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THE GI/G/1 MODEL WITH WARMING-UP TIME

1. Introduction. The object of the present paper is to survey the
most important results about the waiting time distributions in single
server queues with specialities at the beginning of a busy period.

We start by considering the basic model GI/G/1. The customers
arrive in a recurrent stream; they are enumerated by n =0, 1,... The
corresponding service times f,, f;,... are independent and subject to
the common distribution function (d. f.) B(x). Analogously, the interar-
rival times a;, a,, ... are independent with d. f. A (z). We are particularly
jnterested in the waiting times w,, w,, ...; they are defined recursively by

w, +X w,+X,.,>0
(1.1) Wpyy =1 Y i (n=0,1,...),
0, Wy + Xy <0

provided that w, is given, and X, = 8,_,—a,.

This sequence of waiting times is intimately connected with the
random walk 8, =0,8, = X, + ... +X, (see fig.). As is easily seen
from (1.1) we have w, = S, as long as §,> 0 if we assume w, = 0. In
the figure, S; < 0; so the third customer is a “happy” one whose service
starts immediately; the following waiting times can be obtained from
the random walk 8§, by a parallel translation (dotted line) as long as no
other “happy” customer arrives. Then another translation is necessary
and so on. As is well known (see, e. g., [3]) the condition

(1.2) P{§,—> — o0} =1

is necessary and sufficient for the existence of a stationary waiting time
distribution W(z), i. e. for the weak convergence

P{w,<ax} > W(x) (n— o).

This limit distribution is the only d. f. which is solution of the Wiener-
-Hopf equation

(1.3) W(z) = KxW(zx) (x>0).

2 — Zastosow. Matem. 14.1
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In this report we consider two geperalizations of this model which
are characterized by peculiarities at the beginning of every busy period.
We collect together the most important results from [11] and [15]-[18].
Some special cases were obtained by other authors as will be indicated.
Only the general solution of (1.3) given by Klimova in [8] cannot be
considered a special case of our results; it was obtained by algebraic
methods, but it seems to be hard to pick out the special cases where rational
characteristic functions (c. f.) are involved.

As a matter of surprise the study of models with warming-up time
leads to new results concerning the basic model GI/G/1 (cf. theorems
3.2 and 3.3).
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2. Finch’s model. Once in a while it happens to all of us that we
enter a service station, that there is no queue, but service does not start
immediately. Sometimes the server has another occupation or, if the
server is a machine, a random warming-up time is necessary. This experience
was put in model by Finch in [4]. Further results where published in [2].

For every customer there exists a mnon-negative random variable
(r.v.) y» (m = 0,1, ...); they are independent and subject to a common
d.f. C(z). In the model of the service process only a random subsequence
of {y,} is actually used; y, plays a role if and only if the n-th customer
finds the server idle. So, for the sequence w, of waiting times, we have
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the recursive formula

(2.1) Wy, = nt Lnr w?+X”“ >0 (n=0,1,...).
1£3) wn+Xn+1 < 0

A realization is given in the figure (dashed line). For n =0,...,5
it can be obtained from {8,} by a parallel translation. We have w, = w, -+
+ 5o (n =0,1,2) but w, =w,+& (n = 3,4,5) with 0 < &< y,. Then
y¢ must be used. Generally, we have w, = w,+§, (n =0,1,...); the
r.v. &, are positive and depend on w,. For example, it depends on the
process {w,} for how long we have w, = w,+y,. We tackelled this model
with different methods.

a. Results obtained by means of the random walk and remewal theory.
We first state a generalization of Finch’s fundamental theorem [4];
it was proved in [16].

THEOREM 2.1. Let us assume that the X; are non-lattice and K (x) < 1
Jor £ <0 or C(x) >0 for #>0. If, moreover, P{8,—> — oo} =1 and
me = By, < oo, then there exists a stationary waiting time distribution
W' such that

P{w, <z} > W(x) (n—> o0).
W' is the only d. f. satisfying
(2.2) W' (z) = E+W'(z)—pC(x) (> 0),
where f§ = KxW'(4+0) and C(x) = 1—C(x).
For P{S, - — oo} < 1 it follows P{w, < x} -0 (n—> oo).
Remark. Equation (2.2) is an inhomogeneous counterpart of (1.3);
note that we obtain (1.3) putting C(x) = ¢,(x) (degenerated d. f. concen-

trated in the origin). This equation plays a considerable role in the theory,
but it is not the only integral equation of interest.

THEOREM 2.2 (cf. [16]). If W' (x) exists, then also
lim P{§, < o} = G(x)

n—>oo0

exists; @ is the unique d.f. satisfying
(2.3) G(z) = U_*G(x)—6C(x) (z>0),

where 6 = U*G(+0), and U_(x) =1—U(—ux) s the d.f. of the idle
time in the basic model QI /G /1.
Putting G(x) = 1—G(x), we have the representation

(2.4) G(2) = 8[C(a) + [ M(y)d0(y+a),
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where
M(y) =D U*(x)

18 the renewal function corresponding to U_(x).

Remarks. 1. Equations (2.2) and (2.3) resemble each other on the
very first glance, but there is an essential difference concerning the kernels:
0<K(0)<1, but U(+0) =1.

2. M (y) is a complicated function even if U_(x) is known explicitely,
but often we do not know much about U_(z). But there exist estimations
below and above for the renewal function, and each of them yields an
estimation of (2.4); some of them can be found in [18].

3. In case of the basic model M /G/1 (with parameter 1 of the Poisson
process) we have M(y) = Ay, and so we obtain from (2.4) the simple
formula

(2.5) G(z) = 6[0(m)+lf5(y)dy], 6= 1+im)! (x>0).

So far the essential role of the function G'(x) has not become suffi-
ciently evident, but it is made clear by the following

THEOREM 2.3 (cf. [16]). If W' (x) exists, then w, and &, (n =1,2,...)
are asymptotically independent and (1)

(2.6) W' = Wx@.

Rematrk. The first part of the theorem is the deeper result. Repre-
sentation (2.6) is well known from the general theory of the inhomogeneous
Wiener-Hopf equations. Interesting is that in this case G is a d.f. with
an intuitive meaning.

On the other hand, W can be considered as known from the wvast
literature on the basic model. Therefore, our interest focuses to the relations
between C(z) and G(z). We give the following examples (see [18]):

(1) The estimations of M (y) in (2.4) yield that for

o]

fmdA(x) < oo

0

it holds, for every a > 0,

f #°dG (z) < oo if and only 1ff a**1dC (z) < oo.
1

1

() The first special case of (2.6) was established in [11].
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(i) If C(z+9) < C(2)C(y), then G(x) < C(x). Further, in this assertion
< can be replaced by > (see [18]). Note that this is a generalization of
one part of theorem 2.6.

(ii1) Now let us suppose that

) <— [ Cway (@3> 0).

(For instance, this is true if the assumption of (ii) holds.) Then we obtain
f 2"dG () <min!l< oo (m=1,2,...).
0

If the moments of G exist, then we can replace the signs < by > in
both relations.

In theorem 2.4 we shall give another estimation by comparing two
different d. f. C, and C,. Setting

o]

8i(@) =C(2) and  8p(@) = [ SHy)dy (n =0,1,...),

it was proved in [18].
THEOREM 2.4. Let, for some n >0,

[a"Hd0(@) < oo and 8 (2) < SE(x) (2=0).
0

Then
B n

L8 (@) < Blpy(@) (2> 0).

B, !

For n = 0 it follows B, <X f,. But for n > 1 this assertion is not true
generally.

Analogously, we compare different d.f. K, and K, for fixed C. For
instance, from K, > K, it follows

%WK W, and fo<fy.
1

It is important to choose 4, B or C such that mpy, attains a mini-

mam. As well known about GI/G/1 (see [10]), for fixed A, min = my
VB, mp=const

is attained for B =e¢,,, (degenerated d. f. concentrated in mg) and, for

fixed B, min my is attained for 4 =e,,. For GI/G/1 with
. Y4, myq=const

warming-up time, ¢, and ¢, are only good solutions but generally not

the best ones. Analogously, for fixed 4, B and m, — const the special

function ¢ = &m I8 @ good, but generally not the best solution (see [18]).
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Now let us consider the model M /G/1 with warming-up time, where
the parameter 4 = const. In this case, as a matter of surprise,

B for mp = const and fixed C

= Epp
or

C =c¢

m¢
are the best solutions. We have another pleasant case, if ¢ is a negative
exponential distribution with parameter 1, then Rogozin’s results mentioned
above hold true also in the model with warming-up time.

b. Results obtained by analytical methods. If we want to treat (2.2)
and (2.3) with characteristic functions, we must add a term such that we
have equations not only for # > 0 but on the whole line. It is an interesting
feature of our special case that these additional terms have an intuitive
meaning while they are not of interest themselves in the general theory
of integral equations on the half-line. For (2.3), e.g., we obtain [15]

8U' +@ = UxG+ 80,

where 1 — U’(—x) is the d. f. of the idle time in Finch’s model. Denoting
the c. f. by asterisks, we now get
(2.7) G*(t)(1— T @)+ (U™ () —C*(t)) = 0.

As is well known, the general solution of (1.3) and (2.2) is intimately
connected with the Wiener-Hopf factorization. But special cases where
rational c. f. are involved can be treated in a much more elementary way;
we pointed it out in [11], see also [6], chapter 5. This method can also
be applied to (2.7) (see [1]) and Yyields, for instance,

THEOREM 2.5. G* rational if and only if C* rational, and both functions
have the same poles.

As the poles of G* and C* coincide we obtain immediately the fol-
lowing

CONSEQUENCE. G is a finite mizture of exponential d.f. if and only
if so is C.

Analytical considerations yield also [16]

THEOREM 2.6. G or C are exponential d. f. if and only if G = C.

Note that one part of the theorem follows immediately from the
above-mentioned consequence. The other rests on & unity theorem for
an integral equation proved in [12], namely, putting ¢ = G in (2.3) we
obtain, after some rearrangements (C_(x) = 1—C(—z+0)),

(1—=6)C_(x) =0_*xU_(z) (x<0).

A representation for G*(z) in {#+ = t+iy; y > 0} can also be obtained
by the following idea (cf. [15]), which makes use of the fact U(+0) =1
(cf. remark 1 to theorem 2.2). In this case the general theory of inhomoge-

for my = const and fixed B
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neous Wiener-Hopf equations (%) proves superfluous. From the very
beginning we know, by the inversion formula of Laplace-transforms,
1 F @ (1) —G(+0
¢ (5)— @ (+0) =—vp [ LU0 4
27 v—2

—00

(VP denotes “valeur principale”). Substituting G*(t) by means of (2.7),
we obtain after some rearrangements the following

TaEOREM 2.7. Let be

0 ———
fK(w)da: < oo and lm|E*(t) <1.
o t—>00

Then we have, for the solution of (2.3),

C*(v)—1
1— U (0)

dv
v—2

6 oo
W (+0)[G*(2) —G(+0)] = o VPf [ +1—C(+0)]
Remark. This formula can be inverted in several special cases,
e. g. we obtain (2.5) under more general assumptions. Furthermore, we
find a new proof of the general formula (2.4).

3. Yeo’s model. We next consider a model due to Yeo [21] which
is intimately connected with Finch’s model. But there is no warming-up
time. Welch [20] considers this model independent of Yeo. This model
with further specialities was considered in [19].

So far we had exactly one random service time fB,, 8, ... for each
of the successive customers. In Yeo’s model we have two service times

for each customer. In other words, there is a second sequence E}o, /§1,
of independent positive random variables subject to the common d. f.

B(z). For each customer his actual service time is determined by the
following rule: If the n-th customer finds the server busy, then 8, ; if he

finds the server idle, then /§n So this model may be considered a very
simple case of a system in which the service time depends on the queue
length. The counterpart to formulas (1.1) and (2.1) now reads as

’&)n+-Xn+1’ @bn+Xn+1 >0’ ?2)”>0,
Bl w,,, =1X,.yp Xp1>0,w, =0,
0’ &)n=07'Xn+1<0 Or'uA)n_l—_Xn_'_1< 0’,’2)’"4:0’

where X, = 8,_1— a,, Xn = Bn_l—an (n =1,2,...). Obviously, there
are two interesting special cases:

a. B = B (basic model);

b. B, = B,+7v,, where P{y, >0} =1.

(*) Tt was applied to (2.2) in [9] where more restrictions had to be made.
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In the latter case we have Finch’s model with a minor alteration:
In Yeo’s model every waiting time at the begin of a busy period is zero,
but in Finch’s model we have w, >0 (n =0,1,...) provided that
P{y, >0} = 1. Namely, in Finch’s case, y, = ""’;n holds for a random
subsequence 7, of the natural numbers, but in Yeo’s model y, is part
of a service time. This difference is unessential as the sojourn times of
all customers coincide.

So, in a certain sense, Yeo’s model is a generalization of Finch’s.
But in spite of that there is a trick to reduce the study of Yeo’s model
to that of Finch’s. Let us consider the sequence of waiting times defined
by (3.1). Then, we pick out a random subsequence by cancelling all those
w,, which are equal to zero. As can be shown, this procedure yields a se-
quence w, for which (2.1) holds; we call it the imbedded model; the corre-

sponding d. f. C(z), obviously, depends on K, B, B. This is the basic idea
on which the proof of theorem 3.1 rests [17].

TueorREM 3.1. If lim P{w, < 2} = W (2) exists, then
(3.2) W () = ago(®)+(L—a)W*G(x) (x> 0),

where o = W(+0), W can be considered as known from the basic model
and @ = G(K, B, B) is determined by the imbedded model.

A special case of (3.2) was found in [7] and suggested the supposition
that (3.2) might hold generally; in this paper the analytical method
mentioned in section 2b was applied. .

Now, we return to the basic model GI/G/1 putting B = B. There-
fore, W = W and (3.2) turns into a renewal equation for W, where
G = G(K, B, B) is determined only by the basic model. It is well known
(see [3]) that W is not only the solution of (1.3) but also the solution of
the renewal equation

W(x) = 1—H(co)+ H(co)WxH(z) (a>0),

where H(z) is the distribution of the “ascending ladder heights” of the
random walk {8,}. As we assume (1.2), the renewal process of these ladder
heights must terminate and, therefore, H (o) < 1. Generally, it is difficult
to find explicite formulas for H(x). So, the following result (see [17])
might be of some interest:

THEOREM 3.2. H ()G (z) = H(x) if and only if

O(x) = )0 (% >0).

The roundabout way via the imbedded model yields also [18]
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THEOREM 3.3. Let be a >0 and m, < oo. In the basic model GI[G/[1,

[ a®dW (x) exists if and only if | z " dB(z) ewists.
0 0

(1]
[2]
(3]
[4]
(5]
(6]
(7]

(8]
(9]

[10]

(11]

(12]

[13]

(14]

(15]

[16]

[17]

Only very few special cases of this result seem to be known.
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SYSTEM GI/G/1 Z ROZGRZEWANIEM

STRESZCZENIE

Praca zawiera streszczenie wazniejszych wynikéw dotyczacych stacjonarnych
rozkladéw czekania w dwdéch systemach obslugi masowej z wyrdéznionym zachowaniem
si¢ na poczatku okresu zajetosci (bez dowodéw). Systemy te, bedace prostymi uogél-
nieniami systemu GI/G/1, byly po raz pierwszy badane przez Fincha [4] i Yeo [21].
Wiyniki otrzymano przy uzyciu metod bladzenia przypadkowego, teorii odnowy i metod
analitycznych.



