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Non-parametric convex hypersurfaces with a curvature restriction

by RoLr Scunemper (Freiburg i. Br.)

Abstract, If the Gauss—Kronecker curvature K of the graph of a convex C? function,
defined on {xeR": ||x]| < R), satisfies K > 1/a" with a constant a > 0, then R < a. This known
result is improved in so far as only K(x) 2 ¢(||x]l) is assumed, where ¢ is a function which
satisfies a certain inequality. At the same time, the differentiability assumption is dropped.

L Let f be a real function of class C2, defined on the ball
By :={xeR": ||x|| < R},

where ||*|| denotes the Euclidean norm on the n-dimensional real vector
space R" (n = 1). If the mean curvature H of the graph of f satisfies H > 1/a,
where a is a positive constant, then R < 4. This has been proved by Heinz
[6] for n =2 and by Chern [3] and Flanders [4] for n = 2. Now suppose
that f is convex, and let K denote the Gauss-Kronecker curvature of the
graph of f. If K > 1/a" with some a> 0, then H > K'" > 1/a; hence R < a.
We wish to generalize this latter result under two aspects. Firstly, we merely
assume that K is bounded below in a certain way, but not necessarily
bounded away from zero. Secondly, we consider general convex functions,
without a differentiability assumption, where the curvature restriction is
modified appropriately. , ,

We shall prove the following. If f: B; — R is convex and of class C* and
if the Gauss—Kronecker curvature K(x) of the graph of f at the point
(x, f(x)) satisfies

(1) K(x) 2 o(lxl) for xe€Bg,

where ¢ is a continuous real function with
a

(2) [ tdr=1/n
0

for some a > 0, then R < a (in fact, R < a in this case, as can be seen from
the proof).

For ¢ =1/a" we get the result mentioned above. Suppose that

 f(x) =z(|x])) with a convex C? function z on [0, o[. Define ¢ (r) := K(x),
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where ||x|| = . Then we have

a

J. o(r)r" tdr = J Oz dr =1 L ()’

[+2071F2 7 [[1+2 (07T Jo

a

0 0

In particular, if z'(0) =0 and lim z'(r) = oo, we get
r—0

T

[ oy tdr=1/n.
0

This shows that our result is, in a certain sense, best possible. Below we
shall use a symmetrization procedure to reduce the general case to the case
of rotational symmetry. ‘

To formulate a generalization without a differentiability assumption, we
make use of the Gaussian curvature measure. For a closed convex set 4 in
Euclidean space R"*! and a Borel subset .f < R""!, let %(A4, B) denote the
spherical Lebesgue measure of the subset of the unit sphere in R"*! which
consists of all outer unit normal vectors to A at points of "4 N 5. Then
%(A, ') is a measure over the Borel sets of R"*! which was introduced by
Aleksandrov [1], § 6 (see also [2], ch. V, § 2). If the boundary of A4 is
a regular C? hypersurface, then

w(A, )= [ Kdia™,
Y i
where K denotes the Gauss—Kronecker curvature of ¢4 and " is the
n-dimensional Hausdorfl measure. Hence it is clear that the theorem below
comprises the assertion made above. In the following we identify R"*! with
R"xR. If fis a convex function defined on By and if § is a Borel subset of
B, the interior of By, we define

%(f, ) := x(cpigraph f, B x ),
1(f. B):= A" (graph £ A (B x R).

THEOREM. Let n2 1, R> 0 and f: By — R a convex function. Suppose
that

(3) x(f, B)= [ @Ulxl) dn(f, x)  for every Borel set B = BY,
B

where ¢ is some non-negative continuous function which satisfies (2) with some
a>0. Then R < a.

The main idea of the proof is taken from Diskant [4], but the
symmetrization procedure here is different. It is based on the following
lemma. Let SO, denote the rotation group of R" (leaving the origin fixed),
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and write

D:= {(51, seny 5’(’ )51, ceey lk): kEN, 5{550", /‘siER, 1120

k
(=1,...k, Y 4=1}.

i=1
For 4-=(8y, ..., &, Ay, ..., 4)€D and any real function f on By define
the function Af by"

(Af) (x):= A f(01X)+...+ 4 f(0,x) for xeBy.

LEMMA. Let f: Bg — R be continuous. There exists a sequence (4));cn in D
such that .the sequence (4; f);cn converges uniformly to a function g which is
rotationally symmetric (i.e., satisfies g(6x) =g(x) for 6€S0, and xe& By).

Proof. For 0<r <R let

S(f, r):= Max f(x)— Min f(x).

Ixll=r Hxl=r

Clearly, S(f, *) is continuous. Write

R
S(f):={ S(fir)dr and s:= inf S(4f).
0 deD

Since the set {Af: 4eD) is equicontinuous and uniformly bounded,
there exists in D a sequence (4,);y such that (4, f),.y converges uniformly to
a (continuous) function g and (S(4; f));v converges to s. It is easy to see that
S(g) =lim S(4; f) =s. Now assume that s> 0. Then S(g, ry) > O for some
ro.- It is easy to find AeD for which S(4g, ro) < S(g, ro) (compare Pon-
trjagin [7], p. 214, from where the idea of the proof is taken). Since
S(4g,r)<S(g,r) for 0<r<R and S(h, ') is continuous, we deduce
S(4g) < S(g) =s. As 44; f — Ag uniformly, we have S(44, f) < s for some
index k. Since 44, f = A4'f for some A’e D, this contradicts the definition of s.
It follows that s = 0, hence S(g, r) = 0 for 0 < r < R. Thus the function g is
constant on each sphere [xeR": ||x|] =r]}, which proves the lemma.

Proof of the theorem. First let f;, f, be two convex functions on By
which satisfy (3). Let 0 <t <1 and f:=(1—1t) f,+1tf5. An obvious modifi-
cation of the argument used by Diskant [4], p. 612, together with the almost
everywhere differentiability of indefinite integrals, shows that f also satisfies
(3). By induction, every finite convex combination of convex functions
satisfying (3) again satisfies (3).

Now suppose that f: B = R is a convex function which satisfies (3).
Then for 4D, the function Af has the same property. By the lemma, there
exists a sequence (4)),y in D such that the sequence (4;f),y converges
uniformly to a rotationally symmetric function g. Clearly g is convex. The
uniform convergence implies that the epigraphs of 4, f converge, in the
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Hausdorff metric, to the epigraph of g. From the weak continuity of
curvature measures (see, e.g., Schneider [8], Proposition (3.10)) it follows that
the sequence of measures (x(4; f, *));en, defined over the Borel subsets of B,
converges weakly to the measure x(g, -). Similarly, defining

v(f, B):=[oix)dn(f, x) for every Borel set §  Bj,
[

we easily see (using the argument in [8], after (3.21)) that the sequence
(v(4, f, ))jev converges weakly to the measure v(g, -). We deduce that g also
satisfies (3).

Now we can write g(x) =z(|]x]]) for xeBz with a convex function
z: (0, R]— R. Let xeB} be a normal point of g in the sense of Aleksan-
drov [1]. The Gauss-Kronecker curvature K(x) of the graph of g at
(x, g(x)), defined as the product of the squares of the reciprocal semiaxes
of the indicatrix, exists and can be obtained from the Gauss curvature
measure by means of differentiation with respect to the surface area measure
(.#", restricted to graph g) by using suitable sequences of neighbourhoods
(compare Aleksandrov [1] and the argument of Diskant [4], § 3). It follows
from (3) that K(x) = ¢(||x])). On the other hand, z'(r) and z"(r) exist for
r =||x|}, and

'z
- rrl"'l [1+Zr(r)2]l+nj2 :
Now assume that R > a. The function 2’ is defined almost everywhere in

[0, R[ and we may extend it to a non-decreasing finite function on all
[0, R[. Then we get

K (x)

LR Y A O WA EA G et g o ]
n g n [[1 +z’(r)2]"/2_|0 2 J[1+zl(r)2]1+n/2 dr > J-Qa(r)’ dr > ot
0 0

a contradiction, which shows that R < a.
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