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1. Introduction and statement of results. Suppose that f(z) = 2+ a,22+
+... and ¢g(2) = z-+b,2%+... are analytic for |2] < 1.

Recently, Ratti [4] proved, ¢nter alia, the following theorems:

A. If Re{g(2)/2} > 0 and Re{f(2)/g(2)} > 0 for |2| << 1, then f is starlike
and univalent for |z| < V5—2.

B. If Re{g(2)/z} >0 and |f(z)/g(z)—1| <1 for |2| <1, then f 13
untvalent and starlike for |z| < }(1/1—7—3).

C. If Re{g(2)/z} > } and Re{f(2)/g(2)} > 0 for |z| < 1, then f is star-
like and wuwnivalent for |z| < }. i

D. If Re{g(2)/z} >} and |f(2)/g()—1|< 1 for |2| <1, then f s
univalent and starlike for |z| < v, where r, is the smallest positive root of

the equation 4—4r—13r2—2r3—7rt =0 (04 <7, < V2 — 1).

All the results are sharp.
The object of this note is to generalize the results stated above and
to prove the following theorems:

THEOREM 1. If Re{g(2)/z} > 0 and |f(2)/g(2) — a] < a for |2| < 1, where
a i8 a fized real number > i, then f is univalent and starlike for |z| < 1y,
where 1, is the smallest positive root of the equation r®(1 —a)+7%(3 —5a)—
—3ra+a = 0, and the bound r, is sharp.

Putting @ = 1 one obtains Theorem B as a special case of Theorem 1,
and letting a tend to infinity, Theorem A can be deduced from Theorem 1
as a corollary.

THEOREM 2. If Re{g(z)/2} > } and |f(2)/g(2) —a| < a for |z| < 1, where
a i8 a fized real number > 1, then f is univalent and starlike for |z| << 7y, where
7, 18 the smallest positive root of the equation 4a*— 4ar — (2402 —12a+1)r%—
— (3202 —36a+6)r3—(12a2—20a+9)r* = 0. The bound r, is sharp.

Theorem D is special case of the above theorem with ¢ =1, and
Theorem C is then deduced by letting a tend to infinity.
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2. Proofs of theorems. We need the following lemmas for our dis-
cussion.

LEMMA 1. Let F(2) be analytic for |2| <1 and satisfy Re{F(z)} > a,
0<a<l for [2|<1 and let F(0) = 1. Then we have

(1) F(2) = {1+ @a—1)2y(2)} {1 +2y(2)},

where w(2) is amalytic for |2| < 1 and satisfies |p(2)| < 1 for [z| < 1; con-
versely, any function F (z) given by the above formula is analytic for ]zl <1
and satisfies Re{F(z)} > a for |z| < 1.

The above lemma was proved by the author in [3].

LeMMA 2. Suppose G (2) is analytic for 2| <1 and G(0) = 1. If |G(2)—a
< a, where a is any real number greater than %, then

@) 60 = -+ 1+ (2 e 0,

where @(2) 8 analytic for 2| <1 and |p(2)]| <1 for |2| < 1. Conwversely,
any function G(z) given by the above formula is amalytic in the umit disc
and satisfies the condilion |G(2)—a|<a, a> }.

Proof. Setting h(z) = (G(2)—a)/a, we note that h(z) is analytic
in the unit disc and |h(z)| <1 for {2| < 1, h(0) = (1 — a)/a. Putting

h(2) — 1(0)

v = T 0ne

we observe that y(z) is analytic in the unit dise, p(0) =0, |p(?)| < 1
for |2| <1 since |h(2)] <1 for a« > } and |2|] < 1. Therefore, Schwarz’s
lemma applied to y(z) yields [¢(2)| < |2| for |2] < 1. Hence we can write
y(2) = 2p(z), where ¢(2) is analytic in the unit disc and satisfies |p(2)] < 1
there.

Expressing k(z) in terms of ¢(2), we have

h(z) = {1 —a)/a+29(2)}/{1+2¢(2) (1 —a)/a}.
Thus we get
G(2) = a+ah(2) = {L+29(2)}{L+2¢(2)(1 — a)/a}.

Conversely, if G(z) is given by the above formula, where ¢ (2) is analytic
for |2 <1 and |p(2)] <1, then clearly G(z) is analytic for |2| < 1, since

(1 —a)zp(z)/a| < |1—a]lz]/a< 1 for |2|< 1,
since a > 1. Moreover,

l—a
(€(5)—a)fal — amf:)z:’;% <1,
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provided
1 —a+azg(2)|® < |[a+ (1 —a)2p(2)|®.
The above inequality is equivalent to the following one:

{e*— (1 —a)}2p(2)]* < {*— (1 —a)%},

which is true for |z] < 1, since [p(2)] <1 and a > 1.

Thus G(z) given by formula (2) represents an analytic function satis-
fying [G(2)—ea| < a, a > } for |2| < 1.

The proof of the lemma is complete.

LEMMA 3. Let g(2) = 2+ b,2%2+... be analytic for |2| < 1 and satisfy
Re{g(2)/z} > 0 for [2]<1. Then for |2} <1, we have

(1 —21z]—[2[?)
(1—1=[3)-
The proof of the above lemma is implicitly contained in Theorem 2,
[2], but the independent proof which we give below also is of some interest.

Proof. Since Re{g(z)/z} > 0 for |2|] < 1, we can apply Lemma 1 to
g(2)/z with a = 0 and write

Re{2g'(2)/g(2)} >

(3) 9(2)fz = (L—2p(2))/(1+2p(2)),

where ¢(z) is analytic and satisfies |p(2)| <1 for |2] < 1. Differentiating
(3) yields

i [y
(4) 2g'(2)[g(2) =1 2{ 1—fer @) }
For a function ¢(2) with the above properties we have ([1], p. 18)
' 1—lgp(z)*
(5) e

Denoting |p(2)| by @, |2] by a and using (5), we obtain

2p(2) + 2% (2)
1— (2p(2))

‘The expression (a+ z)/(1 + ax) increases with x for a fixed a and its maxi-
mal value 1 is attained for # = 1. Hence, by (4), we get;

Re {M} 1
9(2)

The proof of the lemma is complete.

We now are in a position to prove the theorems.

- ar+a*(l1—x%)/(1—a?) a(z+ a)
(1—a2x?) T (l—ae¥)(l+tax)

2@ (2)+ 229" (?) - 1— 2a =1—2a,—a.2
1—(pz) | 1—a? 1—a?
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Proof of Theorem 1. Clearly f(2)/g(2) is analytic for |2| < 1, since
the condition Re{g(z)/2} > 0, |2| <1 ensures that g(z) 0 for z %0
in the unit disc. f(z)/g(z) satisfies the hypotheses of Lemma 2 and hence
we have

_ 1+2¢(2)
SEIIE) = TG asn@a’

where ¢(2) is analytic for 2] < 1 and |¢(2)| < 1 for [2| < 1. Differentiation
of the above formula gives

') _ 2R @)+ (x) (A—a) (w(2)+2% (2))
f(2) g (=) 1+29(2) a (1+@1—a)ep(2)/a)

_ B, 2a—1)(mE)+2 ()
96 " (et T—a)z@)

Thus we get

2f’(2) { 29’ (2) } ’ 29 (2) + 2%’ (2)
6) R > Red =4 _(2qa—1 .
© e{ f(2) }> Ve | (2a—1) (1-+20(2)) (e + (1 — a)2p(2))

We have the following estimates

|2*{1—lg(2)I?)

(7 kg (2) + 22" (2)| < [2p(2)[ + (1L |e?)

and, for 1> a > %,
(L +2p(2)) (a+ (L — @)2p(2))| = (L — |2 (2) ]} (@ — (1 — a) [2p(2)])
= a— [2¢(2)| + (1 — a) [29(2)[*.
On the other hand, for a > 1,
(L +29(2)) (a+ (L —a)zp(2))| = |a+2p(2)-+ (1L —a)(2p(2))}
= a— 2p(2)| — (a—1) [zp(2)
= (a— (1 —a) |20 (2)]} (1 — |2 ()]} -
Thus, for all a > }, we have
(8) (L +29(2)) (a4 (1 — a)29(2))] = a— lep(2)! + (1 — a) [2p(2)|2.

Using the above estimates, the estimate for Re {29’ (#)/g(2)} from Lemma 3,
and writing |2 = a, t = [2¢(2)|, we obfain from (6)

(9) Re{zfl(z)} _1-2-—a* (e—D)ft(l—a)+at—1}

f(2) 1—a? 1—a?){a—t+(1—a)t?}
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Therefore Re{zf’(2)/f(2)} > 0, provided

(10) ¢#{1—a)(1—2a—a*)+(2¢—1)}+t{(1—2a)(1—a?)—1+2a+ a?}+
+a(l—2a—a?) —(2a—1)a® > 0.
We note that 0 <a< 1 and 0 <t<a.

Denoting the left-hand member of inequality (10) by E (), we note
that E’(¢) vanishes for

a(l—a?)—a

(1) t=h= a—(1—a)(a®+2a) "

For 0 <a<V2-—1 and a > 3}, it is easily seen that the expressions
a(l—a?* —a and a—(1—a)(a®+ 2a) both are positive. Thus ¢, is positive.
Also E''(t) is positive for a > } and a < V2 —1.

Now, t, Z a, respectively, when

a‘*(l—a)+a2(2—3a)—a(1—l—a)—l—a% 0.
Let P(a) denote the left-hand side of the above inequality. An ana-
lysis of the equation P(a) = 0 shows that for any a > } there is only
one root of P(a) = 0 lying between 0 and 1, namely V2 —1. Thus for

0<<a< 1/5—1, t, exceeds a and E(f) attains its minimum at ¢ = a for
0<t<a. Hence E(a)>0 would imply that E(t) >0 for 0 <t<a.
This condition, after a simplification reduces to

(12) a’(1 —a)+ a2(3 —5a) —3aa+a > 0.

Denote by @(a) the left-hand side of the above inequality. An ana-
lysis of the equation @(a) = 0 shows that for any a > 4, it ‘has only one
positive root lying between 0 and 1. Let the root be called 7,. Then @ (a) > 0
for 0 < a < 7,; we shall show that r, < V2 1. In fact, a direct computa-
tion shows that Q(V2—1) = (2—V2)(1--2a) < 0 for a > 1. Since Q(a)
vanishes only once for 0 < a < 1, it immediately follows that r, < V2 —1.
Thus the condition Re{zf’'(2)/f(2)} > 0 is satisfied for |2| < 7, and it fol-
lows directly that f(z) is univalent and starlike for |2| <-7,. To see that
the bound r, is sharp, we choose g(2) = 2(1+2)/(1—2) and f(2) so that
f(2)|g(z) = (1+2){(L+2(1L—a)/a). Evidently Re{g(z)/z} = Re {;t—:} >0
for [2]<1 and

l1—a+
f@g () —al = ‘ e 1 = allz+ (1 - a)fa)/(1+2(1 - a)/a)| < a
for 2| < 1, since [(1—a)/a] < 1; consequently {lzi:(ll__al;;a} defines a
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bilinear transformation which maps the disc |2] < 1 onto itself. For our
choice of f and g, we have

of (2)[f(2) = (1422 —2%)/(1—22) +2(2a—1)/{(1+2){e+2(1—a))} =0,
whenever
a+3az+(3—3a)z2—(1L—a)® =0,
z = —r, satisfies the above equation and, consequently, the func-

tion f(2) is not univalent in any disc |2| < R if R exceeds 7,. The proof
of Theorem 1 is complete.

Proof of Theorem 2. Arguing, as in Theorem 1, we have

of (z)} {zg'(z)} (2a—1) |2p(2) + 2% ()]
13 R R - .
(13) {f(z >R 0@ | T @) et A—are@)

Estimates (7) and (8) yield

{op(2) +2%' (2)}(2a—1) | _ (2a—1){t(1—a?)+(a*—12)}
L+2¢@)(a+@—akp) | (—a}){a—t+@—a)t?} ’

where a is written for (2] and ¢ for |2¢(z)|. Denoting the right-hand
member of inequality (14) by F(t), we observe that F'(f) increases with ¢
for a fixed a, and hence attains its maximum at ¢ = a for 0 <? < a. This
maximal value F(a) = (2a—1)a/{e—a+ (1 —a)a?}. Hence we can replace
the right-hand side of (14) by #(a) and obtain

(14)

(15)

{2p(2) -+ 2%’ (2)} (2a — 1) l (2a—1)a
(1+2p(2)(a+ (1 —a)2p(z)) {a+a(ea—1)}{1—a} "

Again, since Re{g(z)/z} > } for |2| < 1, we have, by Lemma 1 with a = },
(16) 9(2)z = 1[{1+2p(2)},

where y(2) is analytic in the unit disc and |¢(2)| < 1 for |2| < 1. Differ-
entiating (15) we obtain

29'(2) . (ep(2)+2% (1))
17 =1-
a4 92 L9 (2)
Substituting (15) and (17) into (13) we get
F@ .,  (2a—la {zw(z)+z’w'(z)}
I b B ey e et
S a—2aa+ (1 —a)a? _ 2p(2) + 229’ (2)

a—a+(l—a)a® 1+ 2p(2)
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Writing a for [z2|, 2 for |y(2)| and using the estimate [p’(2)]
< (L—9(2)1?)/(1L — |2[2) for [2| << 1 we obtain

2y (2) 2% (2)
1+ 2y (2)

alx+a) - a

19 < .
(19) 1—a2 l—a

Setting (19) in (18) we get

(20) Re{zf’(z)}> a—2aa+ (1 —a)a® a

f(z) a—a+(l—a)a® 1—a’
Therefore Re{zf' (2)/f(2)} > 0, provided
(21) 260%(1—a)—3aat+a>0.

Let us denote the left-hand side of inequality (21) by P,(a) and observe
that the equation P;(a) = 0 has a unique positive root r, lying between 0
and 1 so that, for 0 < a < ry, P,(a) > 0. It follows that f(z) is starlike
and univalent for |¢| < r;. We are now going to investigate whether f(z)
must be starlike in a larger dise. To this end we sharpen the first of the
estimates (18) for |2| > r, as follows:

Since

Re{zap(z)—I—zzw'(z)} — Re (ep () + 229" (2)) (L + 29 (2))
1429 (2) 1+2y(2)]? ’

it follows from the first of inequalities (18) that Re{zf'(z)|f(2)} > 0 pro-
vided

Re[{a—2aa+ (1 —a)a?} |1 +2yp(2)|2—

—{{a—a)(1 —a)a®} ey (2) +- 2%y () {1 42y (2)}] > O,

that is, provided

a—2aa+ (1 —a)a®+ |2y (2)|2a(l —2a)+
+Re[(ey(?)) (e —a(4a— 1)+ a?(1—a)) —
—{a—a+ (1 —a)ae2y’ (2) (1 +2yp(2))] > 0.
Since the real part of a complex number is equal to that of its conjugate
we are free to replace, in the left-hand member of the above inequality,
a complex quantity by its conjugate. Doing this wherever necessary,
and re-arranging we note that the above inequality holds, provided
(22) Re|{{a—a+(1—a)a?)2?y’ (2)+ ((a —1)a®+ a(4a—1) —a)}{1 +2y(2)}]
< a(2a—1)(1— |zp(2)?).
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Now we have the following estimates:

(23)  Reley'(2) (L +2p(2)] < 212y (2)] (1 + l2p(2)])
<[22 (1 — Iy (2)12) (1 + ey (2)1) /(1 — 12]?)
= {0*(1 —2*)/(1 — a®)} {1 + lzp(2)]},

where a = |z{, v = |[p(?)].

Again, for 1 >a>r,, {—a+a(da—1)+(a—1)a?} = 0 provided r,
is not less than the only positive root a, of the equation (a—1)a®}
+a(4a—1)—a = 0. To see this, let us set Py(a) = (a—1)a?+a(da—1)—a
and compare it with P,(a), the left-hand side of formula (21). Let a, denote
the positive root of P,(a) = 0. Since a>1, we have P,(a,) = P,(a,) +
+Py(ay) = az(1—a)+ay(a—1) = (a—1)(a,— ap) = 0. Since r, is the only
positive root of the equation P,(a) =0 and P,(a) >0 for 0 < a< r,
it follows that a, < r,. Thus (a—1)a?+a(da—1)—a >0 and

(a—a)+(1—a)a® = (a+(a—1)a)(l—a) >0 for r,<a<1l.
So, we see, by (23), that the left-hand member of inequality (22) does
not exceed, for a > r,, the value of the expression
[+ (a—1)a)a?(L —2?)/(1+a)+(a—1)a?+a(da—1) — a} {1 +ax}.
Hence inequality (22) holds provided a>r, and
(e+(e—1)a)a2(1 —2?) + (1 + a){(a —1)a®+ a(4a—1) —a}
< a(l+a)2a—1)1—ax),
that is, provided
(24) a?s%(a-l(a—1)a)—ax(2a—1)(a-}a?)+ (1+a){a—2aa+a?(l—a)} —
—ata—a3(a—1) > 0.
Denoting the left-hand side of (24) by p(z), we see that p'(z) = 0 for
r =2, =(2a—1)(1+a)/{2a+2(a—1)a} and p’'(x) > 0. Thus, for a fixed
a, p(z) attains its minimum at ¢ = 2,. Also #, << 1 for a < 1. Hence
P (#,) > 0 would imply that p(x) > 0 for any fixed e under consideration.
This condition reduces after a simplification to the following inequality:
(25) —a*(12a2—20a+9)—a®*(32a%2— 36a--6) — a?(24a®>—12a+1) —
—4aa+4a2 > 0.

Let T'(a) denote the left-hand member of the above inequality. For ¢ > 1
the equation T'(a) = 0 has only one positive root which lies in the interval
(0,1), which we call r,. For a < r, inequality (25) holds and consequently
inequality (22) holds for a > r, and a < r,. Thus Re{zf (2)]f(2)} > 0 for
|2| = 7, and |z| < r,. In fact, one could verify directly that r, > r, for
a>1. However, we shall produce an example of a function f(z) such
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that f'(2) = 0 for z = r,. This would imply not only that », cannot be
less than 7, (since we have already proved that all functions f(z) of the
class under consideration are univalent and starlike in |2| < r,), but also
prove that the bound 7, we have obtained is sharp. To this end we consider
the function f(z) = g(2)(1 —2)/(1—2(1— a)/a), where g(2) = 2/{1+2p(2)},
p(2) = (2—0b)/(1 —bz) and b is defined by

o—b _ (2a—1)(1+47)
1—br, 2{a+(a—1)7r} "
Simplifying (26) we get

(26)

_ 147, 1
T 2a+4(Z2a—1)7,

Evidently 0 > b > —1 and v(2) is a bilinear transformation mapping
the unit disc onto itselt. Thus Re{g(z)/z} > %} for |2 <1 and
| () '
—a|=a
g9(2)
Also we have

z+(a—1)/a
1+42(a—1)/a

< a for |2|<1.

o) (A—2)(a+(a—1)2)—(2a—1)z zp(e)+2%'(2)
() (1—2)(a+(a—1)z) 1+2y(2)

An actual computation yields

(27)

1—(p(2)? .

(28) v =T

Substituting (28) into (27) and simplifying we see that f'(2) = 0 whenever

(z9(2))*(a+ (a—1)2) + 2p(2) {(1+ 2) (e — 202 — (e —1)2%) —
—(1—2*(a+(a—1)2)} +
+(142)(a—2a2— (a—1)2%) —a2®— (e —1)2* = 0.
Repldcing »(2) and b by their defining expressions we verify easily that
z = r, satisfies the above equation. This shows that our function f(2)

i1s not univalent in any dise |z| < R if R exceeds 7,.
The proof of the theorem is complete.
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