Representation generated by a finite number of Hilbert space operators

by Marek Kosiek (Kraków)

Abstract. In the present paper we extend part of results on pairs of commuting Hilbert space operators contained in [3] and [6] to a multidimensional case.

The purpose of the present paper is to extend part of the results of [3] and [6] on pairs of commuting Hilbert space operators to the case of any finite number of operators.

The two-dimensional case is based on Cole's decomposition theorem for orthogonal measures (or rather on its generalization due to Bekken [2]). The main reason that Cole's decomposition holds true is that the algebra R(K) has no completely singular orthogonal measures when K is a compact subset of the complex plane C. But this property does not hold for $K \subset C^n$ where $n \ge 2$. Therefore we cannot extend Cole's decomposition to n-dimensional case for $n \ge 3$ automatically.

1. Throughout this paper, K_1, \ldots, K_n will denote compact subsets of the complex plane C, $C(K_1 \times \ldots \times K_n)$ will denote the algebra of all complex continuous functions, $R(K_1 \times \ldots \times K_n)$ the uniform closure in $C(K_1 \times \ldots \times K_n)$ of the algebra of all rational functions with singularities off $K_1 \times \ldots \times K_n$, and Q_i $(i = 1, \ldots, n)$ is the set of all non-peak points of $R(K_i)$.

. For a set $E \subset \mathbb{C}^n$ by ∂E we denote its topological boundary and by M(E) the set of all complex Borel measures on E. We introduce the following notation:

$$K_{j_1,\ldots,j_m} \stackrel{\text{df}}{=} K_{j_1} \times \ldots \times K_{j_m}, \quad 1 \leqslant j_1 \leqslant \ldots \leqslant j_m \leqslant n,$$

$$\Gamma_{j_1,\ldots,j_m} \stackrel{\text{df}}{=} \partial K_{j_1} \times \ldots \times \partial K_{j_m},$$

$$R_{j_1,\ldots,j_m} \stackrel{\text{df}}{=} R(K_{j_1} \times \ldots \times K_{j_m}),$$

$$Q_{j_1,\ldots,j_m} \stackrel{\text{df}}{=} Q_{j_1} \times \ldots \times Q_{j_m}.$$

310 M. Kosiek

For details and terminology concerning function algebras we refer to [4].

A measure μ is said to be *orthogonal* to a function algebra R, if $\int u d\mu = 0$ for all $u \in R$. The set of all measures orthogonal to R will be denoted by R^{\perp} .

By $B(Q_{1,...,n}, R_{1,...,n})$ we will denote the algebra of all functions u on $K_{1,...,n}$ such that there exists a bounded sequence u_k in $R_{1,...,n}$ converging to u pointwise on $Q_{1,...,n}$ (see [1], [2]), $||u|| \stackrel{\text{df}}{=} \inf \{ \sup_k ||u_k|| : u_k \in R_{1,...,n}, u_k \to u \}$ pointwise on $Q_{1,...,n}$.

The letter H will stand for a Hilbert space, L(H) for the algebra of all linear bounded operators an H. The algebra homomorphism $S: R_{1,\dots,n} \to L(H)$ is a representation if $||S(u)|| \le ||u|| \stackrel{\text{df}}{=} \sup ||u(x)|| \le K_{1,\dots,n}$ for all $u \in R_{1,\dots,n}$ (||T|| denotes the norm of $T \in L(H)$).

It is well known that for every $f, g \in H$ there is a complex measure $\mu_{f,g}$ on $K_{1,\ldots,n}$ such that

$$(S(u)f, g) = \int u d\mu_{f,g}, \quad u \in R_{1,...,n}, \quad ||\mu_{f,g}|| \le ||f|| \, ||g||,$$

with (f, g) denoting the scalar product of $f, g \in H$, and $||\mu||$ the total variation of a measure μ .

A collection $\{\mu_{f,g}\}_{f,g\in H}$ is called a system of elementary measures of S. If for an n-tuple T_1,\ldots,T_n of operators in L(H) there is a representation $S\colon R_{1,\ldots,n}\to L(H)$ such that $S(e_i)=T_i$, where $e_i(z_1,\ldots,z_n)=z_i$, then we say that $K_{1,\ldots,n}$ is a spectral set for T_1,\ldots,T_n and S is a representation of $R_{1,\ldots,n}$ generated by T_1,\ldots,T_n .

DEFINITION. An *m*-tuple of operators T_1, \ldots, T_m on H has the *property* F' if the only subspace reducing T_1, \ldots, T_m to normal operators with common spectral measure on $\Gamma_{1,\ldots,m}$ singular to $R_{1,\ldots,m}^{\perp}$ is the null space.

An *n*-tuple of operators T_1, \ldots, T_n on H has the property F if every m-tuple T_{j_1}, \ldots, T_{j_m} $(1 \le j_1 \le \ldots \le j_m \le n, m = 1, \ldots, n)$ has the property F'.

Our results are as follows:

THEOREM 1. Let $T_1, ..., T_n$ be an n-tuple of commuting operators in L(H), and $K_1 \times ... \times K_n$ a spectral set for $T_1, ..., T_n$.

If T_1, \ldots, T_n has property F, then the representation $S: R_{1,\ldots,n} \to L(H)$ generated by T_1, \ldots, T_n has a system of elementary measures belonging to the band of measures on $\Gamma_{1,\ldots,n}$ generated by representing measures for points in $Q_{1,\ldots,n}$.

THEOREM 2. Assume that an n-tuple $T_1, ..., T_n$ of commuting operators in L(H) has property F, and $K_1 \times ... \times K_n$ is a spectral set for $T_1, ..., T_n$. Then there is an algebra homomorphism

$$B(Q_{1,\ldots,n}, R_{1,\ldots,n}) \ni u \to u(T_1, \ldots, T_n) \in L(H)$$

such that

(1)
$$e_i(T_1, ..., T_n) = T_i$$
, where $e_i(z_1, ..., z_n) = z_i$ $(i = 1, ..., n)$,

(2)
$$||u(T_1, \ldots, T_n)|| \leq ||u||, \quad u \in B(Q_1, \ldots, R_1, \ldots, R_n),$$

(3) if $\sup_{k} ||u_k|| < \infty$, and $u_k \to u$ pointwise on $Q_{1,...,n}$, then $u_k(T_1, ..., T_n) \to u(T_1, ..., T_n)$ in the weak operator topology,

(4)
$$u(T_1, \ldots, T_n)^* = \tilde{u}(T_1^*, \ldots, T_n^*), \quad \text{where } \tilde{u}(z_1, \ldots, z_n) \stackrel{\text{df}}{=} \overline{u(\bar{z}_1, \ldots, \bar{z}_n)}.$$

2. We will employ a Cole-type decomposition of orthogonal measures, due to Bekken [1], [2], and the decomposition of operator representation induced by it.

Let E be an arbitrary set of complex measures on a compact set K. By E^s we will denote the set of all measures on K which are singular to all measures in E. A set B of measures on K is called a band (see [3], [5]) if $B^{ss} = B$. Every complex measure μ has a unique decomposition $\mu = \mu_B + \mu_s$ such that $\mu_B \in B$ and $\mu_s \in B^s$. It is easy to see that E^s is a band for every $E \subset M(K)$ and that E^{ss} is the smallest band which includes E. We call E^{ss} the band generated by E.

Let μ be a measure on $\Gamma_{1,\ldots,n}$. We define $\pi_{j_1,\ldots,j_m}\mu$ as follows:

$$\pi_{j_1,\ldots,j_m}\mu(E) \stackrel{\text{df}}{=} \mu(\{(z_1,\ldots,z_n)\in\Gamma_{1,\ldots,n}: (z_{j_1},\ldots,z_{j_m})\in E\})$$

for every Borel $E \subset \Gamma_{j_1,...,j_m}$, $1 \leqslant j_1 \leqslant ... \leqslant j_m \leqslant n$, m = 1, ..., n.

On the set $\Gamma_{1,...,n}$ we introduce the following bands of measures: B_0 — band generated by representing measures for points in $Q_{1,...,n}$,

$$B_{i_1,...,i_m} \stackrel{\text{df}}{=} \pi_{i_1,...,i_m}^{-1} ((R_{i_1,...,i_m}^{\perp})^s), \quad 1 \leq j_1 \leq \ldots \leq j_m \leq n, \ m = 1, \ldots, n.$$

Using properties of peak interpolation sets in the same way as in Lemma 4.1 of [2] and the decomposition theorem for orthogonal measures [4], II.7.11, we can prove the following

LEMMA 1. The bands B_0 and $B_{j_1,...,j_m}$ $(1 \leqslant j_1 \leqslant ... \leqslant j_m \leqslant n)$ are reducing, i.e., if μ is orthogonal to $R_{1,...,n}$, so is μ_{B_0} and so are all $\mu_{B_{j_1,...,j_n}}$.

A measure μ on $\Gamma_{1,\ldots,m}$ in called an A-measure (for $R_{1,\ldots,m}$) if $u_k \to 0$ weak-star in $L^{\infty}(|\mu|)$ whenever u_k is a bounded sequence in $R_{1,\ldots,m}$, and $u_k \to 0$ pointwise on $Q_{1,\ldots,m}$, $|\mu|$ denoting the variation measure of μ .

The main parts of Theorems 1 and 2 are the following propositions:

PROPOSITION 1. If a complex measure μ on $\Gamma_{1,\ldots,n}$ is singular to all bands B_{j_1,\ldots,j_m} $(1 \leq j_1 \leq \ldots \leq j_m \leq n, m = 1,\ldots,n)$, then μ is an A-measure.

Proposition 2. Every A-measure on $\Gamma_{1,\ldots,n}$ belongs to B_0 .

312 M. Kosiek

The proof of Proposition 2 is to be found in [2]. Proposition 1 will be proved by induction. We will use Bekken's result taken from [2] which does not depend on dimension:

LEMMA 2. Suppose μ is a measure on $\Gamma_{1,\ldots,n}$ orthogonal to $R_{1,\ldots,n}$. If for every sequence $\{u_k\}_{k=1}^{\infty}$ in $R_{1,\ldots,n}$ converging pointwise boundedly to 0 on $Q_{1,\ldots,n}$ and for every $a_i \in Q_i$ $(i=1,\ldots,n)$ we have $u_k(\cdot,a_i,\cdot) \to 0$ weak-star in $L^{\infty}(|\mu|)$, then μ is an A-measure.

For n = 1 and 2 Proposition 1 is due to Bekken [2]. Assume that it is valid for n-1.

Let μ be a measure satisfying the assumption of Proposition 1. It is enough to check that μ satisfies the assumption of Lemma 2 for i = n, that is, it is enough to prove that for every $a \in Q_n$ we have $u_k(\cdot, a) \to 0$ weak-star in $L^{\infty}(|\mu|)$ whenever u_k is a bounded sequence in $R_{1,\dots,n}$ which converges pointwise to 0 on $Q_{1,\dots,n}$.

The measure μ is by the assumption singular to all bands $B_{j_1,...,j_m}$, where $1 \leq j_1 \leq ... \leq j_m \leq n$; it is in particular singular to $(R_{1,...,n}^{\perp})^s$. Therefore, by the same argument as in the proof of [4], II. 7, 5, there is a measure ν in $R_{1,...,n}^{\perp}$ singular to all bands $B_{j_1,...,j_m}$ such that μ is absolutely continuous with respect to $|\nu|$.

Let $\{u_k\}_{k=1}^{\infty}$ be a bounded sequence in $R_{1,\ldots,n}$ such that $u_k \to 0$ on $Q_{1,\ldots,n}$. Fix $a \in Q_n$, and put

$$L \stackrel{\text{df}}{=} \{(z_1, \ldots, z_n) \in \Gamma_{1,\ldots,n} : u_k(z_1, \ldots, z_{n-1}, a) \not\rightarrow 0\}.$$

It is easy to see that $L = L \times \partial K_n$ where

$$L \stackrel{\text{df}}{=} \{(z_1, \ldots, z_{n-1}) \in \Gamma_1, \ldots, r-1: u_k(z_1, \ldots, z_{n-1}, a) \not\rightarrow 0\}.$$

The sequence $\{u_k(\cdot, a)\}_{k=1}^{\infty}$ is bounded in $R_{1,\dots,n-1}$ and converges pointwise to 0 on $Q_{1,\dots,n-1}$. By the induction assumption $\pi_{1,\dots,n-1}|\nu|$ is an A-measure, which implies $|\nu|(L) = (\pi_{1,\dots,n-1}|\nu|)(L) = 0$. Then also $|\mu|(L) = 0$ which means that μ is an A-measure.

3. Proof of Theorem 1. Let S be the representation of $R_{1,\ldots,n}$ in L(H) generated by T_1,\ldots,T_n . If B is a band of measures on $\Gamma_{1,\ldots,n}$, then we obtain a unique orthogonal decomposition of S into two representations ([7], Sec. 3):

$$S=S_B\oplus S_s,$$

where $S_B(S_s)$ has a system of elementary measures belonging singularly to B. We call S_B the B-part of S.

We will decompose S with respect to the bands $B_{j_1,...,j_m}$ $(1 \le j_1 \le ... \le j_m \le n)$. Let $\{B_1, B_2, ..., B_l\}$ be the ordered set of these bands

(the way of ordering is arbitrary). Then

$$S = S_0 \oplus S_1 \oplus \ldots \oplus S_t,$$

where S_0 is the B_0 -part of S and S_i (i = 1, ..., l) is the B_i -part of $S \oplus (S_0 \oplus S_1 \oplus ... \oplus S_{i-1})$.

The decomposition of S induces a decomposition of the space H into an orthogonal sum of closed subspaces

$$H = H_0 \oplus H_1 \oplus \ldots \oplus H_l$$

where $S|_{H} = S_{i}$ (i = 0, ..., l), $T|_{K}$ denoting the restriction of an operator (or an operator representation) T to a subspace K.

Fix a sequence j_1, \ldots, j_m $(1 \le j_1 \le \ldots \le j_m \le n)$ and consider the subalgebra of all functions in $R_{1,\ldots,n}$ which depend only on variables z_{j_1,\ldots,j_m} . We can identify this subalgebra with the algebra R_{j_1,\ldots,j_m} and restrict representations S_i $(i=1,\ldots,n)$ to this algebra (see [6]). Let us denote those restrictions by S_i' .

There is a number $p \in \{1, ..., l\}$ such that $B_{j_1,...,j_m} = B_p$. The representation S_p has a system of elementary measures $\{\mu_{f,g}^p\}_{f,g \in H} \subset B_p$. Then for every $v \in R_{j_1,...,j_m}$ we have

$$(S'_{p}(v)f, g) = (S_{p}(v)f, g) = \int_{\Gamma_{1,...,n}} v d\mu_{f,g}^{p} = \int_{\Gamma_{j_{1},...,j_{m}}} v d\pi_{j_{1},...,j_{m}} \mu_{f,g}^{p}.$$

Therefore $\{\pi_{j_1,\ldots,j_m}\mu_{f,g}^p\}_{f,g\in H}$ is a system of elementary measures of S_p' and, by definition of B_p , these all measures are singular to R_{j_1,\ldots,j_m}^\perp . Hence by [7], Theorem 4.2, S_p' can be extended to a *-representation of $C(\Gamma_{j_1,\ldots,j_m})$ with spectral measure singular to R_{j_1,\ldots,j_m}^\perp . It implies that $T_{j_q}|_{H_p} = S_p(e_{j_q}) = S_p'(e_{j_q})$ are normal operators with common spectral measure singular to R_{j_1,\ldots,j_n}^\perp . Since T_1,\ldots,T_n have property F then $H_p=\{0\}$. The same is true for every $p\in\{1,\ldots,l\}$. Hence the proof is complete.

4. Proof of Theorem 2. Let $S: R_{1,\ldots,n} \to L(H)$ be the representation generated by T_1, \ldots, T_n . We construct its extension into $B(Q_{1,\ldots,n}, R_{1,\ldots,n})$ in a following way:

If $u \in B(Q_{1,...,n}, R_{1,...,n})$, then there exists a bounded sequence u_k in $R_{1,...,n}$ converging to u pointwise on $Q_{1,...,n}$. Since by Proposition 1 every elementary measure $\mu_{f,g}$ $(f, g \in H)$ of S is an A-measure,

$$\int u_k d\mu_{f,g} \to \int u d\mu_{f,g}$$
.

Therefore the value $\int u d\mu_{f,g}$ does not depend on the choice of elementary measures of f, g, and we can define the operator $u(T_1, \ldots, T_n)$ as follows:

$$(u(T_1, \ldots, T_n)f, g) \stackrel{\text{df}}{=} \int ud\mu_{f,g}, \quad f, g \in H.$$

314 M. Kosiek

It is easy to see that $u(T_1, \ldots, T_n)$ is indeed a linear bounded operator on H. One can also show, following [3], Theorem 4.4, that the extension $B(Q_{1,\ldots,n}, R_{1,\ldots,n}) \ni u \to u(T_1, \ldots, T_n)$ of S is multiplicative and satisfies (1)-(4) in Theorem 2.

5. In Theorems 1 and 2 we made the assumption that T_1, \ldots, T_n had property F. This assumption is necessary, as the following example shows:

EXAMPLE. Denote by D the open unit disc on the complex plane. On $(\partial D)^3$ we define a measure $\mu \stackrel{\text{df}}{=} m_* \times v$, where m_* is the Lebesgue measure on the set $\Gamma_* = \{(z_1, z_2) \in (\partial D)^2 : z_1 = \overline{z}_2\}$, and $dv = e_3 dm$ with $e_3(z_1, z_2, z_3) = z_3$ and m denoting the Lebesgue measure on ∂D (Davie, unpublished).

LEMMA 3. The measure μ is orthogonal to $A(D^3)$ (algebra of all complex continuous functions on \bar{D}^3 which are analytic on D^3) and singular to B_0 .

Proof. Since for $u \in A(D^3)$

$$\int_{(\partial D)^3} u d\mu = \int_{\Gamma_a} \left(\int_{\partial D} u(z_1, z_2, z_3) dv(z_3) \right) dm_*(z_1, z_2)$$

$$= \int_{\Gamma_a} \left(\int_{\partial D} z_3 u(z_1, z_2, z_3) dm(z_3) \right) dm_*(z_1, z_2)$$

$$= \int_{\Gamma_a} 0 dm_*(z_1, z_2) = 0,$$

the measure μ is orthogonal to $A(D^3)$.

The set $\Gamma_* \times \partial D$ is a peak set for $A(D^3)$; consider the function $g(z_1, z_2, z_3) = e^{z_1 z_2 - 1}$. Hence, by Lemma 4 below, every measure in B_0 vanishes on it, that means μ is singular to B_0 .

LEMMA 4. If P is a peak set for a function algebra R, $x \notin P$ and μ_x is a representing measure for x, then $\mu_x|_P \equiv 0$.

Proof. Let g be a function in R such that g = 1 on P and |g(x)| < 1 for $x \notin P$. Then

$$\mu_{x}(P) = \int_{P} d\mu_{x} = \lim_{k \to \infty} \int_{Q} g^{k} d\mu_{x} = \lim_{k \to \infty} g^{k}(x) = 0.$$

Since μ_x is positive, $\mu_x|_P \equiv 0$.

We define a system of commuting operators T_1 , T_2 , T_3 on $L^2(|\mu|)$, where T_i (i = 1, 2, 3) is the operator of multiplication by the function e_i .

It is obvious that the representation generated by T_1 , T_2 , T_3 has a system of elementary measures which are singular to B_0 , because they are absolutely continuous with respect to $|\mu|$.

We can easily find the reason of this fact:

The measure m_* is singular to $A(D^3)^{\perp}$ which implies that (T_1, T_2) does not have the property F' and then (T_1, T_2, T_3) does not have the property F.

Remark. The measure μ in the Example shows that Theorem of my

paper A property of measures orthogonal to a tensor product of function algebras, Bull. Acad. Polon. Sci., Ser. Sci. Math. 27 (1979), 571-575, as stated there is not true. (The same refers to one of Bekken's results published in [1] [see VIII. 1. 10].) It is necessary to assume additionally in Theorems 1 and 3 of [6] that the pair of operators has property F'.

The Example implies also that it may exist a representation of algebra $R(K_1 \times K_2)$ in L(H) such that its restrictions to single algebras $R(K_i)$ (i = 1, 2) may be absolutely continuous. Hence part 4° of Theorem 2 [5] needs correction.

References

- [1] O. B. Bekken, Product of algebras on plane sets, U. C. L. A Thesis, 1972.
- [2] -, Rational approximation on product sets, Trans Amer. Math. Soc. 191 (1974), 301-316.
- [3] E. Briem, A. M. Davie, B. K. Øksendal, A functional calculus for pairs of commuting contractions, J. London Math. Soc. 7 (1974), 709-718.
- [4] T. W. Gamelin, Uniform algebras, Prentice-Hall, Englewood Cliff, New Jersey, 1969.
- [5] M. Kosiek, Decomposition and spectral properties of operator representations of the algebra $R(K_1 \times K_2)$, Bull. Acad. Polon. Sci., Ser. Sci. Math. 27 (1979), 577-582.
- [6] -, Lebesgue type decompositions of a pair of commuting Hilbert space operators, ibidem 27 (1979), 583.
- [7] F. H. Szafraniec, Decompositions of non-contractive operator-valued representations of Banach algebras, Studia Math. 42 (1972), 97-108.

Reçu par la Rédaction le 25, 06, 1980