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On Lipschitzian solutions of a functional equation

by J. MATROowSKI (Katowice)

Abstract. In this paper there is proved a theorem on the existence of the unigque
solution ¢ of the first order functional equation ¢(x) = h(z, ¢[f(2)]), fulfilling-a Lip-
schitz condition in a neighbourhood of the fixed point of the function f. Under some
additional eonditions the properties of monotonicity and convexity of the solution ¢
are investigated.

In the preseﬁt paper we shall deal with the questions of the existence
and uniqueness of solutions of the functional equation

(1) p(@) = k{z, o[f(2)]},

where ¢ denotes the unknown function and is assumed to fulfil the Lip-
schitz condition. Applying the results obtained we shall prove a theorem
on the existence and uniqueness of convex solutions of equation (1).

The problem of the existence of Lipschitzian solutions of equation (1)
was8 investigated in [6] under stronger assumptions. Convex solutions
of equation (1) were treated in [2], [4] and [6] by means of other methods.

1. Let I be an interval. We agsume that
(i) f is defined and continuous in I; there exists a &eI such that
0o J@—¢
w—§

Remark 1. Hypothesis (i) implies that (&) = ¢, f(I,) = I, for every
interval I, c I, such that £eI,, and lim f*(x) = & for every zel (cf. [3],
—>00

p- 20). Here f* denotes the nth iteration of the function f.

<1, wel, z #E.

Concerning the function 7 we agsume:
(i) % is continuous in a domain 2 c R?; there exists an % such that

(2) (§;mef2,  Rh(&m) =n;

(iii) for every zeI the set Q,= {y:'(rw, y)eR} is a non-empty open
interval and

h(f (), Q9 e 2,.
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We shall prove the following.
TEEoREM 1. If hypotheses (i)—-(iii) are fulfilled and there exist positive
numbers a, B, s, &, 1 such that

(4) f@)—f@)|<sle—37|, o Teln(f—a, éta),
(8) (@, 9)—h(3, 7)| < klo—F| +1ly—7,

(%, ¥), (%, G e 2N((f—ay E+a) X =B, n+6),
and
(6) ls <1,

then equation (1) has in I exactly one solution o fullelmg & Lipschitz
aondmon in a meighbourhood of » = & and such that (&) = 1.

Proof. Without loss of generality we may assume that & is the
left endpoint of I (cf. [3], p. 48) and & = n = 0. First we shall prove
the existence of the desired solution.

Put
7 _ k
( ) v = 1_18 )
and choose a number ¢
(8) 0 < ¢ < min(a, f/v)

in such a manner that the following inclusion holds:
(9) D ={my):0<e<e |y <w}c 2.

It is casily seen that D < (0, a) X {8, 8.
Let us define.  as the space of functions ¢ which are continuous

in {0, 6), with the norm |y| = sup |y(x)|. Evidently, ¥ is a Banach
€0,¢)
vector space.

We denote by A the set of functions ¢ eF which fulfil the following
conditions:

(10) ¢(0) =0,
{11) lp(@) —p@)| <vle—Z|, u,Ze0,0).
Setting in (11) # = 0 and taking into accout (10) and (8) we obtain

(12) lp (@) < vlo] < v-% =8, ze0,0).

Hence and by (11) A is a set of functions equibounded and equiconti.nuous
in <0, ¢). By Arzela’s theorem 4 is a compact subset of . Evidently, A
is also convex.
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Now we shall prove that the transformation v = T'(p) defined by the
formula

(13) v(2) = hiz, p[f()])

maps A into itself. Let ped and let p be given by (13). Evidently, ypeF.
Moreover, according to Remark 1 and relation (2) we obtain ¢(0) =
= 1(0, o [f(0)]) = 2(0, 0} = 0, i.e. p fulfils condition (10). Let =, Z0, ).
Then the points (z, ¢ [f(#)]) and (%, [f(%)]) belong to D = 2n (K0, a) X
X {—B, ). Now, in view of (5), (11), (4) and (7) we have

lp(@) —p @) = |blz, @[ f(2)]) — 1(Z, ¢ [F(@)])]
< kle—z+1ip[f(2)]—o[f()]]
Lklz—%+lvs|e—% =vjo—%|,

which means that y fulfils conditions (11). This completes the proof of
the inclusion 7'(4) < A.

Transformation (13) is continuous in 4. Indeed, suppose that ¢, A,
n =90,1,..., and ¢, tends to g, uniformly in (0, ¢) (i.e. in the norm of #)
and write y,(#) = h(z, ¢,[f(#)]). According to the previous part of the
proof, y,eA, n= 20,1, ... Now, the uniform convergence ¢,— y, results
from the uniform continuity of & in D and from the uniform convergence
@n—~>®,. Thus T is continuous in A.

Applying Schauder’s principle we obtain the existence of at least
one solution ge A of equation (1). This solution may be uniquely extended
onto the whole interval I. The solution thus obtained is continuous in I
(cf. [3], p. 70, Theorem 3.2). '

Now we shall prove that this solution is unique. Suppose that ¢,, @,
are solutions of equation (1) such that

(14) 21(0) = ¢2(0) =0
and '
(15) lpy(2) — 0 (Z)| < plo—F|, @, &e(0,d), 4 =1,2.

‘We may assume that d > 0 is chosen in such 2 manner that |p;(z)|< 8
for z¢{0,d) and 4 =1, 2. We have

(16) lp1 () — @a(@) < T lpo [f* ()] — @a [f ()11,
2e0,d>, n=1,2,...

In view of (16), (15), (14), and (4) we obtain for z¢(0, d)

gy (%) —@a ()] <l"(|9’1[fn(,m)]|+|‘P2[Jm(w)]|)
<2 |f"(@)| < 2u(ls)" 0| < 2ud(ls)?, #=1,2,..
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Hence and by (0), letting n—oo, we obfain
gu(0) = g2}, e(0, d).

It follows that ¢,(x) = @4(x) for xel (cf. [3], p. 70) and this completes
the proof of the uniqueness of the obtained solution.

2, In this section we shall prove the following

TrEOREM 2. Let hypotheses (1)-(iil) and inequalities (4)—(6) be ful-
filled. If the function f is increasing in I and N is increasing with respect
to each variable in Q, then the unique solution ¢ fulfilling the Lipschitz
condition in a neighbourhood of the point @ = & and such that (&) =19
is inereasing in 1.

Proof. We may assume that £ is the left endpoint of 7 and £ =% = 0.
Let A;= {peA: ¢ increasing in (0, ¢)}, where 4 is the set of functions
defined as in the proof of Theorem 1. It is easy to verify that 4, is a com-
pact and convex subset of F, and that transformation (13) maps A4,
into itself. On account of Schauder’s principle, the unique solution ¢
fulfilling a Lipschitz condition and such that ¢ (&) = # must be increasing
in <0, ¢). Now ‘we shall prove that ¢ is increasing in I. To this end we
denote by z, the supremum of all b such that ¢ is increasing in (0, b
and suppose that IN\0, z,> is non-empty. From (i) we have f(z,) < z,.
If follows from the continuity of f that there exists a 6 > xz, such that
{0, 6> = I and for x¢<0, 6> we have f(x) < 2,. Hence for 0 < o; < @, < 6
we obtain .

‘P_(wl) = 7"(-'”17 ‘P[f(%)]) < h(wa; ‘P[f(-’”z)]) = @(@,),

i.e. ¢ is increasing in <0, 8>, &> . This contradiction completes the
proof of Theorem 2.

3. Now we shall prove a theorem on the existence and uniqueness
of convex solution of equation (1) (cf. [2], [4], [6]).
' We denote by f,(£) the right derivative of f at the point # = & If £

is the right endpoint of I, we assume f.(£) = lim f'(w).
T —

THROREM 3. Let hypotheses (1)—(iii) be fulfilled and let 2 be a convex
domain. Suppose that f is increasing and convex in I, h is increasing with
respect to each variable and convexr in 2. If h has a total differential at the
point (&, n) and

., .. Oh
(17) &5 (6 m <1,

then there ewists in I emactly one convex solution @ of equation (1) such that
o(&) =7 and @,(E) %= —oo. This solution is increasing in I.
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Proof. We assume that £ is the left endpoint of I and & =» = 0.
It follows from the convexity of f and A and from the existence of a total
differential of h at (0, 0), that for every ¢ > 0 there exist > 0 and § > 0
such that inequalities (4) and (5) are valid with

, oh oh
8§ =f(0)+e, k= 55 (0 0t I = 317(03 0)+e¢

(cf. [1], p. 18). On account of (17), we can choose an & > 0 so small tha-
for s and 1 defined above inequality (6) holds. We define the set of fune
tions '

A, = {p: peA;, ¢ is convex in (0, ¢)},

where 4, is defined in the proof of Theorem 2. It is easy to verify that
A, is a compact and convex subset of F and T' defined by (13) maps 4,
into itself. In view of Schauder’s principle the unique solution of equa-
tion (1) belonging to 4, must be convex in {0, ¢). Now, by a similar
argument as that employed in Theorem 2 we can prove that this solution
is convex in I. This completes the proof.
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