CONJUGATION-INVARIANT MEANS

BY

V. LOSERT AND H. RINDLER (WIEN)

Let G be a locally compact group with left Haar measure dx and unit element e. For $x \in G$, the corresponding inner automorphism (conjugation) induces a mapping τ_x on $L^\infty(G)$ by $\tau_x f(y) = f(\text{xyz}^{-1})$. The adjoint map τ_x^* on $L^1(G)$ is given by $\tau_x u(y) = u(x^{-1} yx) \Delta(x)$ (where Δ denotes the Haar modulus of G). A non-negative linear functional M on $L^\infty(G)$ satisfying $M(1) = 1$ (where on the left-hand side 1 denotes the function with constant value 1) is called a mean (see [6]).

Definition. 1) A mean M on $L^\infty(G)$ is called conjugation-invariant (c.i.), if $M(\tau_x^* f) = M(f)$ for all $x \in G, f \in L^\infty(G)$. (In [4] Effros uses the term “inner-invariant”.)

2) A net (u_a) in $L^1(G)$ is called asymptotically central (a.c.), if

$$\lim_{a} \frac{\|\tau_x u_a - u_a\|_1}{\|u_a\|_1} = 0 \quad \text{for all } x \in G.$$

(We assume that $u_a \neq 0$ and put $\|u\|_1 = \int_G |u(y)| \, dy$.)

Recall that the existence of non-trivial central elements in $L^1(G)$ is equivalent to the existence of a compact, conjugation-invariant neighbourhood of the identity in G ([10]). This produces simple examples of c.i. means. A.c. approximate units and a certain subclass of c.i. means were studied in [8]. We show that the existence of a c.i. mean is equivalent to the existence of an a.c. net (Proposition 1). If G is amenable, then there exists a (non-unique) c.i. mean (Proposition 2). If G is connected, then the converse holds, i.e. existence of a c.i. mean implies amenability (Theorem 1).

In the case of discrete groups, δ_e (Dirac measure at e) furnishes a c.i. mean. Further examples come from finite conjugacy classes. If G has Kazhdan’s property T, then all c.i. means arise in this way (Theorem 2, see also [1]). Other conditions for uniqueness were discussed earlier in [4] in the context of the property Γ of the associated von Neumann algebra (see Proposition 3).
Proposition 1. The following assertions are equivalent:
(i) There exists a conjugation-invariant mean on \(L^p(G) \).
(ii) There exists an asymptotically central net \((u_\alpha)\) in \(L^1(G) \).
(iii) There exists a net \((v_\alpha)\) in \(L^1(G) \) such that \(v_\alpha \geq 0, \|v_\alpha\|_1 = 1 \) and \(\lim_{\alpha} \|\tau_x v_\alpha - v_\alpha\|_1 = 0 \) for all \(x \in G \).

Proof. (ii) \(\Rightarrow\) (iii): Put \(v_\alpha(x) = \frac{|u_\alpha(x)|}{\|u_\alpha\|_1} \).

(iii) \(\Rightarrow\) (i): The proof of this is similar to [8], Theorem 2. If \((v_\alpha) \subseteq L^1(G) \subseteq L^\infty(G) \)' is given as in (iii), then any \(w^* \)-cluster point \(M \) in \(L^\infty(G) \)' is a c.i. mean. Conversely, given a c.i. mean \(M \), it can be approximated in the \(w^* \)-sense by a net \((u_\alpha)\) in \(L^1(G) \) with \(u_\alpha \geq 0, \|u_\alpha\|_1 = 1 \). It follows that \(w^* \lim(\tau_x u_\alpha - u_\alpha) = 0 \) for all \(x \in G \). The \(w^* \)-topology induces the weak topology on \(L^1(G) \) and, since for convex sets the weak closure coincides with the norm closure, we can replace \((u_\alpha)\) by some convex combinations to get \(\lim_{\alpha} \|\tau_x u_\alpha - u_\alpha\|_1 = 0 \).

Remark. In the discrete case, a similar result was shown in [4]. The conditions (ii) and (iii) can be generalized to \(L^p(G) \) (1 \(\leq p < \infty \)) (compare [6], p. 46). By some manipulations it is possible to achieve \(\lim_{\alpha} \|\tau_x v_\alpha - v_\alpha\|_1 = 0 \) uniformly in \(x \) on compact subsets of \(G \).

Proposition 2. If \(G \) is amenable, then there exists a conjugation-invariant mean. This mean is not unique unless \(G = \{e\} \).

Proof. Any mean on \(L^\infty(G) \) that is invariant under left and right translations is clearly c.i. Such means exist if \(G \) is amenable by [6], p. 29. On the other hand, it was shown in [8] Theorem 3 that if \(G \) is amenable, there exists a c.i. mean on \(L^\infty(G) \) which coincides with \(\delta_e \) for bounded continuous functions.

Remark. Regarding uniqueness, the situation is slightly different from that in the case of translation-invariant means. If \(G \) is amenable as a discrete group, then by results of Granirer and Rudin the translation-invariant mean is not unique ([6], p. 91, [12]). But e.g. in the case of \(G = SO(n) \) (n \(\geq 5 \)) (or more generally when \(G \) has a dense subgroup, satisfying Kazhdan's property \(T \)), the left invariant mean is unique ([9]).

Theorem 1. Let \(G \) be a connected locally compact group. Then there exists a conjugation-invariant mean on \(L^\infty(G) \) iff \(G \) is amenable.

Remark. This result has been announced in [7].

Proof. One direction follows from Proposition 2. Now assume that there exists a c.i. mean \(M \) on \(L^\infty(G) \) and that \(G \) is not amenable. If \(H \) is a closed normal subgroup of \(G \), then \(L^\infty(G/H) \) is embedded into \(L^\infty(G) \) and \(M \) induces a c.i. mean on \(L^\infty(G/H) \). By Yamabe's theorem [11], Theorem 4.6, there exists a closed normal subgroup \(K \) of \(G \) such that \(G_1 = G/K \) is a Lie group. Let \(R \) be the radical of \(G_1 \) (i.e. the maximal solvable normal subgroup
of G). By [6], p. 53, G_1/R is a non-compact semi-simple Lie group, it is connected and has trivial center (by the maximality of R). Hence it is sufficient to consider the case where G is a connected semi-simple Lie group with trivial center. We will show that if G is not compact, then property (iii) of Proposition 1 cannot hold.

Let J_1, \ldots, J_r be a maximal system of pairwise non-conjugate Cartan subgroups of G. These are abelian, since G has trivial center [13], I. 1.4.1.5, p. 111. Since G is unimodular, each of the coset spaces G/J_i ($1 \leq i \leq r$) carries a measure $d\tilde{z}$ that is invariant under $L_x g(\tilde{z}) = g((x^{-1} z))$ ($x \in G$). Here we write $\tilde{z} = zJ_i$. By [13], II. 8.1.2, p. 66, we have for $f \in L^1(G)$

$$\left\{ f(z) d\tilde{z} = \sum_{i=1}^r \int_{J_i} w_i(y) \int_{G/J_i} f(zyz^{-1}) d\tilde{z} dy. \right.$$ (Since J_i is abelian, zyz^{-1} depends only on the left coset $\tilde{z} = zJ_i$ of z; $w_i \geq 0$ signifies some weight function.) If property (iii) of Proposition 1 holds, then the following is true:

(2) Given $\varepsilon > 0$ and a finite subset F of G, there exists $u \in L^1(G)$ with $u \geq 0$, $\|u\|_1 = 1$ such that $\sum_{x \in F} \|\tau_x u - u\|_1 < \varepsilon \|u\|_1$.

From (1), (2) we get (recall that G is unimodular):

(3) $\sum_{i=1}^r \sum_{x \in F} \int_{J_i} w_i(y) \int_{G/J_i} |u(x^{-1} zyz^{-1} x) - u(zyz^{-1})| d\tilde{z} dy$

$$< \varepsilon \sum_{i=1}^r \int_{J_i} w_i(y) \int_{G/J_i} u(zyz^{-1}) d\tilde{z} dy.$$

Hence for some $i \in \{1, \ldots, r\}$ and some $y \in J_i$, we have:

(4) $\sum_{x \in F \setminus J_i} \int_{G/J_i} |u(x^{-1} zyz^{-1} x) - u(zyz^{-1})| d\tilde{z} < \varepsilon \int_{G/J_i} u(zyz^{-1}) d\tilde{z} < \infty$.

Put $g(\tilde{z}) = u(zyz^{-1})$. Then $g \in L^1(G/J_i)$ and (4) implies

(5) $\|L_x g - g\|_1 < \varepsilon \|g\|_1$ for all $x \in F$.

(Where $\|\|_1$ refers to the measure $d\tilde{z}$ on G/J_1.)

Since the pairs (ε, F) form a directed set and there are only finitely many values of i, it is easy to see that the index i in (5) can be chosen independently of $\varepsilon > 0$ and the finite subset F of G. By [5], p. 28, this implies that G/J_i is amenable. But since J_i is abelian (hence amenable), it would follow that G is amenable ([5], p. 16). This is a contradiction if G is not compact.

Recall that a group G satisfies Kazhdan's property T if the trivial representation is isolated in the unitary dual \hat{G} of G. G is said to be an ICC-group, if all non-trivial conjugacy classes are infinite.
THEOREM 2. If \(G \) is a discrete group satisfying Kazhdan's property \(T \), then any conjugation-invariant mean on \(L^0(G) \) belongs to the \(w^* \)-closure of the center of \(L^1(G) \). In particular, if in addition \(G \) is an ICC group, then \(\delta_e \) is the unique conjugation-invariant mean.

Proof. Let \(M \) be a c.i. mean. As described in the proof of Proposition 1, we get a net \((u_x) \subseteq L^1(G) \subseteq L^0(G) \) such that \(M = w^* \lim u_x \), \(u_x \geq 0 \), \(\|u_x\|_1 = 1 \) and \(\lim \|\tau_x u_x - u_g\|_1 = 0 \) for all \(x \in G \). Put \(v_x = u_x^{1/2} \); then we have \(\lim \|\tau_x v_x - v_g\|_2 = 0 \) for all \(x \in G \), where \(\tau_x \) is the unitary representation on \(L^2(G) \) induced by the inner automorphisms (compare [6], p. 46). Write \(v_x = v_x' + v_x'' \), where \(v_x' \) belongs to the subspace \(M \) of \(L^2(G) \) where \(\tau^{(2)} \) acts trivially and \(v_x'' \in M^\perp \). Then \(\lim \|\tau_x^{(2)} v_x'' - v_g''\|_2 = 0 \). If \(c = \lim sup \|u_x''\|_2 > 0 \), then for some subset of \((v_x'') \) we get \(\tau_x^{(2)} v_x'' \to c^2 \) for all \(x \in G \) (where \((\ , \) \) denotes the inner product on \(L^2(G) \)). It would follow that \(\tau^{(2)} \) contains the trivial representation weakly ([3], 3.4.10, p. 68), hence by property \(T \), \(\tau^{(2)} \) would contain the trivial representation strongly, contrary to the definition of \(M \). Thus \(c = 0 \), i.e. \(\lim \|v_x - v_g\|_2 = 0 \). Put \(u_x' = (v_x')^2 \); then \(u_x' \) belongs to the center of \(L^1(G) \) and \(\lim \|u_x - u_g\|_1 = 0 \) ([6], p. 47). Consequently, \(M = w^* \lim u_x' \).

EXAMPLES. \(SL(n, Z) \) has property \(T \) for \(n \geq 3 \) ([9], p. 234). The center \(Z \) consists of the scalar matrices. If \(n \) is odd, \(Z \) is trivial, if \(n \) is even, it has order 2. No other finite conjugacy classes do exist. Hence, if \(n \) is odd, \(\delta_e \) is the unique c.i. mean. If \(n \) is even, the same holds for \(PSL(n, Z) = SL(n, Z)/Z \).

Remarks. Discrete groups which have a c.i. mean different from \(\delta_e \) were called inner amenable in [4]. A related result was shown in [1], Theorem 11.

PROPOSITION 3. Let \(G \) be a discrete group which is the free product of groups \(H_1 \) and \(H_2 \), where \(H_1 \) has at least two and \(H_2 \) at least three elements. Then \(\delta_e \) is the unique conjugation-invariant mean.

Proof. This is essentially contained in [4]. We use the idea of von Neumann to construct “paradoxical” decompositions. Take \(a \in H_1 \setminus \{e\} \), \(b, c \in H_2 \setminus \{e\} \) with \(b \neq c \). Let \(D \) be the set of elements of \(G \) whose representation as a reduced word starts with an element of \(H_1 \). Then \(G = D \cup aDa^{-1} \cup \{e\} \) and \(D, bDb^{-1}, cDc^{-1} \) are disjoint. As shown in [4] this implies that any c.i. mean is supported by \(\{e\} \).

Remark. For a free group with at least two generators this was established by a different method in [2]. If \(H_1 = H_2 = Z_2 \), the free product is solvable, hence by Proposition 2 the c.i. mean is not unique.

EXAMPLE. \(PSL(2, Z) = SL(2, Z)/Z \) is the free product of \(Z_2 \) and \(Z_3 \).
REFERENCES

Reçu par la Rédaction le 20. 01. 1984