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Representation generated by a finite number
of Hilbert space operators

by Marek Kosiek (Krakéow)

Abstract. In the present paper we extend part of results on pairs of commuting Hilbert
space operators contained in [3] and [6] to a multidimensional case.

The purpose of the present paper is to extend part of the results of [3]
and [6] on pairs of commuting Hilbert space operators to the case of any
finite number of operators.

The two-dimensional case is based on Cole’s decomposition theorem for
orthogonal measures (or rather on its generalization due to Bekken [2]). The
main reason that Cole’s decomposition holds true is that the algebra R(K)
has no completely singular orthogonal measures when K is a compact subset
of the complex plane C. But this property does not hold for K = C" where n
= 2. Therefore we cannot extend Cole’s decomposition to n-dimensional case
for n > 3 automatically.

1. Throughout this paper, K, ..., K, will denote compact subsets of the
complex plane C, C(K, x ... xK,) will denote the algebra of all complex
continuous functions, R(K; x ... x K,) the uniform closure in C(K, x... xK})
of the algebra of all rational functions with singularities off K, x ... x K,
and Q; (i=1,...,n) is the set of all non-peak points of R(K)).

. For a set Ec C" by JE we denote its topological boundary and by
M(E) the set of all complex Borel measures on E. We introduce the
following notation:

dr . .
K-il"‘-'jm=Kj1 X...XKJ'M, 1<]1S...<]M<n,
r = K d

Jpeenim = OKjy X 00 X 0K,

J1.

Rj,. i = R(Kj x... xK; ),

df

Qj,.....j,,, = le X .ne inm'
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For details and terminology concerning function algebras we refer
to [4].

A measure pu is said to be orthogonal to a function algebra R, if {udp
= 0 for all ue R. The set of all measures orthogonal to R will be denoted by
R™*.

By B(Q, ... Ry ., we will denote the algebra of all functions u on
K, ... such that there exists a bounded sequence u, in R, _, converging to u

pointwise on Q, ., (see [1], [2]), llull = inf {supllul: weR;, . u, —u
pointwise on @, ! .

The letter H will stand for a Hilbert space, L(H) for the algebra of all
linear bounded operators an H. The algebra homomorphism S: R,

— L(H) is a representation if [|S(u)|| < ||ul] d=rsup Nu(x): xeK, 5 for all

ueR, _, (|IT]| denotes the norm of Te L(H)).

It is well known that for every f, ge H there is a complex measure y, ,
on K, _, such that

(S, 9) = fudus,,  uweR, . el <IIS1Igll,

with (f, g) denoting the scalar product of f, ge H, and ||y|| the total variation
of a measure pu.
A collection {fiy ), 4n is called a system of elementary measures of S.
If for an n-tuple T, ..., T, of operators in L(H) there is a representation
S: R, .- L(H) such that S(e;) = T;, where ¢,(z,, ..., z,) = z;, then we say
that K, _,is a spectral set for T}, ..., T, and § is a representation of R, _,
generated by T;, ..., T,.

DEerFINITION. An m-tuple of operators T,, ..., T,, on H has the property F’

if the only subspace reducing T;, ..., T,, to normal operators with common
spectral measure on I'; _,, singular to Ry __, is the null space.

An n-tuple of operators T;, ..., T, on H has the property F if every m-
tuple T, ,.... T, (1<j,<...<jn<nm m=1,..,n) has the property F'.

Our results are as follows:

THeEOREM 1. Let T,, ..., T, be an n-tuple of commuting operators in L(H),
and K, x ... xK, a spectral set for T{, ..., T,. )

If T,, ..., T, has property F, then the representation S: R, _,— L(H)
generated by T, ..., T, has a system of elementary measures belonging to the
band of measures on I'y _, generated by representing measures for points in

Ql....,n'
THEOREM 2. Assume. that an n-tuple T, ..., T, of commuting operators in

L(H) has property F, and K, x ... xK, is a spectral set for T,, ..., T,.
Then there is an algebra homomorphism

B(Ql.....m Rl n)au_’u(Tla"" E)EL(H)



Finite number of Hilbert space operators 311

such that

(1) e(T, ..., T)=T, where e(zy,....,z,)=1z; (i=1,...,n),

(2) Hu(’Tl: CEERE) T;:)“ S “u”a uEB(Ql,...,m Rl,...,n)a

(3) if sup|lull < o, and u, —u pointwise on Q, ., then w(Ty, ..., T)
k

—u(Ty, ..., T,) in the weak operator topology,
4 u(Ty, ..., T)*=a(T¥, ..., T}y, where u(zy,...,z,) =ulZy, ..., Z,).

2. We will employ a Cole-type decomposition of orthogonal measures,
due to Bekken [1], [2], and the decomposition of operator representation
induced by it.

Let E be an arbitrary set of complex measures on a compact set K. By
E® we will denote the set of all measures on K which are singular to all
measures in E. A set B of measures on K is called a band (see [3], [5]) if B*
= B. Every complex measure y has a unique decomposition u = ug+ u, such
that uge B and p e B®. It is easy to see that E* is a band for every E = M (K)
and that E* is the smallest band which includes E. We call E* the band
generated by E.

Let x4 be a measure on I'; _,. We define Ty M @S follows:

.....

dr
Tiyooim H(E) = u(izy, .zl 0 (zj5-es ij)EE})

for every Borel E<T; ;. 1<ji<...Sjpsn,m=1,..., n
On the set I, _, we introduce the following bands of measures:

B, — band generated by representing measures for points in Q;  ,,
df — .
B.I'l» Jm = 7t11«1----J;»n((RJJ-1 ----- Jm)s)’ 1 <.Il g gJm < h, m= 15 ,

Using properties of peak interpolation sets in the same way as in
Lemma 4.1 of [2] and the decomposition theorem for orthogonal measures
[4], 11.7.11, we can prove the following

LeMMA 1. The bands B, and B;, _; (1 <j, <...<jn < n) are reducing,
i.e. if uis orthogonal to Ry ,, so is pg, and so are all Ho;

A measure gy on Iy , in called an A-measure (for Ry ) if u, -0
weak-star in L*(jy|) whenever u, is a bounded sequence in R, ., and 4, =0
pointwise on Q, ., |yl denoting the variation measure of pu.

The main parts of Theorems 1 and 2 are the following propositions:

ProposiTiON 1. If a complex measure u on 'y, is singular to all bands
Bj ..., I<ji<...€<jmusn,m=1,...,n), then pu is an A-measure.
ProrosiTioN 2. Every A-measure on I'y _, belongs to B,.
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The proof of Proposition 2 is to be found in [2]. Proposition 1 will be
proved by induction. We will use Bekken’s result taken from [2] which does
not depend on dimension:

LeMMA 2. Suppose u is a measure on I'y _, orthogonal to R, . If for
every sequence |, }y>, in R, , converging pointwise boundedly to O on Q,
and for every a;eQ; (i=1, ..., n) we have u, (-, a;, -) = 0 weak-star in L (|y]),
then u is an A-measure.

For n =1 and 2 Proposition 1 is due to Bekken [2]. Assume that it is
valid for n—1.

Let u be a measure satisfying the assumption of Proposition 1. It is
enough to check that u satisfies the assumption of Lemma 2 for i = n, that
is, it is enough to prove that for every aeQ, we have u, (-, a) » 0 weak-star
in L*(ju)) whenever u, is a bounded sequence in R; _, which converges
pointwise to 0 on Q, .

The measure p is by the assumption singular to all bands B; ;.
where 1 <j; ... <j, < n; it is in particular singular to (R{ ). Therefore,
by the same argument as in the proof of [4], II. 7, 5, there is a measure v in
R{.... singular to all bands B, {rig SUCH that u is absolutely continuous with
respect to |v|.

Let {u, )X, be a bounded sequence in R,
Fix aeQ,, and put

. such that y, -0 on Q, .

dr
= {(Zl, teey Z,,)Erlw..,,: u,‘(zl, veey Zy—1> a) ‘f"O}.

It is easy to see that L= L xJK, where
, df
L = {(zla LR ] zn—l)erl,...,n—l: uk(zlﬂ R AX} zn—la a)—ho}

The sequence |u, (-, a)};%, is bounded in R, _,_, and converges pointwise
to 0 on Q, _,—,- By the induction assumption n; _,_,|v| is an A-measure,
which implies |v|(L) = (m; ., [V[)(L) = 0. Then also |y (L) = 0 which means
that g is an A-measure.

3. Proof of Theorem 1. Let S be the representation of R, _, in L(H)
generated by T, ..., T,. If B is a band of measures on I'y _,, then we

obtain a unique orthogonal decomposition of S into two representations
([7], Sec. 3):

S =SB®S37

where S;(S,) has a system of elementary measures belonging singularly to B.
We call Sy the B-part of S.

We will decompose S with respect to the bands B; ;.
(1<j, £...<j.<n). Let |B,, B,, ..., B} be the ordered set-of these band
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(the way of ordering is arbitrary). Then
S =SO ®Sl @@S',

where S, is the By-part of § and S§; (i=1,...,]) is the B;-part of
SO, @S, ®...®S;_,).

The decomposition of S induces a decomposition of the space H into an
orthogonal sum of closed subspaces

H=H0®H1®...®Hl,

where S|y =8S; (i=0, ..., ), T|x denoting the restriction of an operator (or
an operator representation) T to a subspace K.

Fix a sequence j,, ..., jm (1 £j; £...<j,<n) and consider the sub-
algebra of all functions in R, , which depend only on variables 2y im
We can identify this subalgebra with the algebra R;  ; and restrict

representations S; (i =1, ..., n) to this algebra (see [6)). Let us denote those
restrictions by S;.
There is a number peil,...,!} such that B; ; =B, The

representation S, has a system of elementary measures {uf,}; ,cx < B,.
Then for every veR;  _; we have

(Slp(v)fa g) = (Sp (U)f, g) = ‘ vd“?.g = [ vdﬁjl.....j"l #_’;'.g'

..... n rjl,---.jm

Therefore {m; ;4% ,lsqen is @ system of elementary measures of S, and, by
definition of B thesc all measures are singular to Rl ,,,,, Hence by [7],
Theorem 4.2, S’ can be extended to a *-representatlon of C(I‘ Fpoedm) with
spectral measure singular to lel-""jnf It implies that ‘T}ql H, = S,,(ejq)
= Sp(e; ) are normal operators with common spectral measure singular to
R}l jo- Since Ty, ..., T, have property F then H, = {O}. The same is true

for every pe{l, ..., I}. Hence the proof is complete.

4. Proof of Theorem 2. Let §: R, _,— L(H) be the representation
generated by T,, ..., 7T,. We construct its extension into B(Q, ., R, ,) in
a following way:

If ue B(Q,,....»» Ry,...n), then there exists a bounded sequence u, in R,, ,
converging to u pointwise on @, ,. Since by Proposition 1 every
elementary measure u, , (f, geH) of S is an A-measure,

.fukd:uf-a —vjudufvﬂ'

Therefore the value [udy,, does not depend on the choice of elementary
measures of f, g, and we can define the operator u(T}, ..., T,) as follows:

((T,, ..., T)f, 9) = fudy,,, f geH.



314 M. Kosiek

It is easy to see that u(T,, ..., T,) is indeed a linear bounded operator on H.
One can also show, following [3], Theorem 4.4, that the extension
B(Q, .,..Ry J2u—-u(Ty,..., T) of Sis multiplicative and satisfies (1){4)
in Theorem 2.

5. In Theorems 1 and 2 we made the assumption that T, ..., T, had
property F. This assumption is necessary, as the following example shows:

ExaMmpLE. Denote by D the open unit disc on the complex plane. On
. df )
(6D)? we define a measure u = m, xv, where m, is the Lebesgue measure on

the set r* = !(21, ZZ)G(aD)ZZ 2y = Ez}, al‘ld dV = e3dm Wlth 63(21, 23, .7.'3)
= z3 and m denoting the Lebesgue measure on ¢D (Davie, unpublished).

Lemma 3. The measure pt is orthogonal to A(D?) (algebra of all complex
continuous functions on D* which are analytic on D) and singular to B,.

Proof. Since for ue A(D?)

j udu = _f(j u(z,, z,, Za)d\’(za))dm*(zh z,)

(aD)3 r, ¢b

= ‘ ( f zyulzy, z,, z;)dm(z;,))dm*(zl, z,)
., oD

= [0dm(z,, z,) =0,
I

the measure u is orthogonal to A(D?).

The set I',xdD is a peak set for A(D%; consider the function
g(zy, 2, 23) =€ 172" Hence, by Lemma 4 below, every measure in B,
vanishes on 1t, that means p is singular to B,.

LeMma 4. If P is a peak set for a function algebra R, x¢ P and u, is a
representing measure for x, then p.|p =0.

Proof. Let g be a function in R such that g =1 on P and |g(x)| < 1 for
x¢ P. Then

po(P) = [du, = lim {g*dp, = lim g*(x) = 0.
P k— o k=
Since p, is positive, u,|p = 0.

We define a system of commuting operators T,, T, Ty on I?(|y|), where
T (i=1, 2, 3) is the operator of multiplication by the function e;.

It is obvious that the representation generated by T,, T,, T3 has a
system of elementary measures which are singular to B,, because they are
absolutely continuous with respect to |u.

We can easily find the reason of this fact:

The measure m, is singular to A(D?)* which implies that (T;, T;) does
not have the property F' and then (7;, T;, T3) does not have the property F.

Remark. The measure u in the Example shows that Theorem of my



Finite number of Hilbert space operators 315

paper A property of measures orthogonal to a tensor product of function
‘algebras, Bull. Acad. Polon. Sci., Ser. Sci. Math. 27 (1979), 571-575, as stated
there is not true. (The same refers to one of Bekken’s results published in [1]
[see VIII. 1. 10].) It is necessary to assume additionally in Theorems 1 and 3
of [6] that the pair of operators has property F'.

The Example implies also that it may exist a representation of algebra
R(K, xK,) in L(H) such that its restrictions to single algebras R(K;) (i
= 1, 2) may be absolutely continuous. Hence part 4° of Theorem 2 [5] needs
correction.
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