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ON A FUNCTIONAL INEQUALITY OF KEMPERMAN
BY
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Some years ago Kemperman [4] raised the question whether there
exists a non-measurable real-valued function of a real variable f such
that, for all real z and all » in some right neighborhood of 0,

(*) 2f (v) < f(x + h) +f (@ +2h).

Here and elsewhere “measurable” refers to Lebesgue measure. The
motivation for this question was that Kemperman had shown [3] that
a function satisfying (%) and measurable on an interval was necessarily
monotone. ,

If a non-measurabhle function f satisfying (*) exists, then (*) also
has a non-measurable positive solution since if f satisfies () and

g9(x) = exp[f(2)],
then
9(@+h) +g(z+2h) = exp[f(z+h)]+exp[f(z+2h)]
> 2exp [} (f(@ +h) +f(#+2R))] > 2exp[f(2)] = 29(x)

by the inequality between arithmetic and geometric means. Indeed, the
same argument repeated shows that there would exist a non-measurable
solution whose lower bound may be given in advance.

One might also consider the more general inequality (where similar
results hold in the measurable case)

(%) 2f(z) < A —u)f(z+h)+ (1 +u)f(x +1h),

(*) being the case u = 0, ¢ = 2. Using an idea of Daroczy [2], Girod
showed that Kemperman’s question has a positive solution for certain
values of ¢ and . In particular, if
(i) -1 <u<l1,
(ii) ¢+ (w—1)/(u+1),
(iii) both ¢ and % are transcendental (%),
(1) Girod’s construction actually also handles the case where ¢ and u are al-

gebraic irrational and ¢ and (v —1)/(u+1) have the same minimal polynomial, and
satisfy (i) and (ii).
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then there is a non-measurable f satisfying (**) and, in fact, f = A?,
where A is a particularly constructed additive function.

When ¢ = —1 and v = 0, we have a sort of weak convexity, and
any Hamel function provides a non-measurable solution of (*). Indeed,
whenever ¢t = (u—1)/(u+1) (v # +1), f satisfies a sort of weak con-
vexity, and a non-measurable solution of (*x) can be constructed as
follows.

If » is rational, v # 41, then any Hamel function will se 3 e; if
is algebraic irrational, any derivation of the reals over the rationals
will serve; if u is transcendental, any derivation D of the reals over the
rationals such that D(t) > 0 will serve. On the other hand, clearly, v = —1
or v = +1 reduces to monotonicity for any ¢ 0.

The case of original interest, however, where { = 2 and ¥ = 0 remains
untreat 8, and surprisingly difficult. This note presents some partial
results concerning (*) which may, therefore, be of some interest.

THEOREM. Suppose f i8 a non-measurable function satisfying (*) for
all real x and all he[0, a), some right neighborhood of 0. Then

(a) f 8 mot of the form go H, where g is continuous and H additive
(o denotes functional composition);

(b) every interval I such that f restricted to 1 is mon-measurable con-
tains a set E; of positive outer measure such that, for xeEp,

D*f(x) = D f(®) = +o00 and D, f(x) =D_f(z) = —oo.

Before giving the proofs it is perhaps worth remarking that (a)
exhibits the strong contrast between Kemperman’s original problem
and the cases of (**) examined above and by Girod where the non-meas-
urable function is of the form go H. Also (b) holds for any non-measur-

able solution’ of (*x).
Proof of (a). Write (*) in the form

/

(1) f(=®) <%f(w+h)+%f(m+2h) for all # and all 2¢[0, a).

Now iterate by using (1) for #+h instead of x, and substituting
into (1). We have

1
f(z+h) <%f(m-|—2h)+—2—f(w+3h) for all real x and all ke[0, a),

which put into (1) gives

(2) f(=) <Zf(w+2h)+if(m+3h) -for all real  and all ‘he[O, a).
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Repeat the procedure this time using (1) for = +2h instead of x and
substitute in (2) for f(x-+2h) to arrive at

5 3
F(@) < g f(@+3h) + 2 fla+4h).
Continuing in this way it is easy to see by induction that one obtains
3+ 1\"[1
3) f@ <(f@+anfle+m+0n){3 o) |y
for all real x, all he[0, a), and all integers » > 1. Now suppose a¢[0, a).

Then a/ne[0, a) for all integers » > 1. Hence, for all integers n > 1 and
all a<[0, a),

) fl@) < (f(w+a)f (m+a+i“)) (i (1))(}))

n

fof =G 1) wm

Now

and so (4) yields

(5) flo)< 5 fla-+a) +  limint o+ a+ 2)

—>

for all real # and each a¢[0, a).

Now suppose, if possible, f is non-measurable and of the form go H,
where ¢ is continuous and H additive. Then, by (5),

2
(6) 9(H(2)) <7 g(H(@+a) +%liminfg(H(m+a+.:_;))

n—>oo

for all # and all a€[0, a).
But, by hypothesis,

n—-o00

liminfg(H(w+a+%)) = liminfg(H(w—}-a)—i—'% H(a))= g(H(z+a)),

and so f = goH would be monotone, contradicting f non-measurable.
Proof of (b). We use the following Theorem of Denjoy-Young-
-Saks (D-Y-S) (see [5], Chapter 9, Section 4):
THEOREM D-Y-S. The set of points x at which none of the following
Sfour conditions (o)-(8) hold has measure O for any finite-valued function F':
(¢) D*F(2) = D" F(x) = + o0, and D F(x) = D_F(x) = — oo;
(8) D*F(x) = D_F (x)1is finite, D, F(x) = —oco,and D™ F(x) = +oo;
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(y) D, F(x) = D" F(x) is finite, D_F(x) = —oo, and D*F(x)
= -4 00;

(3) D F(x) = D*F(2) = D™ F(x) = D_F(x) i8 finite.

This theorem, which holds when the space in question is an interval
as well as the whole real line, was proved by Denjoy for continuous F,
by Grace Young for measurable #, and by Saks for arbitrary F.

First observe that for an f satisfying (x) we have

J(@+h)—f(@) f(@+2h) —f()

0< - +2 o for he[0, a).
Hence
h) — 2h) —
0 < limint JETH=F@ o @2k —f(@)
0 + h R0+ 2h

= D, f(2)+2D" f().

Hence, if D, f(x) = — oo, then D f(x) = + oo, and so case (B) of the
Denjoy-Young-Saks Theorem holds nowhere for f.

We now use an argument of Banach [1] which we repeat here, since
it is brief and for the sake of completeness. Suppose D~ f(x) were finite a.e.
Let 8 =8, = {x: f(») < A}, where A is any given real number. Let
{z,} be an increasing sequence of real numbers, with x,eS, and let

r = lima,.

n—>oo

Suppose z¢8. Then f(x,) < A for all x, and f(x) > A, and hence

n—>00 r,—@

+- 00,

and so D~ f(x) = + oo. Then, by hypothesis, the set of such x has meas-
ure 0. Furthermore, as is well known, the set of points of S which are
limit points from the right but not from the left is at most countable.
Hence § differs from a closed set by a set of measure 0, and so is meas-
urable. Therefore, f is a measurable function, contradicting f non-meas-
urable. Hence D~ f must be infinite on a set of positive outer measure.
But as observed above, alternative (8) of the Denjoy-Young-Saks Theorem
holds nowhere for f, and so alternative («) must hold on such a set. Since
all arguments hold when the measure space is an interval, with Lebesgue
measure restricted to it, as well as for the whole real line, it follows that f
satisfies (b).

The same argument, clearly, holds for f a non-measurable solution
of (xx).
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Added in proof. On discussion of the above results with Professor
Kemperman, he was able to show that if there exists a non-measurable
function f satisfying (=) for all real # and all he[0, a), thén f is not of
the form go H, where H is additive and ¢ is any function. The argument
is quite different from the above which can only treat the case g con-
tinuous. Nevertheless, the above argument still seems of interest as
inequality (5) shows (replacing # by = — a) that if such a non-measurable
function f exists, then

liminff(w+%)>f(w) for all a¢[0, a),

—>

where 7 runs through the positive integers, since otherwise f would be
monotone.
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