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ON THE COEXISTENCE OF VARIOUS GEOMETRIES

BY

MAREK KORDOS (WARSZAWA)

Geometry of a space S determines geometry of the space d(S) of its
directions. On the other hand, geometry of d(S) determines that of S. This
gives a natural structure in the class of various geometries. In this paper we
restrict our considerations to four (five) most popular geometries.

Some results concerning groups of automorphisms are given.

1. Classical and full geometries.

1.1. By n-dimensional Euclidean space we understand, as usually (up to
isomorphism), R" provided with the standard geometrical linear structure (i.e.,
the family of all k-hyperplanes for 1 < k < n) and with the perpendicularity
relation given by the equality '

i=1
(ie., two (n—1)-hyperplanes

ao+ Z a,-x,- = 0 and b0+ Z bixi = O
i=1 i=1
are perpendicular iff this equality holds).
~Similarly we define )
the Minkowskian n-space replacing (1) by

) a;b;— Y a;b;=0,

i=2
the Bolyai-Lobatchevskian n-space replacing R" by the unit open ball and
(1) by

) agho— ), a;b; =0,

i=1
the elliptic n-space replacing R" by (R"—{(0,..., 0)})/~ (where ~ denotes
the proportionality relation) and (1) by

@ S ab, = 0.
=0

i
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Let Eucl”, Min", BL" and Ell” denote corresponding classes of spaces and
Eucl”, Min", BL" and Ell" their theories (geometries).

1.2. The Mdobius n-space is understood here as a structure isomorphic to
an n-sphere in R"*! with the family of all k-spheres, for 1 < k < n, treated as
the family of all hyperplanes, and usual Euclidean perpendicularity of spheres.

The class of Mobius n-spaces will be denoted by Mé” and its theory
(geometry) by Mo”

1.3. For our purpose it is convenient to consider full spaces.

Given a space S e(Eucl” U Min" U BL" U EII"), the full space S is obtained
as follows:

First, we extend the geometrical linear structure of S to a projective
n-space P" over reals so that

(i) 1S| < |'B" (we use the symbol |S| for the universe of the space S);

(ii) for every k-hyperplane X in &, 1 < k < n, there exists a k-hyperplane
X in P" such that X = X n|S].

Second, we extend the perpendicularity in & to the minimal symmetric
relation satisfying the following condition:

(ii1) if (n—1)-hyperplanes X,,..., X, in & are independent, have a com-
mon point p, and are perpendicular to some (n— 1)-hyperplane X, then every
(n—1)-hyperplane in & passing through p is perpendicular to X.

The following two remarks are obvious:

14. Remark. If SeEIl", then & = &.

1.5. Remark. For SeMé" there is no full space.
In the sequel we shall use the following

1.6. PROPOSITION.The extended perpendicularity in & can be described by
the same formula as the original one in S.

Proof. I. For Se(Eucl” U Min") the set |$|—|&] is an (n— 1)-hyperplane
H in P". Let H be described by x, = 0. By formulae (1) and (2) of 1.1 it suffices
to show that H is singular, ie.,

vX (X LH).

Let X # H. Then there exist independent (n—1)- -hyperplanes X,,..., X, in
S such that X, L X for i = 1,..., n. The hyperplanes X (1 , X, have a com-
mon point in H By condltlon (m) of 1.3 we have X _LH

Let now X = H. Any n independent (n— 1)-hyperplanes different from H
and passing through a point pe H are perpendicular to H. Then H L H by (iii).

II. Let SeBL" For any independent (n— 1)-hyperplanes X 1205 Xy in
S perpendicular to some (n—1)-hyperplane X, the hyperplanes X e X,
pass through the pole of X with respect to the (n— 1)-dimensional hyperquadrlc
given by
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(see (3) of 1.1). This defines perpendicularity for every pair of (n—1)-hyper-
planes in & such that at least one of them contains a hyperplane of &. Since the
perpendicularity in & is minimal, there is no more possibility.

The condition “two hyperplanes are perpendicular iff one of them passes
through the pole of the other” corresponds to formula (3) of 1.1.

III. For SeEIl" see Remark 14.

1.7. CoNCLUSION. By 1.6 the spaces & and & determine uniquely each other.

Indeed, if there exists a singular hyperplane H in &, then |G| = |&|— H; if
there exists an (n— 1)-dimensional hyperquadric in & tangent to all isotropic
(perpendicular to itself) (n— 1)-hyperplanes, then |S| is the interior of such
a hyperquadric; in the remaining cases |S| = |&|.

Therefore, we can investigate S instead of S.

2. Spaces of directions. We are going to define the space d(S) for a given
space G.

2.1. The set of directions of a space S, defined as usually, can be described
in terms of the full space as follows:

[d(©)]:= Clg|S| -S|

2.2 By the space d(S) of directions of an n-space S we mean the set |d(S))|
provided with the family of k-hyperplanes, k =1,..., n—2, and the perpen-
dicularity relation which are defined as follows:

k-hyperplanes are nondegenerate intersections of |d(S)| and (k + 1)-hyper-
planes in S;

for any two hyperplanes X and Y in S,

5 Xnd@©)LYndS)~XLY.

23. Remark. By 1.6 and (5), in any coordinate systems of & the
perpendicularity in d(&) can be described by the same formula as the
perpendicularity in S.

2.4. THEOREM. (i) If SeMin", then d(S)eBL" L.

(ii) If SeBL", then d(S)eMé" L.

(iii) If SeEucl", then d(S)cEN""!,

Proof. (i) and (iii). We choose a coordinate system in & so that |d(S)| is
the hyperplane P_: x, = 0. Now, in view of (1){4) of 1.1, it suffices to change
coordinates in P:

x—x—y, fori=1,...,n.

(ii) Choose a coordinate system in & such that |[d(S)] is the unit sphere.
We have to show that any two (n—2)-spheres in |d(S) are (Euclidean)
orthogonal iff (n— 1)-hyperplanes containing them are conjugate with respect
to |d(S). We prove this Euclidean theorem.
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Let p be a common point of two (n—2)-spheres S, and S, in |d(S)| and let
H be the (n— 1)-hyperplane tangent to |d(S)| at p. There exist (n— 1)-hyper-
planes H, and H, such that

S;=d(S)nH; fori=1,2.

Consider three vectors u, v, w: u L H,, vl H, w|| [p_l;], where b is the pole of H,
with respect to [d(S)]. Since u, v, w are dependent, w L H n H,. We have w| H, so

H, and H, are conjugate—w|H,~HnH,1HnH,.

2.5. If we have some n-space S in P"*! placed in such a way that
(n—1)-hyperplanes in S are subsets of (n — 1)-hyperplanes in PB"* !, then we can
treat © as the direction space of some (n+ 1)-space D(S). For this purpose it
suffices to define perpendicularity by (5), ie., two hyperplanes in D(S) are
perpendicular iff they pass through some perpendicular hyperplanes in &.

2.6. THEOREM. (i) If SeBL", then D(S)eMin"*!,

(ii) If SeM0o", then D(S)eBL"*!.

(iii) If S€EN", then D(S)eEucl"*!.

Proof. (i) and (iii). Let the hyperplane |&| in B"*! be given by x, = 0.
Then the perpendicularity in D(S) is given by formulae (3) and (4), respectively,
where x; is replaced by x;., for i = 1,..., n. Thus we obtain formula (2) in the
case (i), and (1) in the case (iii), both for (n+ 1)-spaces.

(ii) According to the Euclidean theorem used in the proof of 2.4 (i), two
n-hyperplanes in D(€) are perpendicular iff they are conjugate with respect to
the unit sphere.

3. Relationships between various geometries.

3.1. Classes Mo" and Eucl” are equivalent in the following sense:

By adding one point to a Euclidean space and all Euclidean spheres to the
class of hyperplanes and by extending the perpendicularity relation we obtain
'a Mébius space. More precisely, the additional point belongs to all Euclidean
hyperplanes and the extended perpendicularity is Euclidean.

Conversely, by removing from a Mdbius space one point and all
hyperplanes not passing through it, we obtain a Euclidean space.

Geometrically, this is realized by the stereographic projection (see, e.g., [1]).

3.2. Among all full spaces only elliptic spaces are homogeneous (this is
a result of Hamel; see [3], Section 4).

In this sense the n-dimensional elliptic geometry determines uniquely the
(n—1)-dimensional elliptic geometry (as the geometry of arbitrary (n— 1)-hyper-
plane of the elliptic n-space) and determines uniquely the (n+ 1)-dimensional
elliptic geometry (as the geometry of the unique homogeneous (n+ 1)-dimen-
sional extension of the elliptic n-space).
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33. By 24, 2.6, 3.1 and 3.2 we have the following diagram:
Min" Min® Min*

BL" ! BL* BL?

M6""2 ~ Eucl"2 M3 ~ Eucl® Mé? ~ Eucl?

..—ElI"3— ., ~— ElI? Ell!

In the diagram any vertical motion corresponds to passing from geometry of
a space to geometry of its space of directions or conversely, and any horizontal
motion is illustrated by 3.1 or 3.2.

3.4. According to the diagram the most economical geometrical descrip-
tion of all geometries discussed can be reduced to the following two theories:
 metric geometry of one-dimensional Euclidean circle,
n-dimensional projective geometry.
Indeed, the first of them coincides with Ell!. The diagram contains
a simple recipe how any of the geometries investigated can be obtained.

3.5. The diagram proposes a special point of view of the old question:
what is the geometry of real physical space. It shows that any choice of
a geometry as a tool to describe some phenomenon determines the class of
phenomena which can be described by another (arbitrarily chosen) geometry.

Let us consider, e.g., the Landau-Pomerantchuk paradox of the electron
scattering. The electron scattering is a phenomenon in the space-time (Min*).
Since the regeneration of the self-field of the electron depends (up to physical
constants) on directions of this space-time only, it should be described in BL3.

In [2] Feinberg tried to give such a description without geometrical
arguments.

4. Groups of automorphismé.

4.1. By the dilatation group Dil(S) of a space & we understand the
subgroup of the group Aut(S) of automorphisms of &, which consists of all
transformations preserving every direction. ‘

4.2. Let D" be the dilatation group of an affine n-space over reals. It
consists of all homotheties and translations.
Using the diagram (more precisely, using 2.4) we obtain

43. THEOREM. (i) Aut(Min")/D" = Aut(BL""1).
(ii) Aut(BL") = Aut(M&"~Y).
(iii) Aut(Eucl")/D" = Aut(ElN""?).

Indeed, it suffices to observe that

Dil(Min") = Dil(Eucl") = D" and  Dil(BL") = {Id}.
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