LI

CONJUGATION-INVARIANT MEANS

BY

V. LOSERT AND H. RINDLER (WIEN)

Let G be a locally compact group with left Haar measure dx and unit element e. For $x \in G$, the corresponding inner automorphism (conjugation) induces a mapping τ'_x on $L^{\infty}(G)$ by $\tau'_x f(y) = f(xyx^{-1})$. The adjoint map τ_x on $L^1(G)$ is given by $\tau_x u(y) = u(x^{-1}yx)\Delta(x)$ (where Δ denotes the Haar modulus of G). A non-negative linear functional M on $L^{\infty}(G)$ satisfying M(1) = 1 (where on the left-hand side 1 denotes the function with constant value 1) is called a mean (see [6]).

Definition. 1) A mean M on $L^{\infty}(G)$ is called *conjugation-invariant* (c.i.), if $M(\tau'_x f) = M(f)$ for all $x \in G$, $f \in L^{\infty}(G)$. (In [4] Effros uses the term "inner-invariant".)

2) A net (u_{α}) in $L^{1}(G)$ is called asymptotically central (a.c.), if

$$\lim_{\alpha} \frac{\|\tau_x u_{\alpha} - u_{\alpha}\|_1}{\|u_{\alpha}\|_1} = 0 \quad \text{for all } x \in G.$$

(We assume that $u_{\alpha} \neq 0$ and put $||u||_1 = \int_G |u(y)| dy$.)

Recall that the existence of non-trivial central elements in $L^1(G)$ is equivalent to the existence of a compact, conjugation-invariant neighbourhood of the identity in G([10]). This produces simple examples of c.i. means. A.c. approximate units and a certain subclass of c.i. means were studied in [8]. We show that the existence of a c.i. mean is equivalent to the existence of an a.c. net (Proposition 1). If G is amenable, then there exists a (non-unique) c.i. mean (Proposition 2). If G is connected, then the converse holds, i.e. existence of a c.i. mean implies amenability (Theorem 1).

In the case of discrete groups, δ_e (Dirac measure at e) furnishes a c.i. mean. Further examples come from finite conjugacy classes. If G has Kazhdan's property T, then all c.i. means arise in this way (Theorem 2, see also [1]). Other conditions for uniqueness were discussed earlier in [4] in the context of the property Γ of the associated von Neumann algebra (see Proposition 3).

Proposition 1. The following assertions are equivalent:

- (i) There exists a conjugation-invariant mean on $L^{\infty}(G)$.
- (ii) There exists an asymptotically central net (u_{α}) in $L^{1}(G)$.
- (iii) There exists a net (v_{α}) in $L^{1}(G)$ such that $v_{\alpha} \ge 0$, $||v_{\alpha}||_{1} = 1$ and $\lim ||\tau_{x} v_{\alpha} v_{\alpha}||_{1} = 0$ for all $x \in G$.

Proof. (ii)
$$\Rightarrow$$
 (iii): Put $v_{\alpha}(x) = \frac{|u_{\alpha}(x)|}{||u_{\alpha}||_1}$.

(iii) \Rightarrow (i) \Rightarrow (ii): The proof of this is similar to [8], Theorem 2. If $(v_{\alpha}) \subseteq L^{1}(G) \subseteq L^{\infty}(G)'$ is given as in (iii), then any w^{*} -cluster point M in $L^{\infty}(G)'$ is a c.i. mean. Conversely, given a c.i. mean M, it can be approximated in the w^{*} -sense by a net (u_{α}) in $L^{1}(G)$ with $u_{\alpha} \ge 0$, $||u_{\alpha}||_{1} = 1$. It follows that w^{*} -lim $(\tau_{x}u_{\alpha}-u_{\alpha})=0$ for all $x \in G$. The w^{*} -topology induces the weak topology on $L^{1}(G)$ and, since for convex sets the weak closure coincides with the norm closure, we can replace (u_{α}) by some convex combinations to get $\lim ||\tau_{x}u_{\alpha}-u_{\alpha}||_{1}=0$.

Remark. In the discrete case, a similar result was shown in [4]. The conditions (ii) and (iii) can be generalized to $L^p(G)$ $(1 \le p < \infty)$ (compare [6], p. 46). By some manipulations it is possible to achieve $\lim_{\alpha} ||\tau_x v_\alpha - v_\alpha||_1 = 0$ uniformly in x on compact subsets of G.

PROPOSITION 2. If G is amenable, then there exists a conjugation-invariant mean. This mean is not unique unless $G = \{e\}$.

Proof. Any mean on $L^{\infty}(G)$ that is invariant under left and right translations is clearly c.i. Such means exist if G is amenable by [6], p. 29. On the other hand, it was shown in [8] Theorem 3 that if G is amenable, there exists a c.i. mean on $L^{\infty}(G)$ which coincides with δ_e for bounded continuous functions.

Remark. Regarding uniqueness, the situation is slightly different from that in the case of translation-invariant means. If G is amenable as a discrete group, then by results of Granirer and Rudin the translation-invariant mean is not unique ([6], p. 91, [12]). But e.g. in the case of G = SO(n) ($n \ge 5$) (or more generally when G has a dense subgroup, satisfying Kazhdan's property T), the left invariant mean is unique ([9]).

THEOREM 1. Let G be a connected locally compact group. Then there exists a conjugation-invariant mean on $L^{\infty}(G)$ iff G is amenable.

Remark. This result has been announced in [7].

Proof. One direction follows from Proposition 2. Now assume that there exists a c.i. mean M on $L^{\infty}(G)$ and that G is not amenable. If H is a closed normal subgroup of G, then $L^{\infty}(G/H)$ is embedded into $L^{\infty}(G)$ and M induces a c.i. mean on $L^{\infty}(G/H)$. By Yamabe's theorem [11], Theorem 4.6, there exists a closed normal subgroup K of G such that $G_1 = G/K$ is a Lie group. Let R be the radical of G_1 (i.e. the maximal solvable normal subgroup

of G). By [6], p. 53, G_1/R is a non-compact semi-simple Lie group, it is connected and has trivial center (by the maximality of R). Hence it is sufficient to consider the case where G is a connected semi-simple Lie group with trivial center. We will show that if G is not compact, then property (iii) of Proposition 1 cannot hold.

Let J_1, \ldots, J_r be a maximal system of pairwise non-conjugate Cartan subgroups of G. These are abelian, since G has trivial center [13], I. 1.4.1.5, p. 111. Since G is unimodular, each of the coset spaces G/J_i $(1 \le i \le r)$ carries a measure $d\dot{z}$ that is invariant under $L_x g(\dot{z}) = g((x^{-1}z)^{\cdot})$ $(x \in G)$. Here we write $\dot{z} = zJ_i$. By [13], II. 8.1.2, p. 66, we have for $f \in L^1(G)$

(Since J_i is abelian, zyz^{-1} depends only on the left coset $\dot{z} = zJ_i$ of z; $w_i \ge 0$ signifies some weight function.) If property (iii) of Proposition 1 holds, then the following is true:

(2) Given $\varepsilon > 0$ and a finite subset F of G, there exists $u \in L^1(G)$ with $u \ge 0$, $||u||_1 = 1$ such that $\sum_{x \in F} ||\tau_x u - u||_1 < \varepsilon ||u||_1$.

From (1), (2) we get (recall that G is unimodular):

(3)
$$\sum_{i=1}^{r} \sum_{x \in F} \int_{i} w_{i}(y) \int_{G/J_{i}} |u(x^{-1}zyz^{-1}x) - u(zyz^{-1})| d\dot{z} dy$$

$$< \varepsilon \sum_{i=1}^{r} \int_{J_{i}} w_{i}(y) \int_{G/J_{i}} u(zyz^{-1}) d\dot{z} dy.$$

Hence for some $i \in \{1, ..., r\}$ and some $y \in J_i$, we have:

Put $g(z) = u(zyz^{-1})$. Then $g \in L^1(G/J_i)$ and (4) implies

(5)
$$||L_x g - g||_1 < \varepsilon ||g||_1 \quad \text{for all } x \in F.$$

(Where $\| \|_1$ refers to the measure $d\dot{z}$ on G/J_1 .)

Since the pairs (ε, F) form a directed set and there are only finitely many values of i, it is easy to see that the index i in (5) can be chosen independently of $\varepsilon > 0$ and the finite subset F of G. By [5], p. 28, this implies that G/J_i is amenable. But since J_i is abelian (hence amenable), it would follow that G is amenable ([5], p. 16). This is a contradiction if G is not compact.

Recall that a group G satisfies Kazhdan's property T if the trivial representation is isolated in the unitary dual G of G. G is said to be an ICC-group, if all non-trivial conjugacy classes are infinite.

THEOREM 2. If G is a discrete group satisfying Kazhdan's property T, then any conjugation-invariant mean on $L^{\infty}(G)$ belongs to the w^* -closure of the center of $L^1(G)$. In particular, if in addition G is an ICC-group, then δ_e is the unique conjugation-invariant mean.

Proof. Let M be a c.i. mean. As described in the proof of Proposition 1, we get a net $(u_{\alpha}) \subseteq L^{1}(G) \subseteq L^{\infty}(G)'$ such that $M = w^{*} - \lim u_{\alpha}$, $u_{\alpha} \geqslant 0$, $\|u_{\alpha}\|_{1} = 1$ and $\lim \|\tau_{x}u_{\alpha} - u_{\alpha}\|_{1} = 0$ for all $x \in G$. Put $v_{\alpha} = u_{\alpha}^{1/2}$; then we have $\lim \|\tau_{x}^{(2)}v_{\alpha} - v_{\alpha}\|_{2} = 0$ for all $x \in G$, where $\tau_{x}^{(2)}v(y) = v(x^{-1}yx)$ is the unitary representation on $L^{2}(G)$ induced by the inner automorphisms (compare [6], p. 46). Write $v_{\alpha} = v_{\alpha}' + v_{\alpha}''$, where v_{α}' belongs to the subspace M of $L^{2}(G)$ where $\tau^{(2)}$ acts trivially and $v_{\alpha}'' \in M^{\perp}$. Then $\lim \|\tau_{x}^{(2)}v_{\alpha}'' - v_{\alpha}''\|_{2} = 0$. If $c = \limsup \|v_{\alpha}''\|_{2} > 0$, then for some subset of (v_{α}'') we get $(\tau_{x}^{(2)}v_{\alpha}'', v_{\alpha}'') \to c^{2}$ for all $x \in G$ (where (\cdot,\cdot)) denotes the inner product on $L^{2}(G)$). It would follow that $\tau^{(2)}|M^{\perp}$ contains the trivial representation weakly ([3], 3.4.10, p. 68), hence by property T, $\tau^{(2)}|M^{\perp}$ would contain the trivial representation strongly, contrary to the definition of M. Thus c = 0, i.e. $\lim \|v_{\alpha} - v_{\alpha}'\|_{2} = 0$. Put $u_{\alpha}' = (v_{\alpha}')^{2}$; then u_{α}' belongs to the center of $L^{1}(G)$ and $\lim \|u_{\alpha} - u_{\alpha}'\|_{1} = 0$ ([6], p. 47). Consequently, $M = w^{*} - \lim u_{\alpha}'$.

EXAMPLES. $SL(n, \mathbb{Z})$ has property T for $n \ge 3$ ([9], p. 234). The center \mathbb{Z} consists of the scalar matrices. If n is odd, \mathbb{Z} is trivial, if n is even, it has order 2. No other finite conjugacy classes do exist. Hence, if n is odd, δ_e is the unique c.i. mean. If n is even, the same holds for $PSL(n, \mathbb{Z}) = SL(n, \mathbb{Z})/\mathbb{Z}$.

Remarks. Discrete groups which have a c.i. mean different from δ_e were called *inner amenable* in [4]. A related result was shown in [1], Theorem 11.

PROPOSITION 3. Let G be a discrete group which is the free product of groups H_1 and H_2 , where H_1 has at least two and H_2 at least three elements. Then δ_e is the unique conjugation-invariant mean.

Proof. This is essentially contained in [4]. We use the idea of von Neumann to construct "paradoxical" decompositions. Take $a \in H_1 \setminus \{e\}$, $b, c \in H_2 \setminus \{e\}$ with $b \neq c$. Let D be the set of elements of G whose representation as a reduced word starts with an element of H_1 . Then $G = D \cup aDa^{-1} \cup \{e\}$ and D, bDb^{-1}, cDc^{-1} are disjoint. As shown in [4] this implies that any c.i. mean is supported by $\{e\}$.

Remark. For a free group with at least two generators this was established by a different method in [2]. If $H_1 = H_2 = \mathbb{Z}_2$, the free product is solvable, hence by Proposition 2 the c.i. mean is not unique.

Example. $PSL(2, \mathbf{Z}) = SL(2, \mathbf{Z})/\mathbf{Z}$ is the free product of \mathbf{Z}_2 and \mathbf{Z}_3 .

REFERENCES

- [1] C. A. Akemann and M. E. Walter, Unbounded negative definite functions, Canadian Journal of Mathematics 33 (1981), p. 862-871.
- [2] M. Bożejko, Some aspects of harmonic analysis on free groups, Colloquium Mathematicum 41 (1979), p. 265-271.
- [3] J. Dixmier, Les C*-algèbres et leurs représentations, Gauthier-Villars, Paris 1964.
- [4] E. G. Effros, Property Γ and inner amenability, Proceedings of the American Mathematical Society 47 (1975), p. 483-486.
- [5] P. Eymard, Moyennes Invariantes et Représentations Unitaires, Lecture Notes in Mathematics 300, Springer, Berlin-Heidelberg-New York 1972.
- [6] F. P. Greenleaf, Invariant means on topological groups, van Nostrand, Mathematical Studies, New York 1969.
- [7] M. Grosser, V. Losert and H. Rindler, "Double multipliers" und asymptotisch invariante approximierende Einheiten, Österreichische Akademie der Wissenschaften. Mathematisch-Naturwissenschaftliche Klasse. Anzeiger, 1980, p. 7-11.
- [8] V. Losert and H. Rindler, Asymptotically central functions and invariant extensions of Dirac measure, p. 368-378 in: Proceedings of the Conference on Probability Measures on Groups, Oberwolfach 1983, Lecture Notes in Mathematics 1064, Springer, Berlin-Heidelberg-New York.
- [9] G. A. Margulis, Some Remarks on Invariant Means, Monatshefte für Mathematik 90 (1980), p. 233-235.
- [10] R. D. Mosak, Central functions in group algebras, Proceedings of the American Mathematical Society 29 (1971), p. 613-616.
- [11] D. Montgomery and L. Zippin, Topological transformation groups, Interscience, New York 1955.
- [12] W. Rudin, Invariant means on L^o, Studia Mathematica 44 (1972), p. 219-227.
- [13] G. Warner, Harmonic Analysis on Semi-Simple Lie Groups I, II, Springer, Berlin-Heidelberg-New York 1972.

INSTITUT FÜR MATHEMATIK UNIVERSITÄT WIEN WIEN, AUSTRIA

Reçu par la Rédaction le 20. 01. 1984