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S. TRYBULA (Wroclaw)

MINIMAX PREDICTION OF THE SUM OF PROCESSES

In the paper the minimax predictor of the sum of multinomial variables
with different parameters is determined for the general quadratlc loss
function. Based on this result the minimax predlctor of the sum of m; n;
Processes satisfying condition (26) is found, where m, is the number of
Processes with different distributions’ and ‘n, is the number of their’
Independent copies, The predictor is based on observations of m, n,
Processes satisfying condition (25) and similarly defined. These two families of
Processes are connected by condition (16). All processes considered - are
independent and the loss function, defined by (17), is also general quadratic.

L Let X,,..., X"u’ X,=(X,, ..., X;,), be independent random vari-
ables havmg multinomial distributions with parameters », and (p;;, - .:; Pi)s
Tespectively, where

\
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(pil,- ’p"’)e )“’1 >0
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-

Z -

Let ¥,, ..., YM Y. =(Y,, ..., Y,), be independent random variables having

Multinomial distributions with ‘parameters n, and (q;,, ..., gi,)e A4, respect-
ively. Write

- X =(Xl’ ey X’“l)’ pj " m, Z plp =(pla sy pr)v Pz(pll-_a sy pmlr)'g
) s : i=1

Y=(Yh R sz)a qj o Z qus =(Ql’ Ty qr).’ q-:(qll, tecs szr)
m; i=1

and suppose that the random variables X and Y are independent and that p
=4q. Let

1 1 3
X=(X1s taey X,)y X _;—l' Z XU’ Y=(Yl’-"5 Yr)’ ¥1=m_2 .Zl )?'j‘
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We want to predict Y observing X. Let d(X)={(d,(X), ..., d, (X)) be a
predictor of Y. The problem is to determine a minimax predictor of Y for the
loss function

(1) L(Y, d) = Z jdi—Y)(d;—Y),
i,j=1
where the matrix [|c;;||7 is nonnegative definite.
The case n, = 1 is of special interest.
Let us consider a predictor d = (d_l, ..., d,) for which
(2) ds(X)=“Xf+(”2_'1n1)ﬁi, B =B, ..., BIeA,

where
;

ny i,
m nln-r—\/ (nym; +nym,—1)
1771

my my, £ q
: if n
{3) o= <.M nlml—-l l'nl'—n?é »
nym,—1 . .
—:5—2—’;12——— i my =n =1.
) '
Since « satisfies the-condition
N Ny |
4) a1+ 2 = (ny—am, )2,
m, m

the risk function for the predictor’(2) is-

o _ r n my
R(p: q, d) = E(L(Ya d(X))) = Z cij{_az;n_lz_ Z Pi Dxj—
1 k=1

i,j=1

__n;; kZ] Qi qj + (1 “"1)2(19.'"Pi)(ﬁj'”Pj)}"‘("z—a"l)z Y Cibi
i=1

Suppose that p; >0, ..., p, > 0 are fixed. The quadratic form

(5) W = Z Cij Z Xii Xkj

i,j=1 k=1

of the variables x;, m ): Xy = pJ, is nonnegative definite. 1t attains its

minimum if x; = p;. Then by (4), we have

(6) R(p:v q, d) <(m2'_'anl)2[ Z cu(ﬁ; ﬂ] zﬁl P])+ Z Cii pij l(p’ ﬁ)

i,j=1

with an equality if p,; = g;; = p;.
Let peA. We have

(7) min Rl(ps ﬁ Rl (P, p) = Z CU D; p1+ Z Cii Di-

Bea i,.j=1
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Denote by p, =(p?, ..., pP)e A a point for which
(3) R, (po, Po) = max R, (p, p)

‘peA
and use the estimator d, = (d{, ..., d°) defined in (2) and (3) with g; = p?.
We have '

) sup R(p, 4, do) sup Ry (p, po) = inf R, (po, ) = Ry (po, Po)-
(P.@ peA BeA

The first equality results from the paper [6], where it was obtained by an
application of Sion’s theorem (the function R, (p, fp) is convex and
continuous in B and concave and continuous in p, and A is a convex
Compact set).

To determine p,, Theorem 3.5.4 in Karmanov [2] is used to obtain the
following corollary: A point po -—(Pu- ., pY)ed is a solution of (8) if and

only if there are a set Aell,. = R and a constant v such that
Y (c,-,-—2ci,-)pj? =p ifieA,
JjeA
(10}
Z (Ci,-—zc,-j)p;-) <v lf léA,
jea '
P} >0 for jed, Y p¥=1.

JjeA
|4l =1 if and only if ¢;; = ¢ for i, jeR.
Suppose that p; = q,; = p; and let A = li, ..., i;}. Applying formulae
(10) to (6), we obtain

(11) R(pa ‘7: dO) = (nZ—an'l 2 Z cxkc, plk pal+v) = Rl (pO: pO)

k,i=1

if p and § satisfy the conditions p; >0 and Y p; = 1.
jed
Denote by n, the a priori distribution of the parametet (p, §) defined as
follows:

P(p” = qgj zpj, i = ]., ooy My, k = 1, vees mz,j= 1, Cees r) = 1,
where the density h of (py, ..., p,) is

.

r(mla_l("z_“nl)) a -t -1
| F@,).. @) v P
1) hip,, ..., p) =] D s
2k for p; 20, j=1,... ; =
{ 0 otherwise,

a; = mya = (ny—an,) pl,
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with the exception of the case my = m, = n, = n, = 1 for which =, is defined
by assuming that P(p,=pP, i=1,...,r=1.

The predictor d,, is Bayes with respect to n, and, moreover, by (11), we
have

) (T, do) = R, (pos Po),

where r is the Bayes risk. |
Formulae (9) and (13) prove that the predictor d, is minimax.

2. Let X, ..., X,,, X; =(X;,.... X;,), be independent discrete-time
processes satisfying the conditions

(14) X200 j=1,..,r, Y X;=2z, (i=1,..,m)),
, | “

z2,>0,r22 Let Yy, ..., Y,,. ,=(%;,..., ¥,), be independent processes
satisfying '

(15) )fJ-BO,j=1,...,r, Z Y;'j=22 (i=1,...,m2).
j=1

Let X =(X,, ..., .Y,,,l), Y=(Y,, ..., }—’;,,2), and suppose that X and Y are

independent. Let X'V, ..., X"V and YO, .., Y"? be independent processes
having the same distributions as X and ¥, respectively. Put

X = (X", ..., x"), xt - (XP, ..., X®), X0 =(xh . x®),
Py, YY),y (v, ), Y = (1, L, YY)
Let A.” = E(XU)’ #U = E(YU) and p‘ut

1 mp - l mj
h=— 3 hy m=— 3wy
Tom i; ! Tom, 1=Zl !
The basic assumption connecting the processes X and Y is
(16) Afzy =z, (i=1,...,7).
Write
1] ™M M 1] "2 " ‘
= T AP Y= 3 T
My =1 k=1 My =1 k=1

and let d(X)=(d,(X), ..., d,(X)) be a predictor of Y’ =(Y,..., ¥). We
are looking for a minimax predictor of Y’ for the loss function

(17) LY, d) = Z cij(di— Y)d;—-Y)),

i,j=1

where ||c;{|7 is nonnegative definite.
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Let us consider a predictor d = (dy, ..., d,) for which

(18) d.(X) = ?[ax.f+(n2—an1)ﬂ,-],
1

Where o is given by (3), and B/z, = (B,/z,. ..., B,/z,)e A. For this predictor
the risk function is

(19)
R(F, d) =

E(L( )Z’
r 2 ”1 mi . |
Z E(Xiu L (X = Aig)+

+(ny —any)* (B — 4) (B;— )J+—~ 2 E(Yu— uk,)(YkJ #a,)}

mzan

Where F is the distribution of (X, Y).
But in view of (14) we have

r

Z Cij X Xoj
Li=1
1 r r r
= 'é C”+C” 2CIJ)XkIXkJ+ZI Z C“Xk, 1 Z Ciiin'
ij=1 i=1 i=1
Similarly,
r r
Z Cij Y ijgzz Z Cii Yii-
ij=1 i=1
Then

2 r
ZZ H n,
Z -uktlukj} . (9‘2—12‘*'—) Z Cii 44

m2k1 1

r

. %3
g(;_z) (ny—an;)* | Z Cij(Bi Bj—2Bi 4)+ = Z Ci 4} —C(ﬁ A),

1 ih,j=1
/’%. =(j.l, ey J‘r)

Let e; =(1,0,...,0), e, =(0,1,...,0), ..., e, = (0,0, ..., 1), and let U

=(U,,...,U)and V = (¥, ..., ¥, be processes distributed according to the
aws

21 PU=:z,¢) =i/, Lp,
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(22) P(V =2z,8)=p/z;=p,
p=(p1, ..., p)eA. Let the processes X,.... X, and Y,..., ¥, be

"'2'”_ Y

independent and have the same distributions as U and ¥, respectively. In this
case, for the predictor (18) we have

(23) R(F,d)=c(B, A).
Denote by & the family of distributions F »» P€A, of the process

(X, -Y)=(Xla CLE s ; Xmly Ylo ) sz)

by assigning the distribution (21) to the first mj components and the
distribution (22) to the last m, ones. Let 7, be the a priori distribution on &
determined by the distribution n, defined in (12). Let the vector Bo
=(B7,.... BY), B%z e A, be a solution of the equation

(24) - Z BBy +2, Y i = max (— cijBiBi+z1 Y, By
iJj=1 i=1 Blz1eA i j=1 i=1 '
The predictor do = (dY, ..., d;) defined in (18) with f = B° =z, p, is Bayes
with respect to ,. Then from the results of Section 1 and formulae (20) and
(23) it follows that d, is minimax.
Let the processes X, ..., X,, , X; = (X, ..., X,). satisfy the conditions

(25) X,'jZO,j=1,...,r, Z X,-j$21 (i=l,...,m1),

1

0

.
i

2y >0, let ¥;,..., ¥, , ¥, =(Y,, ..., ¥,), be processes satisfying

(26) Yij?O,j=l,...,r, Z Yu'SZz (i=1,...,mz),
i=1

22 >0, and suppose that Xy,..., X,,;," ¥, ..., ¥, are independent. ‘Let the
loss function be given by (17). Let us put

r
Xipr1 =2y~ z Xijp i=1,...,my,
i=1

r
Yi,.+1=22‘—'z Kja i=1,...,m2,
j=1

and let ¢;,,;, =0,i=1,.,., r+1. Then we are in the posiﬁon consid_cljed in
this section and there is a mimimax predictor d = (d,, ..., d,) of the form (18)

with 8, >0,i=1,...,r, Y Bi < z;, where the B; are obtained by applyifié
i=1

equality (24) to the new situation.
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In the paper we generalized the results obtained in [1], [3], [4] and [6].
Some estimation problems for the sum of processes are considered in [5].
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