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Borowiecki [1] gives several results on the chromatic number of product
graphs in terms of the chromatic numbers of the factors. At the end of his
paper, he conjectures a formula for the chromatic number of one particular
type of graph product called the alternative negation (the conjecture is also
listed as Problem 783 in the Colloquium Mathematicum problem series). We
show that neither inequality implied by Borowiecki’s formula holds.

As in [1], we restrict our attention to undirected graphs with no self-
loops and no multiple edges. The alternative negation G = G,|G, of two
graphs G, and G, is defined by

V(G) = V(G,) xV(Gy)
and for every pair of distinct vertices (x;, y;), (X2, y2)€ V(G)
(X1, Y1)—(x2. y2)€ E(G) if and only if x;—x,¢E(G,) or y,—y,¢E(G,).

Following the notation in [1]. let p, be the number of vertices of G,, and let

p, be the number of vertices of G,. For any graph G, let G be the

complement of G, let x(G) be the chromatic number of G, and let /(G) be the

set of isolated vertices of G. If (x, y) is a vertex of G,|G,, we say that x is its

first coordinate and that y is its second coordinate. For any vertex ye G, the

set of vertices {(x, y)| xe V(G,)} is called the copy of G, associated with y.
Borowiecki conjectures that

x(G,1G,) = max(d}, d%),
where
dt = 1(G>) (P —H(GN)+ P2l 1(Gy)l, 3= X(Gl)(l’z —I(G)l)+py 11 (G))l.
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We first exhibit a counterexample to show that the inequality
(1) x(G,1G,) < max(d{, d3)

does not hold. Consider the graphs G, and G, drawn in Fig. 1. The graph
G, has 4 vertices; the graph G, has 8 vertices. The reader can verify that
x(G,) = 2. Observe that in G, the vertices {y,, v, ¥3, Vs, ¥s} form a clique,
so they must all be colored differently; if we assign them the colors a, b, c, d,
e, respectively, we can then assign vertex ys the color ¢, and assign vertices
y, and yg the color e to complete a 5-coloring of G,. Inequality (1) would
require that z(G,|G;) < 20.
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Fig. 1. The graphs G, and G,

In G,|G, the graph induced by the five copies of G, associated with
{y1> Y2, V3> Y&, ys} is a clique of size 20, and each of those vertices must be
assigned a different color. The vertices in the copies associated with y, and
ys are connected to all of the vertices of the copies associated with
¥1> Y2, Y3, Ya; hence if we do not want to use any more colors, both of those
copies must be colored with the four colors assigned to

{(xls y5)s (x2a yS)’ (X3, yS)s (x49 yS)}

However, in G,|G, the vertices

{(xl: y5)’ (x2’ yS)’ (xl’ _Y7), (x2i y7)’ (x1! ys)’ (xz, yS)}

induce a 6-clique. They all need different colors, but only 4 of the initial 20
colors are available for them.

An entire class of similar counterexamples can be constructed as follows.
Assume that in every case df > d%; if there are no isolated vertices in either
factor, then this is equivalent to p, x(G;) = p,x(G,). Suppose G, has a
relatively large clique C’ that forces its chromatic number to be precisely the
size of this clique. Then we make G, some almost complete graph so that the
chromatic number of its complement is small, and we can satisfy d} > d%.
Although G, is dense, we rely on the fact that it has two vertices, x; and x,,
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that are not neighbors. Finally, we need enough vertices left over in G, to
form a clique C of size greater than p,/2, including exactly one of the
vertices, y,, of the clique C' in G,. We must use d¥ different colors for the
copies of G, associated with the vertices of C’, with p, colors for each copy.
All of the copies associated with the vertices of C must use the p, colors in
the copy associated with y.. However, there are more than p, vertices in
these copies of G; whose second coordinate is x, or x,; all of these vertices
form a clique in G,|G,, so we need more colors to color them. One can
usually add isolated vertices to such graphs without destroying the argument,
as long as the inequality df > d% is preserved.
We now exhibit a counterexample to the opposite inequality, i.e.,

2 x(G,|G3) > max(dt, d3).

Let H, be the complete graph on two vertices; let H, be a 5<cycle as drawn
in Fig. 2.
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Fig. 2. The graphs H, and H,

The graph H, is isomorphic to its complement; hence x(ﬁz)‘= 3, and
max (df, d%) = max(3 x2, 1 x5) = 6.

The graph (H,|H,) can be S-colored as follows: assign the color a to (x,, y,)
and (x,, ys), assign the color b to (x,, y,) and (x,, y,), assign the color ¢ to
(x4, ¥3) and (x3, y,), assign the color d to (x,, y,) and (x,, y;), and assign the
color e to (x,, ys) and (x;, y4). One can see that this coloring is proper by
observing that, for each pair of vertices with the same color, the first
coordinates are adjacent in H,, and the second coordinates are adjacent in
Hzo
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A lower bound on z(G,|G,) different from the one given by Borowiecki
can be obtained by considering the k-chromatic number which is discussed
by Lovasz [2] and Stahl [3]. The k-chromatic number y,(G) of a graph G is
the minimum number of colors needed to assign k distinct colors to each
vertex so that no two adjacent vertices share any color. If G, is the complete
graph on p, vertices, then

x(G,1G2) = %, (Gy).
Deleting edges from G, can only increase x(G,|G,). Thus we have
2(G11G2) 2 x,,(G2)  and  x(G41G2) > x,,(G)).
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