We shall prove several
further theorems of such kind.

THEOREM 14. If F(p,t)eF and we put F(p,t) = 0 for t <0, then for
any real 6

H(p,t) = F(p, t+0)cF.

Proof. By assumption, there exists such a real non-negative number
a, that for every ¢ >0

4
(43) limfle‘“”F(p, 7)|dr = 0.

p—>00 0
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Hence for every t >0 and every real 4

t R
lim (|6~ H(p,7)|dz = limf le= P F(p, v+ 0)|dv
1)—)000 P00

+0
= lim [ |e=** F(p, 7)ldv

V>0

140 8

= lim [ |e=** F(p, 7)|dv— Lim [ |e=*? F(p, 7)|dz = 0

D—>0 g P03y
in virtue of (43) and the assumption that F(p,?) =0 for ¢ < 0. But it
means, that H (p, t)e#, which was to be proved.

TeEOREM 16. If F(p, 1) ~ g(p) where F(p, 1) eF, g(p)F and we put
F(p,t) =0 for t< 0, then for any real ¢

é
(44) F(p,t+0) ~g(p)e"—pe” [T F(p, ) de
0

where the congruent functions belong to F.
Proof. By Theorem 14,

H(p,1) = F(p,i+0)F.
We shall show, that also

8
k(p) = g(p)e"—pe® [T F(p, v)dveZ.
0

By assumption, there exist such real non-negative numpbers a, § that
for every t >0

t 4
lim [ |e~"g(p)ldz =0 and lim[|e"®F(p,)|dv = 0.

D00y n—00

Hence, for every t >0 and any y > max(a,f, |d|)

L
lim [ [¢=** (p)| dz

pP—00 0

¢ 5
= h'mf'e‘"‘g(p)—pe""’f@"’“F(_p, a)do' dr
0

p—co 0

! a
< 1i111f|e"”’g(_p)|dr—|— Lim [pte"’”[”e_””F(p, o) da' =0
P—00 0

P00 0
because

! t
[1eg@)dr = le=¢=92| [ 167 g (p)| dv -0
0 0

P—00
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and for 6>=0

[ é
pte™"|| [ ¢ F(p, 0)do| < |pte™| [ |F(p, o)|do
0 0

[}
= tlpe=-P7| [|o=? B (p, 1)|dr -
0 D

—00

and for é§ < 0, by assumption, we have

[}
[e™F(p,0)do = 0.
0

It follows that
{

lim [ |6+ k(p)|dr =0 e h(p)eF.
p—)OOO
Now, we shall prove (44). Since for every real § we have 67 <%, because
for any ¢ > J, 0 > 0 and every t >0

]imfl e‘”pe"”| dv = limtle‘“‘a)”‘ =0

then the congruence (44) is equivalent to the congruence
8

(45) F(p,)—p [e T F(p,1)dr—ec?F(p, t+8) ~0
0

because, by assumption, F(p, t) ~ g(p).
Let us consider the function

d .
P(p,t) =¢'x (F(p,0)—p [e " F(p, )dr—e " F(p, t+9)).
J |
We have

é

¢ 7
Pp,t)=p f IV F(p, 7)dr—p? f 0= [6~P F(p, 7)dvdo —
0 0

0

11
—p [ F(p, v+ 8)dv
0

) t t+4
=) T (p, 1) d.,_pz.fg—ﬂ’f‘(_p, 7) drfe”(‘"’) do’—pf I F(p, ) dr
] 3

0
é t+6

PP (p, ydr—p(eP—1) [V F(p, ydr—p [ I F(p,7)dr
4

0

=D

=P
é {+0

ep(t—‘r)F(p’ T) (ZT_I_pfe—:DTF(p’ T) d_r_pf e’l)(i—r)F(_'p, r)dr
0 [}

i+

e F(p,v)dv—p [ I F(p, 7)dr.
¢

=D

P o Tt L T e T e

p
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Furthermore, for any real y >f and every ¢ >0

1]
[1e7 P(p, 7)ldz
0

i o4d

é
<|p6"'p|f|fe”"F(_p,r)dr’dcr+|p|flf PN (p, v)dv| do
0 0 _0 a

8] te+15)
<tlpe =22 [ o F(p, )| dr+|pe™"P?| [ [ | F(p, 7)|dvdo
1] 0 0

18] t+19]
<tlpe®P7|([ 1o F(p,0) |dr+ [ | Flp,7)|de) >0
0 0

D00

and, thus, for every ¢ >0

t
lim [ |6~ P(p, 7)|dz = 0.

D0 g
It means that P(p,{)e#, which implies, by Theorem 4, the congruence
(45) equivalent to (44). The proof is complete.

CoroLLARY 1. If F(p,t) ~ g(p) where F(p,1), g(p)eF, and we put
F(p,t) = 0 for t <0, then for any real positive &

P(p,t—8) ~g(p)e™™.

We obtain this corollary by replacing § in Theorem 15 by —3d.

COROLLARY 2. If F(p,t) ~ g(p) where F(p,t), g(p)eF and F(p,t) =0
Jor 0 <1< 8 then

F(p,t+ 8) ~ g(p)é™.

This corollary follows immediately from Theorem 15.

TeEOREM 16. If F'y(p, 1), Fo(p, 1), 9.(D), 92(p)eF and Fy(p,t) ~ g.(p),
Fo(py 1) ~ go(p) then

(46) Fi(p, ) XFy(p, 1) ~ g:(0) g (D).
Proof. In virtue of property (v) of congruences we have
(47) Fi(@,8) XFy(p, 1) ~ g1(p) X ga(p)

and, by Theorem 6,

(48) 91(p) Xg2(2) ~ 9.(p)g:(D).
The congruences (47) and (48) imply (46).
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THEOREM 17. Let F(p,t) be absolutely continuous with respect to t for

ij
every real p > u and t > 0. If EF@’ 1) e# and there evists

LmPF(p, 1) = Fy(p)eF
t—>+0

then

(49) B(p,t)eF

and

9
WF(P’ 1) ~pF(p, 1)—pF,(p).

Proof. By Theorem 2, it follows from the assumption that

i
[2-F@, 1 = P, )Ty} 5.

Since, by assumption, Fy(p)e#, we obtain (49). In virtue of Theorem 5

¢
il d

which completes the proof.

THEOREM 18. Let F(p,t) have derivatives with respect to t up to and
including the k-th for every real p >u and t >0. If

ak
Et-k—F(_’p, i) eF

and there exist

g .

40 t>+0

then
a .
F(p,1)eF, Et;TF(.'p;t)fg'_: j=1,2,..., k-1,
and
9% )
a7 @, 1) ~ PP (p, t)—p*Fy(p)—0"* ' Fi(p)— ... —0T ().

We obtain Theorem 18 when we apply Theorem 17 % times.
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IV. Distribution ring

If A ={F(p,?)} we write
—~4 = {—F(p,1)}.

It Ay = {F(p,1)}, 4, = {F:(p,1)} we write

A+ 4, = {Filp, )+ Fe(p, 1)},

A~ A, = {Fy(p, 1) —Fo(p, 1)},

A A, = {F(p,1t) XFy(p, 1)}
It F(p,t) ~0 we write
{F(p,t)} =0.

DerpINiTIoN. The distribution B will be called the %-th derivative of
the distribution A and we shall write

B =AM

if there exists such a function F(p, t), satisfying all the assumptions of
Theorem 18, that

v | ={F(pat)}7 B ={ka(_’p,t)}
which implies also

ak
B = {-a?;F(P: 1) +20" Fo (p)+ 0" Iy (9)+ ... +PFI.:—1(.'P)}'

The ring 2 of distributions includes zero divisors. For example, let
g:(p) and g,(p) be defined as follows:

0 for 2n < Rep < 2n+1,
0:(0) = 1 for 2n4+1<Rep<2n+2;
1 for 2n< Rep < 2n+41,
fp) = 0 for 2n+1< Rep<2n+2,

where n =1, 2, ...
Since for every t >0

¢
lim [ |e7?g,(p)|dr = limt|e7?g,(p)) =0 (k=1,2)

p—woo N—0
then g,(p)e# and g,(p)e#. Furthermore, by Theorem 6, the function
F@,1) = g:1(0) Xg2(p) ~ g:1(») g2 (p) = 0
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but, nevertheless, we shall show that none of the congruences
9:(») NO} 9:(p) ~0
is true. In order to do it, let us suppose that
(50) ge(®) ~0 (k=1or %k =2).
It means that there exists such a function a(t)e%, a(f) % 0, that
H(p,t) = ' xa(t) X g(p) eF .
We introduce the function

G(p,1) = a(t) Xg,(p)
i.e. if ¥ = 1 then

for 2n < Rep <2041,
G(p,1) = ' '
pb(t) for 2n+1< Rep <2042
and if k¥ = 2 then '
pb(#) for 27 < Rep < 2n+1
G(p,9) = P ' m=1,3,...
for 2n4+1< Rep <2n+2
where
14
(51) . b)) = [a(v)dre®, b(t) = 0.
0
Thus, if © = 1 then
0 for 2n < Rep <2n+41,
H(p,t) =

i
p* [T b(zr)dr  for 2n+1<Rep<2n+2
0

and if k = 2 then
¢
p? fe””‘”b(r) dr for 2n < Rep < 2041,
H(pr 1) = o

0 for 2n+1< Rep <2042

By assumption (50) there exists such a real non-negative number a
that for every t >0

n=1,2,..

4
lim [|e"?H(p, 7)|dv = 0.

7)—>o0 0

It follows that ;

lim [ |6~ H (8,, v) |dr = 0

n—)&o
for any such sequence f,, fis, ... that

limf, = oo.
n—>o0
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Let
204+1 for k=1,
" lon for k=2
Thus
lim 2 6~*n f | [ =8 (0)do | dr = 0
-+ 0
and hence

iz
lim A2 6~ %%n f Ieﬂn(""’b(a) dodr

n—co

= limfg, 6~ f b(o) f a7 drdo

n—>00

= lim§p, e""ﬁﬂfe""("")b(a) do— hmﬁ e‘“ﬁnfb(a =0.

N~>00

Since we can assume that ¢ >0 and therefore for every ¢ >0

lim g, e—ﬂf’nfb(a)da =0

n—>eo

we obtain for every ¢ >0
1

lim. j gfal—=p(5)do = 0.

W00

Analogically as it has been done in the case of (18) in proving Theorem 8,
we obtain, in virtue of Theorem on bounded moments,

b(t) =0
and, further, in virtue of (51)

a(t) =0
which contradicts the assumption. It follows that (50) is not true. Thus, if
4, ={0:10)}y 4y = {9(®)};, 4 = {9:(p) Xg.(p)} then 4 = 4,4, =0, but
neither 4, = 0 nor 4, = 0.

Since the ring 2 of distributions has zero divisors, we can not construct

a, quotient field of distributions. Nevertheless, we can prove two following
theorems.

THEOREM 19. If f(1)eF and G(p,t)eF satisfy the congruence
(62) fO) xG(@,1) ~0
then either f(t) ~0 or QG(p,t) ~0.
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Proof. By Theorem 2, we have

t
(B3) b(t) = [f(D)dreF, b(t)e®

and by Theorem 5
ft) ~pb(?).
Multiplying this congruence on both sides by G(p, t) we obtain in virtue
of (b2)
Pb() X@(p,t) ~0.

Thus, there exists such a function a(t)e¥, a(?) # 0, that

€' X a(t) Xpb(t) XG(p,t)eF i e. PP X o () XG(p, 1) eF

where
4

(54) ot) = [a(t—1)b(x)dr, o(t)e¥.

0

In virtue of Theorem 1 also
(65) e xe(t) XG(p, t)F.

If ¢(t) =0, then — by (b4) and already mentioned Theorem of
Titchmarsh — b(f) =0, becanse, by assumption, a(f) £ 0. Then, by
(83), f(t) = 0 for almost all ¢ > 0 and, by Theorem 8, f(t) ~ 0.

If ¢(t) # 0, then (55) means that G(p, 1) ~ 0. The proof is complete.

THEOREM 20. If F(p, 1), G(p,?)F satisfy the congruence

(66) F(p, ) XGQ(p,t) ~0
and there ewist such functions H(p,t)eF, a(l) %, a(t) # 0 that
(67) F(p, ) xH(p, 1) ~a(?)
then
G(p,t) ~0.

Proof. Multiplying (56) on both sides by H(p, t), we obtain by (57)
a(t) XG(p,t) ~ 0 and then, by Theorem 19, G(p,t) ~ 0, which completes
the proof.

V. Quotient functions and quotient distributions

DEFINITION. A function F(p,t) will be called a quotient function, if
and only if

1° F(p, t)eF,

2° there exist such funections a(?), b(t)e%, b(?) £ 0 that

F(p, ) xb(t) ~a(t).
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THEOREM 21. Bvery f(i)eF is a quotient function.
Proof. In virtue of Theorem 5 we have

t
fit) ~p [f(x)dv
1]
then, by Theorem 7,
t
1
(58) 1) ~ f f(z)dx

and by Theorem 6
£
1
59 X — ~ T)dT.
(59) fliyx — f f(x)

But for f(f) =1 we obtain from (58)

(60) L
5~

Thus, by (59), for every f(i)eF
]
ftyxt ~ [f(z)ds.
0

It means that f(f) is a quotient funection.

THEOREM 22. The set of all quotient functions forms a ring with respect
to ordinary addition and wmultiplication (5).

Proof. Let F,(p,t) and I',(p,t) be quotient functions. Then there
exist such functions a,(t), b,(t)e?, b, (1) Z0 (k =1,2) that

(61) Fi(p, 1) Xby(1) ~ay(t),  Fy(p, 1) Xby(t) ~ as(d).

. . . 1
Multiplying the first congruence by 5;bz(t) and the second by ib1(t)
P

and adding the congruences thus obtained, we have

1
[Py (2, 1)+ Fo(p, 1)) x[; byt xbz(w]fu%al(t) Xby(1)+ % as (1) X by (1)

i, e.

{ { {
[F:(p, )+ Fu(p, t)]xfbl (t—1)by(T)dr Nfa'l (t—7) bz(T)dT+faz(t_T)b1(7) dr.
0 0 0
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In virtue of Convolution Theorem and Theorem of Titchmarsh
t

(62) B() = [bi(t—1)by(7)dve®, h(s) 2 0.
0

Thus, Fi(p,?)+ Fa(p, 1) is a quotient function.
If F(p,1t) i3 a quotient function, so is —F(p, 1).
Now, multiplying the congruences (61) we obtain

Fi (@, 1) XFy(p, 1) X by (8) X ba(t) ~ a1(1) X a5 (2)
and also

1
[Py (3, 1) X Fy(p, 0)] x[; by (1) xbzm] ~ [—;— as () Xwa(t)]

which means, by (62), that F,(p,1) X Fy(p,?) is a quotient function.
Thus, the proof is complete.

DerIiNITION. The ring of all quotient functions will be called ring 2.
Obviously, 2 is a subring of #.

TueorEM 23. If F(p,t)e2, G(p,t)eZ, and F(p, 1) XG(p,t) ~ 0 then

F(p,ty ~0 or G(p,1)~0.

Proof. It is sufficient to prove that, if the congruence F(p,t) ~0
is not true, then G(p,t) ~ 0. By assumption, there exist such functions
a(t), b()e¥, b(f) £ 0, that

F(p, )y xb(l) ~ a(t).

If a(t) =0, then, by Theorem 19, F(p,?) ~ 0. It follows that, if the
congruence I'(p,t) ~ 0 is not true, then a(t) # 0, and, by Theorem 20,
G(p,t) ~0, which was to be proved.

DEerIiNiTION. If F(p,t)e2 and 4 = {F(p,t)} then 4 will be called a
quotient distribution.

All representatives of a quotient distribution are, obviously, quotient
functions.

Since all quotient functions form a ring, then all quotient distributions
form also a ring. The ring of all quotient distributions will be called ring <.
Obviously, & is a subring of 2.

It follows from Theorem 21 that every {f(f)} where f(¢) «#, is a quotient
distribution.

THEOREM 24. If m 18 an arbitrary integer and f(i)e#, then

4 = {p"f(1)}

18 o quotient distribution.
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Proof. By Theorem 5 we have for any non-negative integer &

e+t
pk' f k! (k—!—l)!
and, by (60), we obtain for any positive integer m
1 m
(63) pez ol

Thus, if m is a non-negative integer, we obtain, by Theorem 6, from the
identity

1
the congruence

VARIOE: (——;1— ~ f f(x)dv e

which means that p™f(f) is a quotient functlon
'If m is negative, we can write

1
4= {p“ 7 }
where n = —m is positive. By Theorem 6 we have also

o

Since (63) is true also for m = 0, if we put 0! = 1, then

‘“&m (o:n—l} Uf( = }

which. means that A is a quotient distribution. Thls completes the proof.

V1. Sequences of quotient distributions
Distributional convergence

DEFINITION. A ‘sequence of quotient distributions A4,, 4,, ... will be
called convergent to a quotient distribution A and it will be written
limAd, =4

n—>0

if, and only if, there are such functions a(t), f,(1), f2(t), ... €€, a(t) 0,
that
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1" 4 {a(®)} ={fa(®)}, n =1,2,...,
2° the sequence f;(?), fa(t), ... converges almost uniformly to a function
f(t)e® (we write f,(t) = f(1)).

n—o

3° A{a(®)} = {f(1)} (®).
THEOREM 25. If im A, = 4 and lim A, = A* then

n—»00 . N—o0
*
A =4".

Proof. By assumption, there exist in the class % such functions a (1) & 0,
b(t) 0, fu(t), gu() (n =1,2,...) that

(64) A {a(®)} ={fu()} and A,{0)} = {g.(0)},
(65) fa(t) =f(@) and g,(t) = g(3),
(66) A{a()} = {f()} and A*{BE)} = {g(¥)}.

From (64) we obtain
A {a@}{p()} = POHLWO} = {a(®}Hga ()}

(bt xfo (0} = {a() xg, ()}

b(t) Xfu() ~ a(t) Xga(2).

and then
which means

Hence
) %b(t) X fa (8 ~% a(t) X ga (1)
1. e.

t [
Joe—nfu(r)dr ~ [ a(t—7)g.(z)dr.
0 0

In virtue of Theorem 8 and its corollary the congruence (67) implies
the identity
2 b)) Xfalt) = = a(8) X0 (1)
I3 " p e
By (65) we obtain

1 1
68 —b t) =—a(t) xg(t).
(68) p (2) Xf(2) pa()XQ()

If there are such functions F(p, 1), G(p,t)<# that
4={Fp,n) and A" ={G(p 1)}

(®) The idea of a convergent sequence of quotient distributions is analogous to
that used by J. Mikusiriski for convergent sequences of operators ({2], p. 41).
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34 .- A new theory of Operational Calculus
then, by (66)
F(p, )y xa(t) ~f(2), G(P, 1) Xb(t) ~g()

and, further,
1 1 1 1
P(p, ty x=a(t) xb(t) ~=b@)xf(t), Q(@,?)X—a(t) Xb{) ~—a(t)xg().
. P ? p D
In virtue of (68) we obtain

[E(p,t)—G(p, t)]x[ -a(t) Xb(t)]

and by Theo,rém 19 .
F(p,)—6G(p,1) ~0.

It means, that 4 = 4% which was to be proved.
THEOREM 26. If lim 4, = 4 and lim B, = B then !

n—>00 ‘_ o
(69) lim (4, + B,) = 4+ B,
n—oQ .
(70) lim (4,—B,) = A—B,
n—»o0
(71) lim 4, B, = AB.
n—>00

Prootf. By assumption, there are in, the class € such functions a(¢) % 0,
b(t) & 0, fo(t)y g.(1) (n =1,2,...) that

(72) An{a(t)} = {fn(t)}’ Bn{b(t)} = {gn(t)}f
(73) f;(t):mfm,- 9.0 = g(1),
(74) A{a@} = {f@)}, B} = {0}

From (72) we obtain

4, {a@}o()} = POHL®},  Ba@®}b®)} = {a()}g. (1)}

and
(4,+B,) {% a() xbw} - {—% b(t) X Fa(0)+ %aw xgn(t)}.

On the other hand, from (74) we obtain analogously

(4+B) {p alt) Xb(1 )} - {%b(t)Xf(t)-F%a(t)xy(t)}-
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Since by (73)
t

1 1 ‘
SIOXAHG+ el X0 0) = [vu—af, @+ f a(1—1)g, (1) dv

0
t

t
= b(t—'t)f(t)dr—!—fa(t—r)g(r)(_h

0
= %b(t) xf(t)+%41(t) Xg(t)

then, by definition, we obtain (69).
We prove (70) analogously.
In order to prove (71), we multiply (72) and obtain
4,B,{aHb®} = {f,()Hom (0}

and hence
{ t
4,B,{ [ att—n)b(2)dz} ={ [ £,(1—7)g, () dz}.

Analogously, we have by (74)
t

¢
AB{ [a(t—n)b(z)ac} ={ [ ft—v)g(x)dx}.
Since 0 ’

¢ i
[ft—Dg(D)dr = [ft—7)g(v)dr

n—=00 g
then we obtain (71). This completes the proof.

DerINITION. A sequence of quotient functions F (p,t), Fs(p,1),...
will be called distributionally convergent to a quotient function F(p,t) and
it will be written

Iim dis 7, (p,t) ~ F(p,1)

n—+o0

Lim {F,(p, 1)} = {F(p, 1)}

n—o0

DErFINITION. A series of quotient distributions A,-+ 4,4 ... will be
called convergent to a quotient distribution A and it will be written

A = A1+A2"|'

if, and only if,

if, and only if,
A =lm (4,4 Ayt ... +4,).
n—>o0
" DEFINITION. A series of quotient functions F,(p, )+ Fu(p, )+ ..
will be called distributionally convergent to a quotient fumction F(p,t) and
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it will be written
F(p,t) ~F(p, )+ Fo(py 1)+ .
if, and only if,
F(p,1) ~lim dis[Fy(p, )+ Po(0, )+ ... +F,(p, 1)].

n—roo

ExAaMpLE. Although the sequence

pt pztz P3t3
EYREETERE T

ig for every p almost uniformly convergent to zero with respect to ¢, we
have

ntn nan
(75) lim {p = {1}, i.e. limdis T4,
n~>00 n! n—0d n!
Indeed, since ,
"‘t" n+lint1
Ellm = —
n! (n+1)!
and by (63)
p’n-+lt‘n«+1
(n+1)! ~1
then
p'ntn
[THw -

and for n» =0 {1}{1} = {1}. It means (756), by definition.
TEEOREM 27. If f(1), fi(t), fa(?), ... €% and

(76) Fu(t) = F(2) -

then n_m

(77) ) lim disf, (t) ~ f(2)

7:. .. N—>00

(78) Eﬂ:{fn(t)} = {f(®)} ([2], p. 41).

Proof. Since
t

M1} = {2 [fu(n)ds}

and, by Theorem 5, u

(79) {FOHL} = {fu®},  {fOH1} = {F()}

then, by definition, (78) results from (76). Since (78) is equivalent to (77),
the proof is complete.
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- Remark 1. Accordingly to (79) we can write simply {1} = 1. Thus,
for every distribution A we have 14 = A-1 = A, Generally, for every
number o we can write {a} = a.

Remark 2. There exist sequences fi(t), f(t), ..., where f,(f)e® (n
=1,2,...), which are divergent in common sense, but they are distri-
butlonauy conjrergent

EXAMPLE ([2], p. 41). The sequence sint, 2sin2¢, 3sin3t, ... is divergent
in common sense, but

(80) lim disnsinnt ~ p.

n—o0

Indeed, we have
L

n8innt prnsinmdr = p(1—cosnt)
0

t
1
~J 1_ d — 2 T
P!P( cosnt)dr = p (t——n smnt)

then, by (63)

and, thus,
. 12 1. 1 1 .
{nsmnﬁ {-2—} = {P’(t—;smnt)} {F} = {t——;smnt}.

1,
f——smnt =1

n N—>00

ofe) -}~ -

lim {nsinnt} = {p}

n—>o0

Since

and, by (63)

then,

i. e. (80).

VII. Examples of applications

All problems solvable in Operational Caleculus or in the theory of
Laplace Transformation can be solved also on the base of theory presented
here. We shall show some examples.

Firgt, we introduce one definition more.
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DErINITION, The function g(p) ef will be called a transform of & function
B(p,t)eZ, if
(81) 9(0) ~F(®,1).

' TIf there exists a transform (81) of a function F (p, %) it is not unique,
because we have also

e g@)+h(p) ~F(,17)

where h(p)eZ is any function satisfying the congruence & (p) ~ 0.

If #(p,t) satisfies the assumptions of Theorem 12, its transform can
be found by means of formula (33), which is a generalization of Laplace-Car-
son Transformation for functions of two variables p and . But in many
cases it is also possible to find this transform in another simplier way,
supposing, of course, that such a transform exist and be a feasible function,

Examere. We shall find transforms of the following functions: t*/k!
(k positive integer), ¢* (a real and a # 0), sinwt and coswt (w real and
w # 0), €~ (4 positive), 6= (a, k positive), sinpt and cospt.

In virtue of (63) we have ' '

t* 1
(82) 0 Pk

In virtue of Theorem. b

t
eat prsard‘L,:_}leat_g
0' a a .

and hence ae® ~ pe®—p i.e.

(83) P
~r—a
In a similar way we obtain,
11
sinwt ~ p fsi.nwrdjr =— -‘Z-)-'COSU)Z-I- 2
o 'D w. . w
1. e,
(84) wSinwt -+ peos wt ~ p
and
i
¢os wi ~pfcos wtdr = £s.irum:
2 w
i. e.
(85) ‘ psinwt ~ weoswt,

From (84) and (85) we obtain

P
P+ w?

(86) Sin wi ~
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and
) . p?
(87) COS wi YN
Now, we have
t )
6"‘”‘2-” ~ pf e_a‘prd-c —— _:L_ B_apt _|_ i
g o a
and hence
é—apt ~ 1 .
a1
Similarly
¢
1 1
6—apkf pre...apkrdr — pk—la’ e—dpkt _I_pk_la'
s )
and hence.
e— pkl ~ ._1_._ .
ap* 141

We find the transforms of sinpt and cospt analogously to (84) and (85)
and we obtain o
sinpt ~ cospt ~ } ~ e,

ExAMPLE 2. Let us solve the following differential equation
(88) g —g - day — 4w = 127—32
with initial conditions
»(0) =5, a'(0) =—2, #'(0) =5."

In virtue of Theorem 18 we have

@ ~pr—5p,

x' ~pre—bpit+29p,

@' ~pia—5p°42p2—5p
and by (82)

i ~—.
Thus, by (88), we obtain

12
(p*2—5p"+ 25" —5p)—(p*a—5p*+2p)+4(po—bp) —4v ~—~ — 32
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i, e. after arrangement
p(pP—pi+dp—4)w ~ Bprt—Tp*+ 2792 —32p+12
and hence

5pt—Tpi+427p*—32p+12 3 P p2
=F—— + ——
p(p—pi+4p—4) p  p»—1 p*t+4

In virtue of (82), (83), (87) we obtain

O~

2 ~b—31+4 e —cos2t

and by Theorem 8 and its Corollary
z = 5—3t+ 6 —cos21.

ExAamprE 3. Let us find the general solution of the following diffe-
renfial equation

(89) (#8—2t+L)a' 4 (—13+ 912+ 2t—T)a" -+ (—6124+- 181+ 4) 2’ +
+(—6t+6)x =6,

Introducing

(90) y = (*—21+1)o

we obfain
y' = (?—2t+1)x' 4 (312—2)z,

y' = (BB—2t+1)e (612 —4)2' 4 6ir,
Yy = (BB—21+ 12" + (912 —6) o’ + 1812’ + 6
and we can write (89) in the form
Y=y =e,
In a similay way as in Example 2 we obtain
Pt 2%+ (W — ¥+ (% —%+1)
(p+1)(p*—p?%)
where 3o = ¥(0), ¥, = 4,(0), ¥ =y (0).
Hence

Y

where 4 = —y'+yo, B = —y;'+9;—1, 0 = y;'+} and by (82) and (83)
y ~ A+ Bt+Ce—}e
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i.e. in virtue of Theorem 8

y = A+ Bt+Ce—3}et.

Hence, by (90)
o — A+ Bt+Ce—fe™
- £—2t+1 )

VIII. Quotient field

In virtue of Theorem 23 the ring 2 has no zero divisors and by Remark
1 it has an unit element 1. Then we can construct a quotient field # with
elements written in the form

A
(91) 5
where 4, Be2, B #0, i. e. by definition, there exists such a quotient
function F(p,?) that
B = {F (.P; t)}

and F(p,t) does not satisfy the congruence F(p,t) ~ 0.
The arithmetical rules are as follows

A 0 .

—B-=3 lf a:nd On]-y ]:E .A.D = BO,
A+0_AD+B0
B-''D  BD '

4 ¢ AC
B D BD'
A C AD
Fp-BO T 970
A

Thus, by isomorphism, all quotient distributions belong to .
THEOREM 28. Every element (91) can be written in the form

{f@)}
{g(t)}

where f(t), g(t)e¥, g(t) & 0.
Proof. Let A = {F(p,?)}, B ={@(p,t)} where, by definition of
quotient distribution, F(p,1t), @(p,?)e2. Moreover, G(p,t) does not
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gatisty the congruence G(p,?) ~ 0. Hence there exist such functiong
a(l), b(1), c(t), d(f) ¥, b(t) £ 0, c(f) # 0, d(f) = 0, that

F(_'p,t)xb(t)wa(t), G@’t)xd(t)""c(t)-
Multiplying numerator and denominator of (91) by
{B(t) xd()} = {pOHA@)}

we obtain

A {F(p,t)} _ {F, )HOHIC)}

B {&,0)}  {G(, b0}

_ {F@, 0 xb@HEW} _ {a@®}Ham}
T G, yxa@p®}  {e@Hb@}

{%}munwﬁﬂ )
{i}meMml v

t t
whete f(1) = [a(t—7)d(z)dr, g(t) = [e(t—7)b(r)dr which completes the
0

0
proof.

Theorem 28 shows the isomorphism of & with the field of operators
in the ‘sense of Mikusinski ([2]), p. 41).

There is an open problem, whether such elements (91) exist which are
not distributions. That such a case would be rare, we can see from the
following theorem.

{f)}
{g()}

«Z, then there evists such a function F(p,t)e2 that

{f&)}
{0y

Proof. By definition of a transform, we have

W} = (o)

U@y _ oy
@y ~ (o)

THEOREM 29. If ———— 2" and the fumction g () has such a transform h(p),

1
that also
h(p)

{Fw, )} =

and thus

Putting

F(p, 1) E-h%f(t)eﬁ
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we obtain

T, ) xg(t) ~F(p, 1) xh(p) ~b(p) F(p, 1) = h(p)-,;%ﬁf(t) = 100).

Thus, F(p,?t)e2 and {F(p,)}{g(®)} = {f()} and hence

7@} _ {F,)}H{g(®)}
- @O _ (pip,0
{g(0)} {g(®)}
which was to be proved.
It is also an open problem, whether such a function g(f)e% exists,
which has transforms, but no such transform i(p) that

1
h(p)

eF.

IX. A theory corresponding to Laplace
Transformation

Let us consider, how to change the theory presented here, in order
to obtain a correspondence to Laplace Transformation and not to La-
place~Carson Transformation. Firgt, let us notice, that the function
f(t) =1 corresponds by Laplace Transformation to g(s) =1/s and not
to 1, as it was by Laplace—Carson Transformation. Thus, we must construct
the new theory in such a way, as to distinguish f(?) =1 and g(s) = 1.
(According to custom, we replace p used in the theory of Laplace—Carson
Transformation by s used for Laplace Transformation).

‘We ghall deal with pairs of functions from the ring #, namely,

(92) (F(s,t),g(s))

i. e. we consider only such functions F(s, ), g(s) that F(p, 1}, g(p)F
in the sense of previous theory.
The arithmetical rules, however, are now as follows:

(Fl(s: 1), 91(3))+ (Fz('g, t), 9’2(3)) = (F1(3; 1)+ Fy(s,1), 91(3)+92(5')),
(Fy(s, 1), 92(8) X (Fals, 1), ga(s))
t
= ([ Fuls, t—7) Fols, v) dr+ 2(8) Po(8,0)+ 02() Fa s, 1), (89 (8)}

The above arithmetical operations are associative and commutative,
multiplication is distributive with respect to addition.
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In virtue of isomorphism, we introduce the following notations:
(F(s,1),0) =[P(s,0)], (0,9() =<g(s))-
Thus, by definition of addition,
(F(s, 1), g(s) = [F(s, )] +<g(s)>
and by definition of multiplication
[Bu(s, O] X[ Fals, )] = (Falss 1), 0) X(Fa(s, 1), 0)

= (f‘lﬂl(s) t—T)Fz(S, 1)_d‘;, 0)
0
i.e.

i
(93) [Fo(s, 8)] x[Fals, 1) = [fFl(s, t—7) Fy(s, r)dr].

We have also
(1) X(B(s,1), 9(s) = (0, 1) x(F(s, 1), g(s)) = (F(s,1), 9(s))
or, more generally,
Ch(s)) (T (s, ), 9(s)) = (h(s)F(s, %), h(s)g(s)).

In particular, we have

(s x[F(s,1)] = [1(s)F(s,8)],  <h(s)) g(8)) = <{h(s)g(s)).
The set of all pairs (92) forms a commutative ring, which will be called
ring &. The functions [F(s,t)] form a ring J with multiplication (93).
Theorems 1-5 hold algso for the ring . Theorem 6 changes as follows
If |g(s)], [P(s,t)] 7 then
1
9] x (766, 0] ~[ T 00176, 0]

Theorems 7-16 hold also for the ring 7.
In the ring % we introduce moreover the congruences [sg (s)] ~ <g(s)>.
The propositions of Theorems 17 and 18 change as follows

0
I:..(%_F(,g’ t)] N[SF(S, t)]—<Fo('9)>J

k
[gtg F(s, t)] ~[*F (s, )| —(sF T Fy(s)>— ... —(FFEV(s)>.

Theorems 19-29 hold for the ring %.
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The propositions of Theorems 12 and 13 can be written in the form

[F(s, 1)] ~[sf°°e—“p(s,t)dt] N(fe‘s‘F(s, t)dt),

o [-=] -
[f0)] N[s [etwar| ~< [ e (tyaty.
0 0
There are many problems connected with the theory presented here,
which were not considered. The aim of this paper is to give only an outline

of the whole theory.

Warszawa, Februnary 1969
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