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Abstract. In this paper we introduce the concept of boundary elements in a normed space,
representing a generalization of Carathéodory’s prime ends and which correspond to n-
dimensional boundary elements of V. A. Zori¢. The quasiconformal mappings are defined by
means of a new concept of the module used instead of the module (meaningless in a normed
space) involved in one of Vdiisild’s definitions for quasiconformal mappings. Our module
corresponds to the co-module (i.e., the p-module with p = o) of R". We show that this definition
of the quasiconformal mappings f is equivalent to that obtained by means of the relative
distance of 2 sets contained in the domain of definition of f. If f is defined on the unit ball B of a
normed space, then we show that f induces a correspondence between the points of the unit
sphere and the boundary clements of f(B). Also other boundary properties of f are obtained.

As is well known, a finite-dimensional homeomorphism between two
Jordan domains induces a homeomorphism between their boundaries and
this is no longer true if at least one of the domains is not a Jordan one.
Thus, for instance, C. Carathéodory [10] observed that, if fi1s a conformal
mapping of a disk onto a simply connected domain D of the complex plane,
then to each point of the circumference there corresponds not a point of the
boundary dD of D but a whole set, called by him “Primende”. He established
that the correspondence between the points of the circumference and the
prime ends of D is a biyection. V. A. Zori€ [13], [14] generalized the prime
ends in the case of g¢ (quasiconformal mappings) in a Euclidean n-space R".
He called the corresponding concept a boundary element (a term used by
P. Koebe [12] in the case of the analytic functions of a complex variable).
We considered in [2}-[7] the problem of the estimate of some exceptional
sets of the unit sphere S relatively to a qc of the unit ball B onto a domain
D* (B, D* = R") such as for instance the points of S corresponding to the
boundary elements of D* inaccessible by rectifiable arcs.

In the present paper, we define a class of gqc f: D =D* (D, D* domains
in a normed space X) by means of the module of an arc family (introduced
by us in [8]). Next we show that if E,, E; = D and the retauve distance
dp(Eo, E;) is equal to 0, then also dp.(E¥, E¥) =0, where Ef =f(E,)
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(k=0,1), and conversely dp.(E}, EY) =0= (“implies”) dp(E,, E;) =0.
Next, we propose a concept of boundary elements (corresponding to
Carathéodory’s prime ends) and show that if f: B=D* is gc then there is a
bijection between the boundary elements of B and D*. Among the different
results relatively to the boundary behaviour of a gc in a normed space, we
establish that the exceptional set of the boundary elements inaccessible by
rectifiable arcs is empty. We point out that this last result ts not a direct
consequence of the fact that the corresponding space X is infinite-
dimensional but follows from the concept of the arc family module, which we
had to use in the case of such a space. Thus, for instance, the same property
holds also in R" if we define the gc in it by means of the corresponding
module (which we call “oo-module” [9]). Finally, we observe that in spite of
terminological similarity, in the infinite-dimensional case there are some
additional specific difficulties. Thus, for example, since such a space is not
locally compact, we have to consider a new category of boundary elements,
which do not exist in R", i.e., degenerated ones.

And now let us recall the difinition of the module of an arc family in a
normed space X.

Let I' be a family of arcs y contained in an open set D — X and let
FP(I') be the corresponding class of admissible functions g, i.e., such that
¢ = 0 are continuous and bounded in D, 0 in the complement CD of D and
{edH' > 1¥yeI (‘for every y belonging to I'”), where H' is a Hausdorff

3
linear measure defined by means of the diameter d(E) = sup ||x—yl, |||

x,yeE
being the norm of X. Then the module M” of I is
MPT = inf sup o(x);

eeFO(n D
F'=Q@=MPIr=0and FP(IN=Q=M"TI = .

Let us denote by I'(E,, E,, E) the family of open arcsy < E — an open
arc being a homeomorphic image of a open linear interval (0, 1) — such that
the closure 7 of y is a homeomorphic image of a closed linear interval [0, 1],
the endpoints of ¥ belonging to E, and E,, respectively. We recall that the
relative distance (with respect to a set E) between two points x, y is given by

dg(x, y)= inf H'(y) and the relative distance (with respect to E) between
yel(x.y,E)

two sets Eq, E, is given by dg(Ey, E\)= inf H'y). If T(E,, E,, E)
}'er(Eo,El.E)
= @, then dg(Eg, E,) = .
As a direct consequence of the definition of the module we have
LemMa 1. dp(Eq, E\) =0=MPI'(E,, E,, D) = ©.
Indeed, there is no bounded ¢ verifying the condition | odH! > 1 for

Y
every ye I'(Ey, E;, D), since this family contains arcs of length (Hausdorff
linear measure) as small as one wishes.

CoRroOLLARY. d(Eq, E,) = 0= MBI (E,, E,, B) = .
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This is a direct consequence of the preceding lemma and of the fact that
dg(Eo, E|) = d(E,, E,).

Lemma 2. I'c |J I, D=M’Tr< Y M"r,.
k=1 k=1

Indeed, let o,e F°(I') (k=1,..,n) and go(x) = Y. @i(x). If yeT, then
k=1
there exists a k (1 < k < n) such that ye I, so that [godH' > [ o dH' > 1;
Y Y
hence goc F?(I") and then

MPI = inf supe(x) <supgo(x)=sup ) (%)< ) supg.(x);
eeFOn D D D k=1 k=1 D

taking the infimum over each g,e F?(I',) (k = 1,..., n), we obtain the desired
inequality.

Let us recall that-an arc family I' is said to be minorized by an arc family
I' if: Vyel there exists an arc Y elI” such that y = y. Then we denote
I'<T.

LeMMma 3. I" < I'=>MPIr < MP 1.

0'e FP(I"y= o'e FP(I') since: Vye I there exists a y'e I'" such that y = y;
hence | ¢'dH' > [ ¢'dH' > 1. Then, however,

Y A

MPT = inf supg(x)<supgo' (x)==MPIr<M’r.
eeFP(n D D

Lemma 4. If the sets Eq, E, = D, E, D (k =0, 1) are closed relatively
to D and such that EonE, nD = Q, then

(1) MDF(EO’ EI,D)=MAF(E0, ElsD)
= MAT(E,, E,, 4) = MPT'(E,, E,, 4),
where 4 = D—(EyU E,).
Clearly, I'(Eq, E,, 4) c I'(E,, E,, D); hence, on account of Lemma 2,

MPI(E,, E,, 4) < MPT(E,, E,, D),

(2)
' MAT(Eo, E;, 4) < M?T (E,, E,, D).

And now let us show that I'(E,, E,, 4) < T'(Ey, E,, D). Indeed, let
yoe I'(Ey, E;, D). By definition, %, = ¢([0, 1]), where ¢ is a homeo-
morphism, ¢(0)e E, and ¢(1)eE,. The sets y,E, (k =0, 1) are closed so
that the sets ¢ (jonE,) =E, (k=0,1) are also closed, implying the
existence of a smallest value t, of E,. Clearly, also E,n [0, 1] is closed, so
that it has a largest value ry <t,. If we denote, for instance, x, = @(t,)
(k =0, 1), then the subarc y, = @ [(to, t;)] = y0 = 4 joins the points x, e E,
(k=0,1) in A4, yielding 7y,el'(Ey, E,, 4), whence I (Ey, E,, 4)
< I'(E,, E,, D), and, on account ol the preceding lemma, this implies
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MPT(Eo, E,, 4) > MPT'(Ey, E,, D), M*I(E,, E,, 4) > M*T (E,, E,, D),
which, together with (2), yields
MDF(E09 EI’ A) = MDF(EOa Ela D)a

3
MAT(Eo, E,, 4) = M“I'(E, E,, D).
Finally, let us establish that
) MP T (E,, E,, D) = M“I'(E,, E,, D).

First, we observe that Ve > 0 there is a ge FA[I'(E,, E,, D)], such that
M4 (E,, E{, D)+& > supg(x) =c; if g.(x) =cVxeD and ¢.(x) =0 in ¢D,
y. |

then, M4TI'(E,, E;, D)+&> ¢ = supg,(x) > MPT'(E,, E,, D), hence, letting
e— 0, ’
) MP T (E,, E,, D) < M4T(E,, E;, D).

Now, let o FP[I'(E,, E,, D)]; then the restriction g|,€ FA[I'(E,, E,, D))
implies

M“TI(E,, E,, D) = inf  supg(x) < supgl,(x) < supe(x)
eeFI[N(Ey.E(,D)] 4 4 D
=>MAI”(EOa El’ D) S MDF(EOa Els D)’
which, together with (5), yields (4) and this, together with (3), implies (1) as
desired.
LEMMA 5. E,, E, c D implies

1
6 MAT(Ey, Ey, d) = —————,
(6) (Eo, Ex, 4) = 4555
(7 MPI(E,, E D)—;
o= dp(Eo, Ey)’

where 4 = D—(Eq U E,)).
Indeed, Voe FA[I'(E,, E,, 4)] and Vye T (E,, E,, 4), if d,(E,, E|) >0
and I'(Eo, E,, 4) # @,
1 < [ edH' < supo(x)H' (y);
y a4
hence,
1< inf supe(x) inf  H'(y) = MAT(Eq, E,, 4)d4(Eo, Ey),
esFANEQE(, 4] 4 veNEg.Eq,4)
which may be written also as

8 MAT(Eo, E,, 4) > .
®) (Eo, E,, 4) d,(Ey. E))
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On the other hand, since

1
—  for xed,
Qo(x) = {da(Eo’ E,)
0 elsewhere,

belongs to FA[I'(E,, E,, 4)], it follows that

d4(Eo, E)
which, together with (8), implies (6) in the case d,(Ey, E;)>0 and
F(EO’ El’ A) # 0

If I'(E, E;, =@, then, by definition, d,(E,, E;)=c and
MAT (E,, E,, 4) =0.

Finally, if d,(Ey, E;)=0, then, on account of Lemma 1,
M?ArI(E,, E,, A) = o©.

By exactly the same argument, we also obtain (7).

Remark. It is well known that in the finite-dimensional case the
module (and also the conformal capacity) are conformally invariant.
However, the module defined at the beginning of this paper is not invariant
for the inversions, which in the case of a Hilbert space are conformal
mappings, for instance according to Gehring’s metric definition). Thus, for
instance, if D = {x; 0 <||x]| < o}, f is an inversion with center 0 defined in
D, S(r) = {x; |Ixll =r} and A, = {x; r <||x|| < 2r}, then, on account of the
preceding lemma,

M4I(Eo, E, 4) = inf sup@(x) < supgo(x) =
eeF A NEg.Eq,4] 4 4

A, B 1 _ 1
M r[S(r)’ S(zr)a Ar] - dAr[S(r), S(Zr)] - 2"—" - r9

1 1
d:[S(1/r), S(1/2r)] = 1/r—1/2r =

MAT[S(1/r), S(1/2r), A,] =

2r,

where A} =f(A4,) = {x*; 1/2r <||x*| < 1/r}; hence, the module is not
invariant with respect to the inversions, moreover, the ratio of ‘the
corresponding modules is not bounded in D (if r — oo, it becomes as large as
one wishes).

It is easy to see that the module defined in this paper is invariant with
respect to translations since the norm and thus also the Hausdorfl linear
measure corresponding to it are invariant with respect to translations,
implying the invariance with respect to translations of the class F(I') of
admissible functions and thus also of the module.

However, the module is only quasiinvariant with respect to the
homotheties. Indeed, if x* = ax with ae R (the real line), then ||x*|| = ||ax]|
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= |a|lix]| and thus dH'(y*) = |a|dH"(y); now, if Voe F(I') and we consider

o* (x*) =|llg(x), it follows that
a

J ¢* () dH (7%) = "—I(ail‘lwl dH' () = fe(x)dﬂ‘ W1

hence ¢*e F(I'*) and thus

Y

. 1 . MPr
(9) MP'r*<sup Q“'(x*)=supw=—supg(x)=>MD r*< .
D’ p la| lal b |a]
On the other hand, if Vg*e F(I'*) we choose g of the form g(x) = |a|] *(x*),
then

MPT < supo(x) = supla| @* (x*) = MP T < |a| MP' T*,
D D*

which, together with (9), implies M? I'* = MP I'/|a|; hence, if |a] > 1,

D
ATIF=M”“F*<MDF<|a|MDF,
a
and, If g < 1,
MPr .
a =MP'I* > MPTI > |a| MPT,
a

so that, in the two cases, we have the double inequality

MPr

(10) <SMPr* < KMPT,

where K =|qg| if |a] =2 1 and K = 1/|a| if |a] < 1. Thus, homotheties which are
conformal mappings, for instance according to the analytic definition, verify
only a double inequality of form (10).

We recall that a homeomorphism f: D =D* is said to be conformal
according to the analytic definition if A;(x) = A,(x) in D, where

A= T OLON o =N
y=x  |lx=Yll y=x  llx—=yll
We observe that the property of the module to be or not to be a
conformal invariant is only an indirect consequence of the fact that the
corresponding space is finite- or infinite-dimensional. Indeed, the same
definition of the module as in this paper may be given also in R" (the oo-
module, see our paper [9]) and there it is not a conformal invariant either,

while the module defined by F. Gehring [11] in R”: mod I' = inf ({¢"dm)'/"

eeF(N p
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is a conformal invariant. Thus, the conformal invariance of the module is a
direct consequence of its expression. The only influence of the property of the
space to be finite- or infinite-dimensional is that in an infinite-dimensional
space the module cannot have the above expression (which becomes
meaningless) (for a more detailed discussion of our definition of the module,
see our paper [8]).

Now let us define the gc by means of the module in a normed space.

A homeomorphism f: D=D* is K-qc if VEg,, E, < D the following
double inequality holds:

MPTI (E,, E,, D)

(11) K

< MP' ['(E%, E¥, D*) < KMP°I'(E,, E,, D),

where Ef =f(E,) (k=0,1). A gc 1s a K-qc with a non—speéiﬁed K.
In the rest of the paper, gc is understood only in the sense of this
definition.

LemMMA 6. If f: D=D¥* is qc and E,, E, < D, then dyp(E,, E{) = 0<>(“is
equivalent t0”) dp-(E}, EY) =0, where Ef =f(E,) (k =0, 1).
This is a direct consequence of the preceding definition and of Lemma 1.

Lemma 7. f: D=D* is K-qc iff VE,, E, € D the double inequality

dD (EOa El)

(12) K

< dp-(E§, EY) < Kdp(E,, E)

holds.

If fis K-qc and d,(Eq, E;) =0, then d,-(E¥, ET) = 0 (on account of the
preceding lemma) and (12) is satisfied.

If dp(E,, E,) > 0, then (12) is a direct consequence of Lemma 5 and of
the K-quasiconformality of f.

Now, suppose that f verifies (12). If d(Eq, E,) = 0, then d,-(E¥, E¥) =0
and (11) is a consequence of Lemma 1. If dp(E,, E;)> 0, then
dp-(E§, ET) > 0 and (11) is a consequence of Lemma 5. Thus f is K-gc, as
desired.

Remark. This lemma gives a new characterization for the K-gc. Its
equivalence to the definition by means of the modules may be considered as
an additional justification of the concept of the module and of the
corresponding characterization of the gc proposed by us.

And now, in order to establish some boundary properties of the gc, let
us introduce some new concepts.

If an (open) arcy < D and its closure 7 is homeomorphic to [0, 1] while
its endpoints £,, x, belong to dD and D respectively, then we say that y is an
endcut of D from &,. If y has only one endpoint xoe D and d(y, éD) = 0, then
we call y a wandering arc (this term is used in functional analysis). Two
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endcuts y,, y, < D are said to be equivalent if they have a common endpoint
£e oD and, for each neighbourhood U, of &, dp(y; nUg, 7, nUg) = 0.

A couple (&, ) consisting of a boundary point ¢ of D and an endcut y of
D from ¢ is called an accessible boundary point of D. Two accessible
boundary points (£, y,), ({;, y;) of D are consideed identical if &, = &, and
71, 72 are D-equivalent.

From the preceding definition it follows that we may identify an
accessible boundary point (&, y) with the class of D-equivalent endcuts of D
from £ In this way, an accessible boundary point (&, y), as well as the
corresponding class of D-equivalent arcs, are completely determined by an
arc of this class.

LEMMA 8. Let f: B==D* be a qc and y,, y, < B two endcuts of B from
the same boundary point ¢,eS. If

(13) lim f(x)=& (k=1,2),
x—do
XEVK

it follows that yf¥ and y% are D*-equivalent.

Let us suppose first that y, Ny, # @. Then there are two possibilities:
d(y, N2, &) =0 and d(y; nys, &) =d > 0. In the first case there is a
sequence |x,} <y, Ny, such that x, — &,, so that (13) implies, in particular,
lim f(x,) =&F (k=1, 2); hence £F = £3. Let us denote the common point

by &§. Since f is a homeomorphism, we have in this case d(yf ny3%, £§) =0,
implying dp.(y¥ n U*, y$ A U*) = 0 for any neighbourhood U* of ¢, ie., 7Y,
y% are D*-equivalent. In the second case, we may choose two disjoint arcs
% < 7 N B(&o, 3d) (k =1, 2) representing endcuts of B from &,. Thus we
may suppose without loss of generality that y, Ny, = Q.

We first observe that &fe dD* (k = 1, 2) since if at least one of &¥, say
¢¥ belongs to D*, then considering a sequence {x}} — yf and x} — &F the
property of f of being a homeomorphism implies x, =f"1(x¥) —f 1 (&}
= ¢, € B, contradicting the hypothesis £, S. Next, on account of Lemma 6,
d(y,, y2) = 0=dp-(y¥, 73) = 0 and because ¢, is the only common endpoint
of y, and y,, it follows that ¥ = £%. Let us denote this point by £{§. Now we
establish the D*-equivalence of y? and y% by reductio ad absurdum. Suppose
to prove it is false that there exists at least a neighbourhood U* of £§ such
that dp.(y¥nU* y2~U* > 0. Then there are two arcs jf cyFnU*
representing two endcuts of D* from §, since otherwise, we must have at
least- a sequence, say xy} < yf nCU¥, such that x7 — {§ (where we have
denoted by CU* the complement of U*), contradicting the fact that U* is a
neighbourhood of £§ and thus must contain all x} except a finite number of
them. But then 7, =f ! (%) < 7 (k = 1, 2) will be endcuts of B from &, so
that d(3,, 7,) =0, yielding (on account of Lemma 6) dp.(y}, 73) = 0; hence
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dp-(YF O U*, v U*) < dp(y], v3) = 0. This contradiction allows us to
conclude that yf and y% are D*-equivalent, as desired.

Now in order to introduce the concept of a boundary element, let us
generalize the notion of regular sequence of subdomains (for the n-
dimensional case see V. A. Zori¢ [14]).

A sequence of domains {U,}, U, <D (n=1, 2,...) is said to be regular
if

@) Upsy = U, (neN),

(b) F= N U, caD;

n=1

(c¢) 6, = 0U, D (boundary of U, relatively to D) (ne N) is a connected
set;

(d) dD(am an-i»l) > 0 (neN);

(e) there is at most an accessible boundary point of D which is an
accessible boundary point for each domain of the sequence (U,).

In the infinite-dimensional case, we have two kinds of regular sequences
of domains: non-degenerate if F # @ and degenerate if F = @. The latter
possibility corresponds in the case of a compactified n-dimensional space to
the case F = {o0!.

A sequence {U,} of domains is said to be imbedded in a sequence {U,} if
each term U, of {U,} contains all the terms of {U,} with sufficiently large
indices. This is denoted by {U,,} < {U,}. Two sequences of domains which
are imbedded in each other are called equivalent. Thus, if {U,} is equivalent
to {U,}, this is denoted by {U,} ~ {U,}.

A regular sequence of domains is minimal if it is equivalent to each
regular sequence of domains imbedded in it.

Now let us generalize the concept of boundary element for a normed
space (it was introduced in R" by V. A. Zori¢ [14]).

A boundary eiement of a domain D — X is a pair (F, {U,}) consisting of

a
a minimal regular sequence of domains {U,} and of a continuum F = } U,
n=1
called the impression of the corresponding boundary element.

As in R", we shall distinguish, also in a normed space, the following kinds
of points of the impression of a boundary element: the accessible boundary
points (introduced above), the principal points and the subsidiary points.

A point ¢(eF is called a principal point of the boundary element
(F, {U,}) if there exists a regular sequence of domains (belonging to the class
of equivalent regular sequences of domains involved in the definition of a
boundary element of a domain D) with the property that any ball B(¢, r)
contains at least a crosscut g, (in other words, if o, converge to £). Clearly,
an accessible boundary point is a principal one. A point ¢e F, which is not
principal is said to be a subsidiary one.
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A boundary element is non-degenerate if F # ) and degenerate if
F =@. Two boundary elements (F, {U,}) and (F, [U,)) are considered
identical if {U,} ~{U,}.

Lemma 9. If {U,} is a sequence of subdomains of the unit ball satisfying
conditions (a), (b), (d) from above (involved in the definition of a regular
sequence) and {x,) is a sequence of points of B converging to a point of F, then
each domain U, contains all points x,€ |x,,| from a sufficiently large index p(n)
onwards.

The same proof as in R" (see our monograph [1], Part 3, Chapter 4,
Lemma 1, p. 388).

LemMma 10. If {U,} is a sequence of subdomains of B satisfying (a), (b), (d)
(from above), then all the points of F are accessible boundary points of the
sequence.

The same proof as in R” ([1], Part 3, Chapter 4, Corollary 1 of Lemma
1, p. 388).

CoroLLARY. If (U,} is a regular sequence of subdomains of B, then F
consists of at most one point.

This is a direct consequence of the preceding lemma and of condition (e)
involved in the definition of the regularity of subdomain sequences.

Remark. V. A. Zori€ ([13]), Lemma 5) established in R" the following
result (generalized by the preceding corollary): “A regular sequence of
subdomains of B shrinks into only one point”. We recall first that a sequence
of subdomains is said to shrink into a point &, if a ball B({,, ) of radius r
as small as one wishes contains all the domains of the sequence except a
finite number. But in the infinite-dimensional case this result is no longer
true since if, for instance, the sequence is degenerate, it does not shrink into a
point. But, what is more, we shall provide an example showing that there
exist non-degenerate regular sequences of domains of a ball which do not
shrink into a point. We start with an example of a degenerated regular
sequence.

ExampLE 1. Let B be a unit ball in a Hilbert space and let us consider
balls B(x,, %), where x, =(0,...,0,1,0,0,...) (i.e, all the coordinates of x,
are 0 except the n-th one). Next, let B! = B(x,, 3) n B and let us join in B
two successive domains B!, Bl,, by an open circular cylinder C! with a

a

basis of codimension 1 and radius r < 3. Let us write U, = |J (B} uCl) and
n=1

U,= U (B}uC}), where B2 = B(x,, $nB and C? is a cylinder with the
n=2 ao

same axis as C} but with radius 4r; in general, U, = |J (BXu C¥), where B%
n=k

= B(x,, 1/(k+1))n B and C} has the same axix as C; but the radius is r/k.

Let us denote o, = U, n B. Clearly, d(6,, 6,+,) >0, but F= () U, = Q,
k=1
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and then condition (e) (involved in the definition of regular sequences) is
verified. Thus, in a Hilbert space, there exist regular sequences of subdomains
of a ball which do not shrink into a point but have F = Q.

ExaMPLE 2. And now, let us show that there exist non-degenerate
regular sequences of domains of the ball which do not shrink into a point.
Let us choose &,e$ and, on B = S(&,, ro) (ro <3), an infinite sequence |x,}
which does not contain a convergent subsequence. Next, let us suppose that
d({x,}, S) =d >0 and let us consider the domains B(x,, 3d), the cylinders
C, with a circular basis of codimension 1 and radius ¢ < 3d joining
B(x,, 3d) and B(&,, ¢,) n B, where ¢, <3d, and finally the domain

an

Vl = Ul [B(xp’ %d)UC;J]U[B(€Oa Ql)nB]

p:
and, in general,

Cx

V.=

14

[B(x,, d/m+1))u C™] U [B(&, ¢m) M B,

I

m

where C7 is a cylinder with the same axis as C} but with radius g¢/m and
@, >0;>... such that ¢,—0. Clearly, ao,=0dV,nB satisfies
0(Om> Om+1) > 0. It is easy to see that {V,} is a non-degenerate regular
sequence of domains of the ball with F = {£,} and which do not shrink into
¢o. Besides, the sequence of the domains B, = B(y, r,) B, where
1>r,>r,>... and r,— 0, is regular too but shrinks to &, and is not
equivalent to {V,}.

Lemma 11. If {U,}, {U,} are two equivalent non-degenerate regular
sequences of subdomains of B, then the corresponding sets F, F' come to the
same point.

From the definition of equivalent regular sequences of subdomains it
follows that each U,, contains all U, with sufficiently large indices. But then
each U, will contains all the corresponding U}, so that, on account of the
preceding corollary, U, > (\ U,= () U,=F = {&), ie, U, > & and,

n=1

n=ng ®

since this holds for every U, it follows that F’ = {¢,) = () U, = F; hence
m=1

and by the preceding corollary F = {{,} = F'.

Remark. The corresponding result obtained by V. A. Zori¢ ([13],
Lemma 5) in R" was the following; “Two regular sequences of subdomains of
B are equivalent iff they shrink into the same boundary point of S”.
However, this is not true in the infinite-dimensional case, because not only it
1s necessary for the regular sequences considered to be also non-degenerate,
but, on the model of the preceding example, it is possible to obtains two
equivalent non-degenerate regular sequences of domains which do not shrink
into a point. As one may see from this discussion, in the infinite-dimensional
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case it is necessary to assume that the regular sequences considered are ailso
non-degenerate and minimal. In that case we have

LemMMA 12. A minimal non-degenerate regular sequence (U,} of
subdomains of B shrinks into a point and two such sequences are equivalent iff
they shrink into the same point of S.

Indeed, since the sequence is non-degenerate, on account of the
preceding corollary, it follows that the corresponding set F comes to a point
£oeS. On the other hand, the sequence {B,} of the domains B,

= B(&o, rm) 0 B with r,, —» 0 has the corresponding set F = (\ B, = {£,).
m=1

But {B,} is regular, non-degenerate and {B,} < {U,}, where {U,} has been
supposed to be minimal, so that {B,} ~ {U,} and the imbedding {U,}
< {B,} implies that {U,} shrinks into &,.

In order to establish the second part of the lemma, we observe that, if
two minimal non-degenerate regular sequences {U,}, {U,} are equivalent,
then, by the preceding lemma, the corresponding sets F = F' are equal to
{&0}, and from the first part of the proof we deduce that {U,} and {U,}
shrink into &,. In order to establish the opposite implication, we remark that
{Ua} and {U,} are each of them equivalent to {B,} from above; hence {U,}
~ {B,} ~ {U,} and, since the equivalence is a transitive relation, we have
{Un} ~ {U,} as desired.

Arguing as in the first part of the proof of the preceding lemma, we
obtain the following

CoroLLary. If {U,}, {U,} are two regular sequences of subdomains of B
and the corresponding sets F = F' = {{,} S, then there is a sequence of
spherical domains {B,} (as in the proof of the preceding lemma) such that, for
each pair of domains (U,,, U}), the intersection U, U, contains all B, from a
sufficiently large index p(m, n) on.

Now, in order to establish the bijection between the boundary elements
of a ball and a domain induced by a qc, let us consider the relation between
the regular sequences of these domains.

LemMA 13. A gc f: B=D* carries regular sequences {U,} of subdomains
of B into sequences {U}} of subdomains of D* satisfying conditions (a), (b), (c),
(d), the pre-image of a regular sequence {U}} of subdomains of D* is a
sequence of subdomains of B satisfying conditions (a), (b), (c), (d), and the
equivalent regular sequences of subdomains of B are carried into equivalent
sequences.

If {U,} is a regular sequence, then, since f is a homeomorphism, (a), (b),
(c) will also be trivially satisfied by {U?*}. Also condition (d) holds for {U}}
since from ‘Lemma 6 we deduce that d(g,, 6,.;) > 0=dp:(a}, o¥.{) > 0.
The same argument allows us to establish also the opposite implication.
Finally, the assertion that equivalent regular sequences are carried into
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equivalent sequences is a direct consequence of the property of f to be a
homeomorphism.

Remark. The corresponding result in R", established by V. A. Zori¢
([13], Theorem 2), is that regular sequences of subdomains of B are carried
into regular sequences and the pre-images of regular sequences of
subdomains of D* are again regular sequences. However, in the infinite-
dimensional case, this is not true. Indeed, if {U,) is regular and (&%, y}),
(&%, y¥) are two accessible boundary points of D* where (f, (3eF*

= ﬁ U*, then it is possible that at least one of the arcs v, =f"'(y¥)
n=1

(k =1, 2) is a wandering arc, and in that case condition (¢) and hence the
regularity of {U,} would not be contradicted. This is an additional reason to
consider minimal regular sequences. In that case, the conclusions of the
preceding lemma may be improved as follows:

THEOREM 1. A gc f: B==D* carries minimal regular sequences {U,} of
subdomains of B into minimal regular sequences {Uy} of subdomains of D¥*, the
pre-image of a minimal regular sequence {U}} of subdomains of D* is a
minimal regular sequence of B, and equivalent minimal regular sequences of B
are carried into equivalent minimal regular sequences of D*.

Let {U,} be a minimal regular sequence of B. Then, according to the
preceding lemma, {U}} verifies conditions (a), (b), (c), (d). Now, let us show
by reductio ad absurdum the {U*} also satisfies condition (). Suppose to the
contrary that there exist at least two different accessible boundary points
(&Y, vT), (¢35, y3) of D* accessible for every Uy (ne N). Assume additionally
that £¥ # £3. Then there exist two neighbourhoods Ver, Vog of those points

such that d(_Vg-i, Ve) > 0. It is easy to see that the arcs y§ contained by an
arc jf cyEn Ve representing an endcut of D* from ¢¢ (k = 1, 2). But then

(14) dpe (78, 73) = dpe(Veg, Vig) = d(Var, Vis) > 0.

Next, since the accessible boundary points (&, y¥) of D* are accessible
boundary points for each U¥, it follows that there exist two arcs
v < e nUx representing endcuts of U} from &F (k=1, 2). Now let us
consider the arcs y,, =f "' (y%) (k =1, 2). If d(9;,, ¥25) = O, then, according
to Lemma 6, dp.(y¥,, ¥3.) = 0; hence, on account of (14), 0 = dp.(yY,, Y30
= dp- (71, 73) > 0. From this absurdity it follows that, in this case, we must
have &Y = £%. It remains to consider the case d(y,,, 72,) > 0. Let us show by
reductio ad absurdum that d(y,,, g,) > 0. Indeed, suppose to the contrary that
d(Yxn» 04) = 0. We may consider that d(y, .+, 04 = 0 too, since otherwise we
may take y, ,+1 as Vx,. But then, d(y; 441, 644 4) = 0 too, since o, , separates
o, from y, ,.;. But for the same reason d(s,, 6,,,) =0, contradicting the
regularity of {U,} so that we are allowed to conclude that d(y,,, 6,) >0
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(k=1,2; neN). Now let us denote

|
On = ;mm [d(}’lm 'VZn)» d(?lm 0',,), d(}'Zn, on)v (n— 1) @n- l] (n=2,3,.. )s

where ¢, = min[d(y,y, ¥21), (11, 64), d(y21,01)] and W, = {_)fe Uhp;
d(X, Yin) < 0} (k =1,2; neN). It is easy to see that the sequence {V,,} (k
= 1, 2) satisfies conditions (a), (b), (d). If (c) does not hold, ie., if &,
= 0V,, N B is not connected, there is one of the components of &,, — let us
denote it by g, — separating y,, from o,; then we consider the component
Vin of B—a,, which contains y,,. The new sequence {V,,} satisfies (a), (b), (c),
(d), so that for its regularity it is enough to verify also condition (e). But
Vin < U,, whence ( Vi, () U,=F, where F =@ or F = (&) since {U,}
n=1 n=1
is a regular sequence of subdomains of B (corollary to Lemma 10). But then,

N Via=@ or | V,={&) and thus, condition (e) also holds. Next, by
1 n=1

construction, {V,} <{U,} and, since {U,} was supposed to be also minimal,
it follows that {V,} ~ {U,} (k =1, 2), which is absurd since ¥, nV,, = Q.
This contradiction implies ¢F = £%. Let us denote this unique point by £§.
But then, since (by the hypothesis at the beginning of the proof) (¢§, 1),
(&3, y%) are different accessible boundary points, we deduce the existence of a
neighbourhood U* of £§ such that dp.(U* Ny}, U* ny%) > 0, implying the
existence of two arcs 7 < y¢ N U* (k = 1, 2) representing endcuts of D* from
&% and such that dp. (57, 73) = dp-(U* ny¥, U* ny¥) > 0. Next, by arguing
as in the first part of the proof, if d(7,, 7,) =0, where 5, =f "' (F) (k =1, 2),
then Lemma 6 yields dp.(7,, 73) = 0, which is absurd, implying that (¢§, v¥)
and (&3, v%) are D*-equivalent. If d(¥,, 7,) > 0, then again, by the same part
of the proof, we obtain a similar absurdity, allowing us to conclude that
(&%, v¥) and (¢, y%) are D*-equivalent and thus represent the same accessible
boundary point. This contradicts the hypothesis made of the beginning of the
proof and thus establishes condition (€) and consequently the regularity of {U¥}.
Next, let us show that {U*} is minimal. Assume that {V¥} is a regular
sequence of subdomains of D* imbedded in {U*!. By the preceding lemma,
{V,, where V,, =f"'(V}) (meN), satisfies conditions (a), (b), (c), (d) and
since f is a homeomorphism, {V,} < {U,}. But {U,} verifies by hypothesis
condition (¢), implying the existence of at most one point of S which is an
accessible boundary point for each U, and, since (\ V,< () U,=F, it
m=1 n=1
follows that {V,,} also has at most one point of S with the same property, ie.,
{Va} also satisfies condition (e) and thus is a regular sequence. But {U,} was
supposed to be minimal, so that {V } <{U,} = {V,} ~{U,} and, by the
preceding lemma, {V¥} ~ {U¥}, allowing us to conclude that {U}} is
minimal.
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Now, in order to establish the opposite implication, let {U?} be a
minimal regular sequence of subdomains of D*. By the preceding lemma,
{U,} verifies (a), (b), (c), (d). We shall establish condition (e) again by reductio
ad absurdum. Assume, to prove it is false, that there exist at least two points
¢y, E;€8, which are accessible boundary points for every U,. Then let us
denote d, =min[3d(¢,, &,),d(F,0,)] and B:=B(,d)nB (k=1,2).
Clearly, IB“} (k =1, 2) are two dlS_]Olnt regular sequences imbedded in {U,}.
The preceding lemma implies that {B}*}, where Bi* = (B¥) (k =1, 2; ne N),
satisfies (a), (b), (c), (d) and, since f is a homeomorphism, {By*} < {U¥},

hence N By*c= (| U* (k=1,2). But {U¥ is regular by hypothesis, and
n=1 n=1

thus, in particular, it satisfies condition () implying that also {B)*} verify
(¢) and hence each of them is a regular sequence imbedded in {Uy¥}, which
was assumed to be minimal, yielding {B}*} ~ {U*} (k =1, 2). But this
contradicts the property of {B;*} (k=1,2) of being disjoint. This
contradiction shows that {U,} satisfies condition (¢) and hence is a regular
sequence. Now let us show that {U,} is also minimal. Indeed, let {V,} be a
regular sequence imbedded in {U,}. Since f is a homeomorphism, {V;*}

< {U¥}; but, arguing as in the first part of the proof and taking into account
the preceding lemma, we infer that {V¥} is regular; hence and since {U¥*}
was supposed to be minimal it follows that {V}} ~ {U¥*}, the preceding
lemma implying {V,] ~ {U,}; hence {U,} is minimal too.

Next, if {U,} and ‘V,,} are two equivalent minimal regular sequences of
B, then, according to the first part of the proof, {U%} and {V,*} will be two
minimal regular sequences of D* and, since f is homeomorphic, it follows
that also {Ux} ~ {V,*], as desired.

This theorem may be stated as follows in terms of boundary elements
(by taking into account that there is a bijection between the points of S and
non-degenerate boundary clements of B):

CoOROLLARY 1. By a qc f: B=D?*, to each point of S there corresponds a
boundary element of D*, and the pre-image of each boundary element
(F*, {UX}) of D* is a point of S determined by the non-degenerate minimal
regular sequence {U,} =f~({U¥*}) if F # @ or a degenerate minimal regular
sequence if F = Q.

COROLLARY 2. A gc f: B=D* induces a byecuon between the boundary
elements of B and D*.

Remarks 1. The above concept of boundary element generalizes that of
C. Carathéodory’s [10] prime ends (“Primende”); instead of the condition of
not having proper divisors involved in the definition of prime ends, we have
the condition of being minimal. This condition does not exist in the
definition of V. A. Zori¢ [13], [14] for the n-dimensional case, but in our
case it was necessary for Theorem 1 and Corollary 2. We observe also that
Carathéodory’s prime ends are not assumed to satisfy condition (¢); however,
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he proves that “every prime end has at most an accessible boundary point”,
so that, in the plane, condition (e) is a consequence of the other conditions.

2. In R, V. A. Zori€ ([13], Theorem 3) established a bijection between
the points of $ and the boundary elements of D* = f(B), where fis a gqc. In a
normed space, we have succeeded in proving the existence of a bijection
between the boundary elements of B and D*; however, we have only found
that to each point of S there corresponds a boundary element of D* (which
may be degenerate or not), while to a boundary element of D* there may
correspond a point of S or a degenerate boundary element of B, and this
seems to happen independently of whether the corresponding boundary
element of D* is degenerate or not. However, up to now we have not found
a more appropriate definition of a boundary element of a domain of a
normed space.

Now let us give also some other results on the boundary behaviour of
gc in a normed space generalizing the corresponding ones in R".

Lemva 14. Ty clyc...and T'= \J) ', D= lim M°TI', = M"T.

n=1 n—x

Let us suppose to the contrary that a = lim M?I', <MPI' = b and let

¢ <(b—a)/2. Then, for each ne N let us choose a g,e F?(I')) such that
supg,(x) <a+e¢ and let us write gy(x) = supg,(x). Then, goe F(I') since, if
D n

e o]
yel = |J) I,, there exists an ne N such that yeTI,; hence
n=1

{ @odH" = [sup g,dH" > [ g,dH" > 1,
Y y N

Y
and thus, MP I < supgq(x) = supsupg,(x) = supsupg,(x) < a+e <b. This
D D n n D
contradiction establishes our lemma.

THEOREM 2. Let f: B==D* be a qc and |y,} a sequence of arcs y, = B
with  the endpoints a,, b,eB (neN) such that . a,—aeS, b,
—~beS. If H (y¥) > 0, where y* =f(y,), then a = b.

Suppose, to prove it is false, that a # b. But then we may assume
without loss of generality (possibly appealing to subsequences) that
d({a,}, {b,}) > 0. On the other hand, according to the definition of the
relative distance and on account of Lemma 7, it follows that there is a
K (1<K <) such that for every ¢>0, d({a,), (b)) < Kdp-(la}},
{b¥}) < KH'(y}) < ¢ for m sufficiently large; hence, since ¢ may be as small
as one wishes, we obtain d({a,}, {b,})) =0. This contradiction establishes
our lemma.

THEOREM 3. Let f: ‘B==D* be a qc and |y,} a sequence of arcs y, < B
with the endpoints a,, b,e B (ne N) such that a,— aeS. If H' (y¥) - 0, where
¥n =f(7a) (neN), then b,— a.
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Suppose, to the contrary, that we do not have lim b, =a. Then

(appealing possibly to subsequences), we may assume (without loss of
generality) that there exists an ro, > 0, sufficiently small such that
{b,} N B(a, ro) = @, since otherwise, lim b, = a; but we may even suppose

that d({a,}, {b,}) = d > 0 since otherwise we may consider the subsequence
{a,} N B(a, }ro) instead of {a,). But then, on account of Lemma 7 and of the
K-quasiconformality of f (with a non-specified K), for every ¢ >0 and m
sufficiently large, we have 0 <d=d({a,), !b,)) < Kdp-(la}!, (b¥})
< KH'(y¥) < ¢, which is absurd since ¢ may be as small as one wishes while

d > 0 does not depend on e. This absurdity establishes our lemma.

COROLLARY. Let f: B=D* be a gc and y,, y, two endcuts of B from a
and b, respectively, where a, be S. If y¥ =f(y,) and (EF, y¥) (k = 1, 2) are two
D*-equivalent accessible boundary points of D*, then a = b.

THEOREM 4. If f: B=D* is qc and (&%, yY), (£3, v%) are two different
accessible boundary points of D*, then y, =f"'(y#) (k=1,2) cannot be
endcuts of B from the same point &q€eS.

Let us first consider the case where ¢¥ # £%. Then, arguing as in
Theorem 1, we consider two neighbourhoods Ver, Vey such that d(V,:ri, Ves)

>0 and two arcs ¥ < yf N V; (k =1, 2) representing endcuts of D* from

¢k - Now suppose, to prove it is false, that y, (k = 1, 2) are endcuts of B from
the same point {oeS. Then, d(7y, 72) = d(yy, y2) = 0, where 7, =11 (7}¥) (k
=1,2) and Lemma 6 yields

0 < d(Vgs, Vig) <dpe (Ve Vi) < dpo(F%, 73) = 0.

This absurdity implies ¢F = &%, But, also in this case, since y§ (k =1, 2)
belong to two different -accessible boundary points of D*, by definition there
is a neighbourhood U* of & = &F = &% such that dp-(U* nyf, U* ny3) > 0,
and now, if y,=f"'(y¥) (k=1,2) were endcuts of B from ¢, then
dlf "' (U*n9yP), f1(U*~y%)] =0 implying, on account of Lemma 6,
dp-(U* ny¥, U* ny%) = 0. By this contradiction our lemma is completely
proved.

Remark. We point out that the arcs y, corresponding to y¥ (k =1, 2)
in the preceding lemma may be two wandering arcs of B, or one of them an
endcut of B from a point £,eS and the other a wandering arc of B.

THEOREM 5. The wandering arcs of a domain D of a Banach space are
not rectifiable.

Indeed, let y be such an arc and suppose, to prove it is false, that it is
rectifiable, i.e., that its linear Hausdorff length (with respect to the
corresponding norm) is finite. We may assume (without loss of generality)
that y is the homeomorphic image of [0, 1), i.e., that ¢: [0, 1) ==y and ¢(0)
is an endpoint of y. Next, let {t,} be a sequence of points of [0, 1) such that
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t,— 1 and let {x,} be the sequence of points x, = ¢(t,)ey (ne N). From the
hypotheses of rectifiability, it follows that there exists a constant [ such that

Y xprr =Xl ST <05
n=1

hence, given £ > 0, there is an nye N sufficiently large such that ||x,,, —x,||
< ¢Vn 2 n,. But the Banach space is complete (with respect to its norm), so
that the sequence {x,} will converge to a point xo,eD. This contradiction
establishes our lemma.

The following results will be established again in a normed space.

LemMma 15. If Eo, E, =D and Ty is the subfamily of I'(E,, E,, D)
consisting of the arcs which are not rectifiable, then M°T'y = 0.

For every ¢ > 0 there exists a continuous ¢ such that 0 < g(x) <& in D
and ¢(x) =0 in CD. Thus, for every yerl,,

(15) fedH' = 0.

Y

Indeed, suppose, to the contrary, that (edH '=Ko<oo and let m,

7
= infg(x) > O (since y is compact ard ¢ is continuous on 7). Then
Y
Ko = | dH' > m,H' (y);
Y
hence H!'(y) < Ko/m < o, contradicting the hypothesis that y is not
rectifiable. This contradiction establishes (15), which still holds for

o(x) if xeD,
0 if xeCD.

-

Qo(x) = {

But, clearly, p,e F?(I'y); hence
MPr,= inf supg(x) <supgy(x)<e,
eeFD(rg)
and thus, letting ¢ —» 0, we obtain MPTI', = 0, as desired.

Now, before giving the next result, let us specify certain terms. According
to a definition given above, a boundary point ¢ of a domain D* is accessible
by an arc y if 7 is the homeomorphic image of [0, 1] and ¢ is one of its
endpoints. Now a boundary elemicnt ({UF}, F*) is said to be accessible by an
arc y* if y* = ([0, 1)), where ¢ i, a homeomorphism and each U} contains
an arc y¥ < y* such that y} = ¢([r,, 1)), where (0 <r, < 1). In particular, if
&€ S corresponds by a gc f: B==D* to the boundary element ({U}}, F*)
and y, is an endcut of B from &,, then ({UZ¥}, F*) is said to be accessible in
D* by y§ =f(y0)- According to this definition, any boundary element is
accessible by some arcs.

The cluster set C(f, &) of a mapping f: D — X at a boundary point & 0D
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is the set of the points x*e X such that there exists a sequence {x,}, x, - &,
x,€ D (ne N) with f(x,) - x*. If the arc y is an endcut of D from &, then the
cluster set C,(f, &) of f at & with respect to y is the set of all x*e X for which
there exists a sequence of points {x,} converging to ¢ along 7, so that f(x,)
— x*. We observe that it is possible to have C(f, &) =@ or C,(f, {) = O,
because the normed space X, in general, is not compact.

THEOREM 6. If f B=D* is qc, then there is no point of S corresponding
(by the bijection established in Corollary 2 of the preceding theorem) to a
boundary element of D* inaccessible by rectifiable arcs.

The proof will again be by reductio ad absurdum. Suppose, to prove it is
false, that there exists a point £,e S corresponding to a boundary element of
D* inaccessible to rectifiable arcs and let us consider the radius y, of B with
an endpoint at £,. Next, let {x,} < y, be a sequence of points converging to
¢o and {y,} the corresponding sequence of arcs y, =[x,, &) (neN), 7§
= f(y0) and y¥ =f(y,). We observe that y§ is, by hypothesis, not rectifiable
and may be a wandering arc or have an endpoint £%e dD*, or its cluster set

Cyo(f, &o) = F* may be a whole non-degenerate continuum. But, in all the
cases, the argument will be the same. Clearly, d[B(ro), 7.1 < 1, ne N. This,
combined with the quasiconformality of f (with a non-specified constant K)
and Lemma 7, implies dp- {f [B(ro)], y¥} < Kd[B(ro), y»] < K. But, since the
boundary element ({U}}, F*) is not accessible to rectifiable arcs,
lim dp- {f [B(ro)], y2} = oo. This contradiction establishes our theorem.
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