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1. Introduction. It has been shown [6] that a differential equation
of the form

(1) P(zay(z)’ ¥ (2), '--,?/(k)(z)) =9(?/(z))7

where p is a polynomial in variables z, ¥, %', ..., ¥y® and g(z) is a given
transcendental entire function, cannot have non-constant entire soluticns.
In this paper, we investigate the rate of growth of functions meromorphie
in the plane (|2|] < oo) which are solutions of differential equations of
the form

(2) p(zy Y(2), ¥ (2)y ...y y(k)(z)) = y(g(z)) .

For a meromorphic function the growth is measured by the Nevan-
linna characteristic T'(r, f) (see Section 2).
The following is our main result.

THEOREM 1. Let g be a given mnon-constant entire function and
P2z, ¥(2), ¥’ (2), ..., y® (2)) be a given polynomial in variables z,y(2), ...,
y® (2). If f(2) is a transcendental meromorphic solution of equation (2),
then g(z) must be a polynomial. Furthermore, if g(z) is mot linear, then the
order of f is zero and T'(r, f (z)) = O(logr)® as r — oo for some constant f > 1

The proof is based on Nevanlinna’s theory of meromorphic functions
and some comparison results of Clunie’s on the composition of entire
and meromorphic functions.

2. Preliminaries. In this section, for the reader’s convenience we
first review some of the usual notation used in Nevanlinna’s theory of
meromorphic functions. For a good account of the theory we refer the
reader to Hayman [2].
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If f(2) is a meromorphic function on the plane, the Nevanlinna char-
acteristic T'(r,f) is defined as follows:

T(r,f) =m(r,f)+N(r,f),
where .

27
1
m(r,f) = %f log* |f(re®)|d6; log™x —max(0, logx)
0

and

f'n(t,f)—n(O,f)
1
0

n(t, f) denotes the number of poles of f (counting multiplicity) in |2| < oo.
The order ¢ of f is defined as

N(r,f) = dt+n(0, f)logr;

_ logT(r,f)
=1 eV
¢ rir:: sup logr

Remark 1. We note that a meromorphic function f is a rational

function if and only if lim sup 1 ’f)

< + oco. We shall use S(r,f) to

r—>00
denote any quantity satisfying S ( o, f) =o{T(r,f)} as r - oo, possibly
outside a set of  values of finite measure.
Now we quote some basic properties and fundamental results of
the Nevanlinna theory which will be needed later.

-LeEMMA 1 ([2), p. 5). Let f,, fs, ..., f, be meromorphic functions. Then

(a) T{r, Y1)} < ) T{r, £, ()} +logp,
D P
() i, [[ 1) < 3 Tir.1, @)

LeMMA 2 (Nevanlinna’s first fundamental theorem; see e.g. [2], p. 5).
Let f be a meromorphic function. Then for every a # oo,

®) T(r,) = 7(r, 52 ) +000).

f—
It is frequently convenient to write m(r, a,f), N(r,a,f), n(r,a,f),

s sl ) o) 7
LeEMMA 3 (Nevanlinna [3]). Let f be meromorphic with f(0) # 0.
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Then for R > r we have

(4) m(r, f?) < 4log+T(R,f)+3log+lf(1—0)l +4log* R+

1 1
+ 3log* gy -+ 2log* - + 24,

LeMMA 4 (Clunie [1], p. 78). Let f(z2) be meromorphic and g be entire.
Suppose that f(z) and g(z) are transcendental and at least one of them 1is
of finite order. Then

. T(r,f(g)) N
®) el Jr0 R

LeMMA 5 (Clunie [1], p. 78). Let f(2) be meromorphic and g be entire
and suppose that f(z) and g(z) are transcendental. Then

Tir,
© i i -

Remark 2. If one examines Clunie’s proof carefully one can con-
clude that under the same hypotheses of Lemma 4 the following is true-

. T(r,flg) _
oo e I

where @ is any given set of r» values of finite measure.

We shall use this remark later on.

LEMMA 6 (Nevanlinna [4]). For any given & with 0 <& < }, then
we have for r>r,
(8) N(rya,f)=T(r,f)=2[T(r, )HI+"
for all values a except those which belong to a set E(r,, €) of finite logarithmic
capacity.

We note here that the Lebesgue measure of the set E(r,, ¢) is zero [5].

Roughly Lemma 5 says that N(r,a,f) ~T(r,f) as r — oc for all
ag¢ E(ry, €).

3. Proof of Theorem 1. First we show that ¢ must be a poly-
nomial. Suppose that g(z) is transcendental entire and f(z) is a transcen-
dental meromorphic solution of the equation; i.e., we have the following
identity:

(9) P fify s f¥) = flg).
We have by a result of Milloux (see e.g. [2], p. 55) that for 1 > 0

(10) T(r, fM<@+)T(r, ))+8(r,f) asr—> oo,
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It follows from this and Remark 1 that there exists a non-negative con-
stant a such that

(11) p(z,f,f',...,f(k))éaT(?‘,f)—l—S(T,f).

Hence, outside a set G of r values of finite measure

. T(":P(z’f’flr---yf(k)))
12 limsu < a.
(12) 700 P T(r,f)
On the other hand by Lemma 5 and Remark 2 we have
. T(Tyf(g))
1 | i LA LI
(19) et T T

™G

This and (12) show clearly that identity (9) cannot hold. Thus we
conclude that g must be a polynomial.

Now suppose that g(z) is non-linear. Let
(14) g(2) = ag(2)2™ +a,(2)2" ' +...+a, (ay #0,m>1).

a
In this case we can choose r, so large that for |w] <%¢m all m roots
r

of g(2) = o satisfy |z| < r, if r > r,. It follows that if » > r,, then to each
c-point 2z, of f satisfying [z, < %r’" there correspond m c¢-points g~*(2,)

of log in |2 < 7. Thus

a
(15) n(r,c,f(g))}m-n(?or"‘,c,f).
We may assume without loss of generality that f (g(O)) # C.
Hence

(16) N(?',c,f(g)) = fn—(t’ct—’f(ﬂdt> fﬂ’?ﬂdt
. g 2
rm-n(%rm, c,f)

> f dt.
t

o
Making the substitution of variable s = %gt’“ we obtain

)
2.m

A7y Nl e, flg) > ”(s’fﬂ ds = N (%’ m c,f) +0(1).

Y 7
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Now according to Lemma 6 we can actually choose ¢ such that
(18) N(rye,f) ~T(r,f) a8 r— oo,
Thus from this and (17) we have

(19) T(ryf(g)) = N('ry c,f(g)) = (1—0(1))1'(‘%)‘7”1 o?f)

as 7 —> oo.
On the other hand, we have by putting R = 2r into Lemma 3 and
Lemma 2 that

o) np ) ot

< 4log*T(2r,f)+4log*2r+0(1) +N (r, f?)

< 4log* T (2r, f)+4log™ 2r 2T (r, f)+0(1).
It follows from this and Lemma 1 (b) that
(21) I(r, f') =T(1‘,€_—-f)<1’(r,—'§—) +T(r, f) +1log2

< 4log* T(2r, f) +4log* 2r 43T (r, ) +0(1).
Similarly we can obtain for ! =1,2,...
(22)  T(r,fO) <Fylog* T(2'r,f)+k,log* 2'r + K, T(r, f) +0(1),

where constants k,, k,, and %k, depend on I.
Since T (r, f) is an increasing function of r, Lemma 1 and inequality
(22) imply that the following estimate holds

(23) T(r:p(zyf’f’a ves ’f(k))) <k, log* T(Zkr,f) + kslog*r 4 T (r, f) +0(1),

where k,, ks, k, are constants depending on k.
It follows from this, (19) and (9) that for large values of r

(24) kT (r,f)+kogt T(2*r, f)+klogtr > %T(%r’", c,f).
Hence

(25) logT(r, f)+logks-loglog* T (2%r, f)-+logk, 1-log*log* r +logk,
> longogT(% . c,f) > 1ogg+1ogT(%r’",f) +0(1).

The last inequality follows from Lemma 2.
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Now suppose that
) log*
(26) limsup —-—— = + oo.

Again since T(r, f) is an increasing function of r it sollows that for large
values of 7

(27 log* T (%0— r™, f) > loglog™ T (2%r, f).
From (26), (27), and (25) we have for a sequence of r, values {r,}, r, 1 co:

(28) YogT(r,, f) > %log+T(%rr, f) Loq).

This inequality cannot hold for large values 7,. Therefore we have
to conclude that

log* T
(29) limsup 28 £ *J)

roo loglogr P A<p<+ ).

B must be greater than one due to the fact that for a transcendental
meromorphic function f, lim T'(r, f)/logr = oc. Hence

) log* T(r, f) = O(1)(log)’.

The theorem is thus proved completely.
In view of the ahove argument we can state the following more
general result.

THEOREM 2. Let R(2, Y, ¥, ..., y™) be a rational function in variables
2,9, Yy -y ¥M, and g(2) be a given mon-constant entire function. If f(2)
18 a lranscendental meromorphic solution of the equation

(31) l Bz, 9,9s..., ?/(k)) = y(g(z)),

then ¢(z) must be a polynomsial. Furthermore, if g(2) s not linear, then the
order of f is zero and

T(ryf(z)) = O(logr)’ asr—> oo

for some constant f > 1.

Final Remark. The argument used in Thecorem 1 also enables
us to treat similar types of equations with arbitrary meromorphic fune-
tions as the coefficients in p (2, ¥, ¥, ..., ¥") provided we restrict ourselves
to the discussion of the meromorphic solutions which grow much
faster than all the coefficients of the equation.
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