The radius of univalence and starlikeness of a certain class of analytic functions

by K. S. PADMANABHAN (Madras, India)

1. Introduction and statement of results. Suppose that $f(z) = z + a_2 z^2 + \dots$ and $g(z) = z + b_2 z^2 + \dots$ are analytic for |z| < 1.

Recently, Ratti [4] proved, inter alia, the following theorems:

- A. If $\operatorname{Re}\{g(z)/z\} > 0$ and $\operatorname{Re}\{f(z)/g(z)\} > 0$ for |z| < 1, then f is starlike and univalent for $|z| < \sqrt{5} 2$.
- B. If $\operatorname{Re}\{g(z)/z\} > 0$ and |f(z)/g(z)-1| < 1 for |z| < 1, then f is univalent and starlike for $|z| < \frac{1}{4}(\sqrt[4]{17}-3)$.
- C. If $\operatorname{Re}\{g(z)/z\} > \frac{1}{2}$ and $\operatorname{Re}\{f(z)/g(z)\} > 0$ for |z| < 1, then f is starlike and univalent for $|z| < \frac{1}{3}$.
- D. If $\text{Re}\{g(z)/z\} > \frac{1}{2}$ and |f(z)/g(z) 1| < 1 for |z| < 1, then f is univalent and starlike for $|z| < r_0$, where r_0 is the smallest positive root of the equation $4 4r 13r^2 2r^3 r^4 = 0$ $(0.4 < r_0 < \sqrt{2} 1)$.

All the results are sharp.

The object of this note is to generalize the results stated above and to prove the following theorems:

THEOREM 1. If $\operatorname{Re}\{g(z)/z\} > 0$ and |f(z)/g(z) - a| < a for |z| < 1, where a is a fixed real number $> \frac{1}{2}$, then f is univalent and starlike for $|z| < r_0$, where r_0 is the smallest positive root of the equation $r^3(1-a) + r^2(3-5a) - 3ra + a = 0$, and the bound r_0 is sharp.

Putting a = 1 one obtains Theorem B as a special case of Theorem 1, and letting a tend to infinity, Theorem A can be deduced from Theorem 1 as a corollary.

THEOREM 2. If $\operatorname{Re}\{g(z)/z\} > \frac{1}{2}$ and |f(z)/g(z) - a| < a for |z| < 1, where a is a fixed real number $\geqslant 1$, then f is univalent and starlike for $|z| < r_0$, where r_0 is the smallest positive root of the equation $4a^2 - 4ar - (24a^2 - 12a + 1)r^2 - (32a^2 - 36a + 6)r^3 - (12a^2 - 20a + 9)r^4 = 0$. The bound r_0 is sharp.

Theorem D is special case of the above theorem with a = 1, and Theorem C is then deduced by letting a tend to infinity.

2. Proofs of theorems. We need the following lemmas for our discussion.

LEMMA 1. Let F(z) be analytic for |z| < 1 and satisfy $\operatorname{Re}\{F(z)\} > a$, $0 \leqslant a < 1$ for |z| < 1 and let F(0) = 1. Then we have

(1)
$$F(z) = \{1 + (2\alpha - 1)z\psi(z)\}/\{1 + z\psi(z)\},$$

where $\psi(z)$ is analytic for |z| < 1 and satisfies $|\psi(z)| \le 1$ for |z| < 1; conversely, any function F(z) given by the above formula is analytic for |z| < 1 and satisfies $\text{Re}\{F(z)\} > a$ for |z| < 1.

The above lemma was proved by the author in [3].

LEMMA 2. Suppose G(z) is analytic for |z| < 1 and G(0) = 1. If |G(z) - a| < a, where a is any real number greater than $\frac{1}{2}$, then

(2)
$$G(z) = \left\{1 + z\varphi(z)\right\} / \left\{1 + \left(\frac{1-a}{a}\right)z\varphi(z)\right\},$$

where $\varphi(z)$ is analytic for |z| < 1 and $|\varphi(z)| \le 1$ for |z| < 1. Conversely, any function G(z) given by the above formula is analytic in the unit disc and satisfies the condition |G(z) - a| < a, $a > \frac{1}{2}$.

Proof. Setting h(z) = (G(z) - a)/a, we note that h(z) is analytic in the unit disc and |h(z)| < 1 for |z| < 1, h(0) = (1-a)/a. Putting

$$\psi(z) = \frac{h(z) - h(0)}{1 - h(0)h(z)},$$

we observe that $\psi(z)$ is analytic in the unit disc, $\psi(0) = 0$, $|\psi(z)| < 1$ for |z| < 1 since |h(z)| < 1 for $\alpha > \frac{1}{2}$ and |z| < 1. Therefore, Schwarz's lemma applied to $\psi(z)$ yields $|\psi(z)| \le |z|$ for |z| < 1. Hence we can write $\psi(z) = z\varphi(z)$, where $\varphi(z)$ is analytic in the unit disc and satisfies $|\varphi(z)| \le 1$ there.

Expressing h(z) in terms of $\varphi(z)$, we have

$$h(z) = \{(1-\alpha)/\alpha + z\varphi(z)\}/\{1+z\varphi(z)(1-\alpha)/\alpha\}$$
.

Thus we get

$$G(z) = a + ah(z) = \{1 + z\varphi(z)\}/\{1 + z\varphi(z)(1-a)/a\}.$$

Conversely, if G(z) is given by the above formula, where $\varphi(z)$ is analytic for |z| < 1 and $|\varphi(z)| \le 1$, then clearly G(z) is analytic for |z| < 1, since

$$|(1-a)z\varphi(z)/a| \leqslant |1-a||z|/a < 1$$
 for $|z| < 1$,

since $a > \frac{1}{2}$. Moreover,

$$|(G(z)-a)/a| = \left|\frac{1-a+az\varphi(z)}{a+(1-a)z\varphi(z)}\right| < 1,$$

provided

$$|1-a+az\varphi(z)|^2 \leq |a+(1-a)z\varphi(z)|^2$$
.

The above inequality is equivalent to the following one:

$$\{a^2-(1-a)^2\}|z\varphi(z)|^2\leqslant \{a^2-(1-a)^2\},$$

which is true for |z| < 1, since $|\varphi(z)| \le 1$ and $a > \frac{1}{2}$.

Thus G(z) given by formula (2) represents an analytic function satisfying |G(z)-a| < a, $a > \frac{1}{2}$ for |z| < 1.

The proof of the lemma is complete.

LEMMA 3. Let $g(z) = z + b_2 z^2 + \dots$ be analytic for |z| < 1 and satisfy $\operatorname{Re} \{g(z)/z\} > 0$ for |z| < 1. Then for |z| < 1, we have

$$\operatorname{Re}\left\{zg'(z)/g(z)\right\} > \frac{(1-2|z|-|z|^2)}{(1-|z|^2)}.$$

The proof of the above lemma is implicitly contained in Theorem 2, [2], but the independent proof which we give below also is of some interest.

Proof. Since $\text{Re}\{g(z)/z\} > 0$ for |z| < 1, we can apply Lemma 1 to g(z)/z with $\alpha = 0$ and write

(3)
$$g(z)/z = (1-z\varphi(z))/(1+z\varphi(z)),$$

where $\varphi(z)$ is analytic and satisfies $|\varphi(z)| \leq 1$ for |z| < 1. Differentiating (3) yields

(4)
$$zg'(z)/g(z) = 1 - 2\left\{\frac{z\varphi(z) + z^2\varphi'(z)}{1 - (z\varphi(z))^2}\right\}.$$

For a function $\varphi(z)$ with the above properties we have ([1], p. 18)

(5)
$$|\varphi'(z)| \leq \frac{1 - |\varphi(z)|^2}{1 - |z|^2}.$$

Denoting $|\varphi(z)|$ by x, |z| by a and using (5), we obtain

$$\left|\frac{z\varphi(z)+z^2\varphi'(z)}{1-(z\varphi(z))^2}\right| \leqslant \frac{ax+a^2(1-x^2)/(1-a^2)}{(1-a^2x^2)} = \frac{a(x+a)}{(1-a^2)(1+ax)}.$$

The expression (a+x)/(1+ax) increases with x for a fixed a and its maximal value 1 is attained for x = 1. Hence, by (4), we get

$$\operatorname{Re}\left\{\frac{zg'(z)}{g(z)}\right\}\geqslant 1-2\left|\frac{z\varphi(z)+z^2\varphi'(z)}{1-(z\varphi(z))^2}\right|\geqslant 1-\frac{2a}{1-a^2}=\frac{1-2a-a^2}{1-a^2}.$$

The proof of the lemma is complete.

We now are in a position to prove the theorems.

Proof of Theorem 1. Clearly f(z)/g(z) is analytic for |z| < 1, since the condition $\text{Re}\{g(z)/z\} > 0$, |z| < 1 ensures that $g(z) \neq 0$ for $z \neq 0$ in the unit disc. f(z)/g(z) satisfies the hypotheses of Lemma 2 and hence we have

$$f(z)/g(z) = \frac{1+z\varphi(z)}{1+(1-a)z\varphi(z)/a},$$

where $\varphi(z)$ is analytic for |z| < 1 and $|\varphi(z)| \le 1$ for |z| < 1. Differentiation of the above formula gives

$$egin{split} rac{zf'(z)}{f(z)} &= rac{zg'(z)}{g(z)} + rac{zarphi(z) + z^2arphi'(z)}{1 + zarphi(z)} - rac{(1-a)}{a} \; rac{ig(zarphi+z^2arphi'(z)ig)}{ig(1 + (1-a)zarphi(z)/aig)} \ &= rac{zg'(z)}{g(z)} + rac{(2a-1)ig(zarphi(z) + z^2arphi'(z)ig)}{ig(1 + zarphi(z)ig)(a + (1-a)zarphi(z)ig)}. \end{split}$$

Thus we get

(6)
$$\operatorname{Re}\left\{\frac{zf'(z)}{f(z)}\right\} \geqslant \operatorname{Re}\left\{\frac{zg'(z)}{g(z)}\right\} - (2a-1)\left|\frac{z\varphi(z) + z^2\varphi'(z)}{(1+z\varphi(z))(a+(1-a)z\varphi(z))}\right|.$$

We have the following estimates

(7)
$$|z\varphi(z) + z^2\varphi'(z)| \leq |z\varphi(z)| + \frac{|z|^2(1 - |\varphi(z)|^2)}{(1 - |z|^2)}$$

and, for $1 \geqslant a > \frac{1}{2}$,

$$\begin{aligned} \left| \left(1 + z\varphi(z) \right) \left(\alpha + (1 - \alpha) z\varphi(z) \right) \right| &\geqslant \left(1 - \left| z\varphi(z) \right| \right) \left(\alpha - (1 - \alpha) \left| z\varphi(z) \right| \right) \\ &= \alpha - \left| z\varphi(z) \right| + (1 - \alpha) \left| z\varphi(z) \right|^2. \end{aligned}$$

On the other hand, for a > 1,

$$egin{aligned} ig|ig(1+zarphi(z)ig)ig(a+(1-a)zarphi(z)ig)ig| &=ig|a+zarphi(z)+(1-a)ig(zarphi)^2ig| \ &\geqslant a-|zarphi(z)|-(a-1)|zarphi(z)|^2 \ &=ig(a-(1-a)|zarphi(z)|ig)ig(1-|zarphi(z)|ig). \end{aligned}$$

Thus, for all $a > \frac{1}{2}$, we have

(8)
$$\left| \left(1 + z \varphi(z) \right) \left(a + (1-a) z \varphi(z) \right) \right| \geqslant a - |z \varphi(z)| + (1-a) |z \varphi(z)|^2.$$

Using the above estimates, the estimate for Re $\{zg'(z)/g(z)\}$ from Lemma 3, and writing |z|=a, $t=|z\varphi(z)|$, we obtain from (6)

(9)
$$\operatorname{Re}\left\{\frac{zf'(z)}{f(z)}\right\} \geqslant \frac{1-2a-a^2}{1-a^2} - \frac{(2a-1)\{t(1-a^2)+a^2-t^2\}}{(1-a^2)\{a-t+(1-a)t^2\}}.$$

Therefore $\operatorname{Re} \{zf'(z)/f(z)\} > 0$, provided

$$\begin{array}{ll} (10) & t^2\{(1-a)(1-2a-a^2)+(2a-1)\}+t\{(1-2a)(1-a^2)-1+2a+a^2\}+\\ & +a(1-2a-a^2)-(2a-1)a^2>0\,. \end{array}$$

We note that $0 \le a < 1$ and $0 \le t \le a$.

Denoting the left-hand member of inequality (10) by E(t), we note that E'(t) vanishes for

(11)
$$t = t_1 = \frac{a(1-a^2)-a}{a-(1-a)(a^2+2a)}.$$

For $0 \le a \le \sqrt{2} - 1$ and $a > \frac{1}{2}$, it is easily seen that the expressions $a(1-a^2) - a$ and $a - (1-a)(a^2 + 2a)$ both are positive. Thus t_1 is positive. Also E''(t) is positive for $a > \frac{1}{2}$ and $a < \sqrt{2} - 1$.

Now, $t_1 \geq a$, respectively, when

$$a^3(1-a)+a^2(2-3a)-a(1+a)+a \ge 0$$
.

Let P(a) denote the left-hand side of the above inequality. An analysis of the equation P(a)=0 shows that for any $a>\frac{1}{2}$ there is only one root of P(a)=0 lying between 0 and 1, namely $\sqrt{2}-1$. Thus for $0 \le a < \sqrt{2}-1$, t_1 exceeds a and E(t) attains its minimum at t=a for $0 \le t \le a$. Hence E(a)>0 would imply that E(t)>0 for $0 \le t \le a$. This condition, after a simplification reduces to

(12)
$$a^3(1-a) + a^2(3-5a) - 3aa + a > 0.$$

Denote by Q(a) the left-hand side of the above inequality. An analysis of the equation Q(a)=0 shows that for any $a>\frac{1}{2}$, it has only one positive root lying between 0 and 1. Let the root be called r_0 . Then Q(a)>0 for $0\leqslant a < r_0$; we shall show that $r_0<\sqrt{2}-1$. In fact, a direct computation shows that $Q(\sqrt{2}-1)=(2-\sqrt{2})(1-2a)<0$ for $a>\frac{1}{2}$. Since Q(a) vanishes only once for $0\leqslant a<1$, it immediately follows that $r_0<\sqrt{2}-1$. Thus the condition $\operatorname{Re}\{zf'(z)/f(z)\}>0$ is satisfied for $|z|< r_0$ and it follows directly that f(z) is univalent and starlike for $|z|< r_0$. To see that the bound r_0 is sharp, we choose g(z)=z(1+z)/(1-z) and f(z) so that f(z)/g(z)=(1+z)/(1+z(1-a)/a). Evidently $\operatorname{Re}\{g(z)/z\}=\operatorname{Re}\left\{\frac{1+z}{1-z}\right\}>0$ for |z|<1 and

$$|f(z)/g(z)-a|=\left|rac{1-a+az}{1+z(1-a)/a}
ight|=a\left|\left(z+(1-a)/a
ight)/\left(1+z(1-a)/a
ight)
ight|< a$$

$$\text{for } |z|<1, \text{ since } |(1-a)/a|<1; \text{ consequently } \left\{\frac{z+(1-a)/a}{1+z(1-a)/a}\right\} \text{ defines a}$$

bilinear transformation which maps the disc |z| < 1 onto itself. For our choice of f and g, we have

$$zf'(z)/f(z) = (1+2z-z^2)/(1-z^2)+z(2a-1)/\{(1+z)(a+z(1-a))\} = 0,$$

whenever

$$a+3az+(3-5a)z^2-(1-a)z^3=0$$
.

 $z = -r_0$ satisfies the above equation and, consequently, the function f(z) is not univalent in any disc |z| < R if R exceeds r_0 . The proof of Theorem 1 is complete.

Proof of Theorem 2. Arguing, as in Theorem 1, we have

(13)
$$\operatorname{Re}\left\{\frac{zf'(z)}{f(z)}\right\} \geqslant \operatorname{Re}\left\{\frac{zg'(z)}{g(z)}\right\} - \frac{(2\alpha - 1)|z\varphi(z) + z^2\varphi'(z)|}{\left|\left(1 + z\varphi(z)\right)\left(a + (1 - a)z\varphi(z)\right)\right|}.$$

Estimates (7) and (8) yield

$$(14) \qquad \left| \frac{\{z\varphi(z) + z^2\varphi'(z)\}(2a-1)}{(1+z\varphi(z))(a+(1-a)z\varphi(z))} \right| \leq \frac{(2a-1)\{t(1-a^2) + (a^2-t^2)\}}{(1-a^2)\{a-t+(1-a)t^2\}},$$

where a is written for |z| and t for $|z\varphi(z)|$. Denoting the right-hand member of inequality (14) by F(t), we observe that F(t) increases with t for a fixed a, and hence attains its maximum at t=a for $0 \le t \le a$. This maximal value $F(a)=(2a-1)a/\{a-a+(1-a)a^2\}$. Hence we can replace the right-hand side of (14) by F(a) and obtain

$$\left|\frac{\{z\varphi(z)+z^2\varphi'(z)\}(2a-1)}{(1+z\varphi(z))(a+(1-a)z\varphi(z))}\right| \leqslant \frac{(2a-1)a}{\{a+a(a-1)\}\{1-a\}}.$$

Again, since $\text{Re}\{g(z)/z\} > \frac{1}{2} \text{ for } |z| < 1$, we have, by Lemma 1 with $a = \frac{1}{2}$,

(16)
$$g(z)/z = 1/\{1+z\varphi(z)\},$$

where $\psi(z)$ is analytic in the unit disc and $|\psi(z)| \leq 1$ for |z| < 1. Differentiating (15) we obtain

(17)
$$\frac{zg'(z)}{g(z)} = 1 - \frac{\left(z\psi(z) + z^2\psi'(tz)\right)}{\left(1 + z\psi(z)\right)}.$$

Substituting (15) and (17) into (13) we get

(18)
$$\operatorname{Re}\left\{\frac{zf'(z)}{f(z)}\right\} \ge 1 - \frac{(2\alpha - 1)a}{(\alpha + a(\alpha - 1))(1 - a)} - \operatorname{Re}\left\{\frac{z\psi(z) + z^2\psi'(z)}{1 + z\psi(z)}\right\}$$

$$\ge \frac{\alpha - 2a\alpha + (1 - a)a^2}{a - a + (1 - a)a^2} - \left|\frac{z\psi(z) + z^2\psi'(z)}{1 + z\psi(z)}\right|.$$

Writing a for |z|, x for $|\psi(z)|$ and using the estimate $|\psi'(z)| \le (1-|\psi(z)|^2)/(1-|z|^2)$ for |z| < 1 we obtain

$$\left|\frac{z\psi(z)+z^2\psi'(z)}{1+z\psi(z)}\right|\leqslant \frac{a(x+a)}{1-a^2}\leqslant \frac{a}{1-a}.$$

Setting (19) in (18) we get

(20)
$$\operatorname{Re}\left\{\frac{zf'(z)}{f(z)}\right\} \geqslant \frac{a-2\,aa+(1-a)\,a^2}{a-a+(1-a)\,a^2} - \frac{a}{1-a}.$$

Therefore $\text{Re}\{zf'(z)/f(z)\}>0$, provided

(21)
$$2a^{2}(1-a)-3aa+a>0.$$

Let us denote the left-hand side of inequality (21) by $P_1(a)$ and observe that the equation $P_1(a) = 0$ has a unique positive root r_1 lying between 0 and 1 so that, for $0 \le a < r_1$, $P_1(a) > 0$. It follows that f(z) is starlike and univalent for $|z| < r_1$. We are now going to investigate whether f(z) must be starlike in a larger disc. To this end we sharpen the first of the estimates (18) for $|z| \ge r_1$ as follows:

Since

$$\operatorname{Re}\left\{rac{z\psi(z)+z^2\psi'(z)}{1+z\psi(z)}
ight\}=\operatorname{Re}rac{\left(z\psi(z)+z^2\psi'(z)
ight)\left(1+\overline{z\psi(z)}
ight)}{|1+z\psi(z)|^2}$$
 ,

it follows from the first of inequalities (18) that $\operatorname{Re} \{zf'(z) | f(z)\} > 0$ provided

$$egin{aligned} & \operatorname{Re}\left[\left\{a-2\,a\,lpha+(1-a)\,a^2
ight\}|1+z\psi(z)|^2-\ & -\left\{(a-a)(1-a)\,a^2
ight\}\left\{z\psi(z)+z^2\psi'(z)
ight\}\left\{1+\overline{z\psi(z)}
ight\}
ight]>0\,, \end{aligned}$$

that is, provided

$$\begin{split} a - 2aa + (1-a)a^2 + |z\psi(z)|^2 a (1-2a) + \\ + & \operatorname{Re} \big[\big(z\psi(z) \big) \big(a - a (4a-1) + a^2 (1-a) \big) - \\ & - \big\{ a - a + (1-a) \, a^2 \big\} z^2 \psi'(z) \big(1 + \overline{z\psi(z)} \big) \big] > 0 \,. \end{split}$$

Since the real part of a complex number is equal to that of its conjugate we are free to replace, in the left-hand member of the above inequality, a complex quantity by its conjugate. Doing this wherever necessary, and re-arranging we note that the above inequality holds, provided

(22)
$$\operatorname{Re} \left[\left\{ \left(a - a + (1 - a) a^2 \right) z^2 \psi'(z) + \left((a - 1) a^2 + a (4a - 1) - a \right) \right\} \left\{ \overline{1 + z \psi(z)} \right\} \right]$$
 $< a (2a - 1) \left(1 - |z \psi(z)|^2 \right).$

Now we have the following estimates:

(23)
$$\operatorname{Re}\left\{z^{2}\psi'(z)\left(1+\overline{z\psi(z)}\right)\right\} \leq |z|^{2}|\psi'(z)|\left(1+|z\psi(z)|\right) \\ \leq |z|^{2}\left(1-|\psi(z)|^{2}\right)\left(1+|z\psi(z)|\right)/(1-|z|^{2}) \\ = \left\{a^{2}(1-x^{2})/(1-a^{2})\right\}\left\{1+|z\psi(z)|\right\},$$

where $a = |z|, x = |\psi(z)|.$

Again, for $1>a\geqslant r_1$, $\{-a+a(4a-1)+(a-1)a^2\}\geqslant 0$ provided r_1 is not less than the only positive root a_0 of the equation $(a-1)a^2+a(4a-1)-a=0$. To see this, let us set $P_2(a)=(a-1)a^2+a(4a-1)-a$ and compare it with $P_1(a)$, the left-hand side of formula (21). Let a_0 denote the positive root of $P_2(a)=0$. Since $a\geqslant 1$, we have $P_1(a_0)=P_1(a_0)+a_0(a-1)=a^2(1-a)+a_0(a-1)=(a-1)(a_0-a_0^2)\geqslant 0$. Since r_1 is the only positive root of the equation $P_1(a)=0$ and $P_1(a)>0$ for $0\leqslant a\leqslant r_1$, it follows that $a_0\leqslant r_1$. Thus $(a-1)a^2+a(4a-1)-a>0$ and

$$(a-a)+(1-a)a^2 = (a+(a-1)a)(1-a) > 0$$
 for $r_1 < a < 1$.

So, we see, by (23), that the left-hand member of inequality (22) does not exceed, for $a \ge r_1$, the value of the expression

$$\{(a+(a-1)a)a^2(1-x^2)/(1+a)+(a-1)a^2+a(4a-1)-a\}\{1+ax\}.$$

Hence inequality (22) holds provided $a \geqslant r_1$ and

$$(a+(a-1)a)a^2(1-x^2)+(1+a)\{(a-1)a^2+a(4a-1)-a\} < a(1+a)(2a-1)(1-ax),$$

that is, provided

$$(24) \quad a^2x^2(a+(a-1)a)-ax(2a-1)(a+a^2)+(1+a)\{a-2aa+a^2(1-a)\}-a^2a-a^3(a-1)>0.$$

Denoting the left-hand side of (24) by p(x), we see that p'(x) = 0 for $x = x_1 = (2a-1)(1+a)/\{2a+2(a-1)a\}$ and p''(x) > 0. Thus, for a fixed a, p(x) attains its minimum at $x = x_1$. Also $x_1 < 1$ for a < 1. Hence $p(x_1) > 0$ would imply that p(x) > 0 for any fixed a under consideration. This condition reduces after a simplification to the following inequality:

$$(25) -a^4(12a^2-20a+9)-a^3(32a^2-36a+6)-a^2(24a^2-12a+1)-a^2(24a^2-12a$$

Let T(a) denote the left-hand member of the above inequality. For $a \ge 1$ the equation T(a) = 0 has only one positive root which lies in the interval (0,1), which we call r_0 . For $a < r_0$ inequality (25) holds and consequently inequality (22) holds for $a \ge r_1$ and $a < r_0$. Thus $\text{Re}\{zf'(z)|f(z)\} > 0$ for $|z| \ge r_1$ and $|z| < r_0$. In fact, one could verify directly that $r_0 > r_1$ for $a \ge 1$. However, we shall produce an example of a function f(z) such

that f'(z) = 0 for $z = r_0$. This would imply not only that r_0 cannot be less than r_1 (since we have already proved that all functions f(z) of the class under consideration are univalent and starlike in $|z| < r_1$), but also prove that the bound r_0 we have obtained is sharp. To this end we consider the function f(z) = g(z)(1-z)/(1-z(1-a)/a), where $g(z) = z/\{1+z\psi(z)\}$, $\psi(z) = (z-b)/(1-bz)$ and b is defined by

(26)
$$\frac{r_0 - b}{1 - br_0} = \frac{(2a - 1)(1 + r_0)}{2\{a + (a - 1)r_0\}}.$$

Simplifying (26) we get

$$b = \frac{1+r_0}{2a+(2a-1)r_0}-1.$$

Evidently 0 > b > -1 and $\psi(z)$ is a bilinear transformation mapping the unit disc onto itselt. Thus $\text{Re}\{g(z)/z\} > \frac{1}{2}$ for |z| < 1 and

$$\left| rac{f(z)}{g(z)} - a
ight| = a \left| rac{z + (a-1)/a}{1 + z(a-1)/a}
ight| < a \quad ext{ for } |z| < 1.$$

Also we have

(27)
$$\frac{zf'(z)}{f(z)} = \frac{(1-z)(\alpha+(\alpha-1)z)-(2\alpha-1)z}{(1-z)(\alpha+(\alpha-1)z)} - \frac{z\psi(z)+z^2\psi'(z)}{1+z\psi(z)}.$$

An actual computation yields

(28)
$$\psi'(z) = \frac{1 - (\psi(z))^2}{1 - z^2}.$$

Substituting (28) into (27) and simplifying we see that f'(z) = 0 whenever

$$egin{split} ig(z\psi(z)ig)^2ig(a+(a-1)zig)+z\psi(z)ig\{(1+z)ig(a-2az-(a-1)z^2ig)-\ &-(1-z^2)ig(a+(a-1)zig)ig\}+\ &+(1+z)ig(a-2az-(a-1)z^2ig)-az^2-(a-1)z^3=0\,. \end{split}$$

Replacing $\psi(z)$ and b by their defining expressions we verify easily that $z = r_0$ satisfies the above equation. This shows that our function f(z) is not univalent in any disc |z| < R if R exceeds r_0 .

The proof of the theorem is complete.

References

- [1] C. Carathéodory, Theory of functions, Vol. 2, New York, Chelsea 1954.
- [2] T. H. MacGregor, Functions whose derivative has a positive real part, Trans. Amer. Math. Soc. 104 (1962), p. 532-537.

- [3] K. S. Padmanabhan, On certain classes of meromorphic functions in the unit circle, Math. Z. 89 (1965), p. 98-107.
- [4] J. S. Ratti, The radius of univalence of certain analytic functions, ibidem 107 (1968), p. 241-248.

THE RAMANUJAN INSTITUTE, UNIVERSITY OF MADRAS Modras, India

Reçu par la Rédaction le 2. 1. 1971