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On orthogonal polynomials
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§ 1. Introduction and results. It is well known that the
‘“classical” orthogonal polynomials of Jacobi, Laguerre and Hermite are
eigenfunctions of a second-order linear differential operator, and that
the coefficients of such operator determine completely the polynomials
and the measure of grthogonality (see [3], p. 32, Th. IV).

Our purpose is to generalize such result in the sense of giving a neces-
sary and sufficient condition for a measure to be the orthogonality measure
of a sequence of polynomials that are eigenfunctions of a second-order
linear differential operator, and to determine completely the operator
and: the polynomials. The principal facts we are going to prove are stated
a little below; we give first some notations.

Every function to be considered here will be supposed to he a real
function.

L will denote always a second-order (ordinary) linear differential
operator, with real coefficients,

Lo = ao{t)a"' + a()a’ + at) z .

We will say that L admiis a set @ of functions, when every ¢ ¢ d is
an eigenfunction of L, that is, Lg = Ap, for some eigenvalue 2.
Any polynomial P,(t) of degree n, » = 0, 1, 2, ..., will be denoted by

n

‘)‘n(t) = Z A, 1']‘ .

h=0

We will suppose ay, = 1, and will write a, instead of a,, when no
confusion should arise. If L admits P, A, will denote the corresponding
eigenvalue.

do will denote any measure defined on the real line, and My = [tda,
k=0,1,2,.., its moments. We will say that de¢ is trivial when it is

’

* The nuthor wish to express his appreciation to professor Dr. A. Gonzélez
Dominguez for the assistance he received during the preparation of this paper.



70 J. C. Merlo

a finite union of point masses; if this is not the case we will say that do
is non-trivial.

We state now the principal theorems we are going to prove. The
“gufficient” conditions of Theorems 1 and 2, as well as the (Rodrigues)
formula for the P,’s in Theorem 3, when the conditions mentioned above
hold, are known (see [2], Ch. VII, § 2). In this paper, emphasis will be
made in proving the ‘“necessary’ conditions, and some consequences will
be derived from them, especially Theorem 4 (in connection with this,
gee algo [1]). The proof of Theorem 3 will be done using a generalization
of the so-called Legendre's associated polynomials; we also give a few
properties of such generalized polynomials.

THEOREM 1. In order that there exists a sequence {Pr}, n= 0,1, 2, ...,
deg Pn = n, of polynomials admitled by a second-order linear differential
operator L, and orthogonal with respect to a non-trivial positive measure do,
1t i8 necessary and sufficient that the support of do shall be an interval {a, b
of non-zero length, that do shall be absolutely continuous on <{a,bd, and
that the density o(t) of the measure, except for a constant factor, shall be
the following:

(a) o(t) = (b—1)" (1—a)*™", with p > 0, ¢ > 0, when <a, b> is finile;

(b) eo(t) = e"‘(t— a)’"‘l, with p < 0, p > 0, when a is finite and b = + oo

() o(t) = e ™(b—1)*"", with u<0, ¢g>0, when a =— oo and b is
finite; and

() o(t) = e with u< 0, v real, when a,b = (— oo, + o).

For further reference, we define two constants 4 and v, for any non-
zero {a,b) and ¢(?) a8 in Theorem 1, as follows. If <a, b) is finite, x ==
—{(p+¢) and v = aq--bp; if only a is finite, v = p—pua; if only b is finite
v = —p—ub.

THEOREM 2. In order that a second-order linear differential operator

Lz = ay(t)a"" + ay(t) '+ ay(t) @

admits a sequence {Pn}, m=0,1,2,.., degP,=mn, of polynomials,
orthogonal with respect to some non-trivial positive measure do (do must
satisfy mecessarily the conditions imposed in Theorem 1), it is necessary
and sufficient that L shall be of the form

Lz = (at?+ pt+ y) o' + (ut4-v) o' 4+ 92,

where a,f,y, u,v,n are real constants that salisfy ome of the following
conditions:

(1) ap(fr—yp) > o™ and  sgna = sgnu;
or

(2) a=0, u+#0 and fr—yu>0.
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If this is the case, then the density of the measure i3, except for a constant
factor, '

o(t) = ai exp [ (amfag)dt

and the orthogonality is fulfilled on the following iniervals. If (1) holds,
in {t, &, where t, and t, are the (necessarily existent, because of (1)) real
and different roots of ay(t). If (2) holds, in {t,, + oo) if sgnf = —sgny,
in (— oo, &) if sgnp = sgnpu, and in (— oo, + o) if f = 0, wheret, = — v/
is the root of ay(t). '
So, in every case it is x # 0 and the root 2, = —v/u of a,(¢) lies in
the interior of the interval of orthogonality, and there is orthogonality
when sgna,(z,) = —sgnaj(z,). (In particular, it is not difficult to see that
the condition au(fv— yu) > a*® means a # 0, f2—4ay > 0 and £, < 2z, < t,.)
THEOREM 3. In order that the polynomials {Pn}, n=10,1,2,..,
deg P, = n, shall be admitted by a second-order linear differential operator

Lz = a,(t)a" + a,(t) 3" + ay(t) @

and the Py’s shall be orthogonal with respect to a non-trivial positive measure do
(do must satisfy mecessarily the conditions in Theorem 1, and with o (t)
= gy ' exp f (a,/ay)dt by Theorem 2), it is necessary and sufficient that, except
for a constant factor depending on n, the polynomials shall be given by the
following generalized Rodriques formula:

Py(t) = L] o (a(d"2 (0}

~ agoxp [~ [ (mla)t) g | o~ exp [ (@jait),

where ay(t) and a,(t) are subjected to the conditions imposed in Theorem 2.

We observe then that, except for irrelevant constants, each sys-
tem {Pa}, n=10,1,2,..., L and ¢ are determined by four real numbers
a,b,u,» (or equivalently, a, b, p, q) where a and b may be eventually
regp. — oo and 4 oco. Given an interval (a, by, we obtain, varying x and v,
all the orthogonal polynomials {P,}, n = 0,1, 2, ..., deg P, = #, admitted
by some L. We conclude then:

THROREM 4. Ezcept for a constant factor depending on n, the following
are all the orthogonal (with respect to some non-irivial positive measure)
polynomials {Py}, n=0,1,2,.., degP, = n, admitted by a second-order
linear differential operator:

Type A (Jacobi):

Pu(t) = (b— 1) " Y(t— a)Pp‘% {(b— """ g—a)**?}, >0, ¢>0;
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Type B (Laguerre):

Pult) = &1 c)l‘”&dl{(t— P w0, p> 0

tﬂ
Type C (Hermite):

Pu(t) = e‘*“"‘"‘%{e*""“‘} , u<O0.

The first ones are orthogonal on {a, b); the second ones in (¢, 4 oo)
if >0 and on (— o, 6> if u< 0; the third ones in (— co, 4 oo). The
measure is given in Theorem 1 and the operator in Theorem 2.

The polynomials of type A are the Jacobi polynomials; those of
type B are the generalized Laguerre polynomials; and those of type C
are esentially the Hermite polynomials. There are no other orthogonal
(with respect to some non-trivial positive measure) polynomials admitted
by a second-order linear differential operator.

A more detailed discussion about polynomials admitted by an L of
second order, without considering the problem of orthogonality, can be
geen in [1].

§ 2. Proof of Theorems 1 and 2. .

ProprosITION 1. If a second-order linear differential operator L admits
three polynomials P,, P, and P,, with degP,= i, then it is of the type
(%) Lz = (at*+ fi+y)z"' + (ut+ )2’ + 92,
where a, B, y, u, v, n are (real) constants. Such L admits one and only one
polynomial

n
.Pn(t)= Zanhth, a-nn——-l,
h=0

for every n=0,1,2,... if and only if u # 0 and — ula is not a natural

number. In this case (and only in this case) the eigenvalues A, are all
different.

Proof. The fact that L is of type (x) is immediate. Moreover, re-
placing P, in Lz = Az, we obtain

A= an?4(p—a)n+n
and the recursion formula, for h = n—1, ..., 0 (writing ay, 41 = 0),

(n—h)[a(n+h—1)+ u] G,
= [Bh*+ (v+ B) b+ v]ay pi1+ y (R34 3k 4 2) an,py2,
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and P, is uniquely determined if and only if the coefficient of a,, in this
formula is non-zero for every k. The proposition follows easily from this.

A more detailed discussion about polynomials admitted by an L of
second order can be seen in [1].

Our purpose is to study the relations between the P,’s admitted by
some L and their orthogonality with respect to some measure.

We shall say that a measure d¢ is equivalent to do when ddo(t)
= (Odo(At+ B), A, B, C being real constants with A # 0 and C # 0.

We shall say that an operator I is equivalent to an L, when there
exist real constants 4,B, M, N, with 4 #0, M #0, such that I,
= ML .5+ N, where the index in the operator means the variable to
which it applies. It i3 easy to verify that in order to study orthogonality
relations between polynomials admitted by an L, it is irrelevant to
substitute de and L by equivalents.

If do is not a point mass, in particular, if it is non-trivial, there exists,
choosing suitably 4, B and O, an equivalent measure dod normalized in
the sense that My=1, M, =0, M,=1. So, we can suppose, with no
restriction of generality, that do is already normalized. Also, for each L
of type (%), there exists, choosing N suitably, an equivalent operator
guch that n = 0.

In the next proposition we shall use the following fact ([4], p. b,
Th. 1.2): If do is a positive measure, then A™(M) = det(Mi1;)7jm0 = 0
for every non-negative integer n. If, in addition, do is non-trivial, then
the sign > must be replaced by >.

PROPOSITION 2. Suppose that a second-order linear differential operator L
admits a sequence {Pp}, n=0,1,2, ..., degP, = n, of orthogonal polyno-
mials with respest to a non-trivial positive measure do. The L is equivalent to

Lz = (at*+ ft+1—a)z" —itx', with a<0.

Proof. We suppose, choosing suitably 4, B, C, that do is normalized.
Moreover, since L admits P,, Py, P,, we know that L is of type (), and
therefore, choosing N suitably, equivalent to

Lo = (a2 ft+ p) &’ + (ut+ )2 .

Since L admits P,=1 and P, = t+ay,, it is easy to show that
v = ua,,. The orthogonality relation [P,P,do =0 implies, do being
normalized, a,, = 0, and therefore it is

Lz = (at*4 ft+y)o" 4 ulz’ .

Now we prove that x4 # 0. In fact, if it were not so, it would be a #* 0,
since on the contrary, because of the fact that L admits P,, it would be
a= f =y = 0, and L would not be of second order. Therefore, choosing M



74 J. C. Merlo

suitably, L would be equivalent to Lz = (*-+ ft+y)z"'. Calculating P,
1=0,1,2,3, from the orthogonality relations

[ P,P,do = [ PyPydo = [ P,P,do = [ P,Pydo = 0

we obtain y = —1, M; = —p and M, = p*+1, which implies 4% M) = 0,
contradiction because do is non-trivial. Therefore 4 # 0 and, choosing M
suitably, L is equivalent to

Ly = (al*+ fi+y)o'' — o’ .

Caleulate now P,, Py, P,. The existence of P, says that a = 1 implies
y=0, and if a %1, the orthogonality relation [P,P,doc =0 says
14 9(e—1)""' = 0. Thus in every cage it is e+y =1 and L is

Lz = (at*+ pt+1—a)a' ' — 1z .

It remains to prove that ¢ < 0. In a first step we shall prove that
a < 3. In fact, calculating the first four polynomials, it is possible to
verify the following assertions:

(a) the fact that I admits P, implies a # %;

(b) if a = 4, then 8= 0 because L admits P,;

(c) if a # §, [P, Pydo= 0 gives My = —p(a—3})"";

(d) [P, Pydo =0 gives M,=—3 if a=}, which is impossible,
do being positive, and
f3° a—1

3 i .

2.5 f ¥

2 @ DD 2 @Diad ag o T

where the first two terms must be suppressed if a = §.
Therefore, a # %, 4, and

A M) = M,—~ M;—1

.

suppresing the corresponding terms when a=}. The second { } is
always < 0. This implies a < %, since on the contrary the first { } is < 0,
a8 it is easy to verify, and consequently 4% M) < 0, contradiction. Our
claim is then proved.

1
.M4= '2‘

W3
Consider now the recursion formula for the coefficients of P, = D, ay t",
h=0

an = 1. It i8 A4y = n[a(n—1)—1] and, writing ¢4+, = 0, for h = n—1, ..., 0,

(n—h)[a(n+h—1)—1]ar = B(h+1)Rans1+ (1— a) (h+2) (h+1) anss -
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In this formula the coefficient of ap.¢ is positive, since a < § < 1,
and those of ap4, has the same sign of B, except perhaps when h = 0,
being zero. We will suppose now a > 0 and arrive to a contradiction.

If we choose n > a~1-+1, the coefficient of a, is positive for every
h=n-1,..,0. From this we obtain easily that a,_r > 0 and sgna,—zr—1
= sgnp.

On the other hand, it is well known ([3], Th. V, p. 38) that the zeros
of Py are real, simiple, and separated by those of P,_,. This implies, using
the fact that P, = ¢ has the zero ¢t = 0, that each P,, n > 1, has at least
a negative zero and a positive one. If » is sufficiently large, the argument
above shows that 8 > 0 implies P, > 0 for ¢t > 0, and § < 0 implies either
P, > 0 or P, < 0 for t < 0 according n is either even or odd. In any case
we get a contradiction. Consequently it is a < 0 and the proposition is
proved. '

We shall see now that if L admits polynomials, such polynomials
are, under certain circumstances, orthogonal with respect to some special
measure. To see this, we define in case L is of type (%),

o(t) = a5 exp [ (a,fa))dt .

If a £ 0 and a,(t) has real and different zeros, we denote them by i,
and ¢, (t, <t,); if a= 0 and B # 0, we call ¢, the (real) zero of ay(t); if
p # 0, we call 2, the (real) zero of ay(t).

ProprosITION 3. If L admits the sequence {Pz},n = 1,2, ..., degPp = n,
of polynomials, with eigenvalues all differemt, then the polynomials are
orthogonal with respect to the measure with density o = a; 'exp f (a,]a,) dt,
in the following cases, and on the interval mentioned in each case:

(@) if @ # 0, t, < 2, <1, and sgna = 8gny, on (i, ,);

(b) if a= 0, B # 0, 2, < 1, and sgnf = sgnu, on (— oo, y);

(¢) if a=0, B # 0, 2y > t, and sgnf = —sgny, on {t;, + oo);

(d) if a=B=0, y #0 and sgny = —sgny, on (— oo, + o).

Proof. oL is formally self-adjoint; so Green’s formula says
(eLw, y)— (z, eLy) = [z, y1(b)— [z, y1(a)

where
b

(@,9)= [ 2)y(dt and [z,y]= eal@y—ay’).
a
Appying this formula to two polynomials admitted by L, we see that
it suffices to show, in the mentioned cases, that ga, = 0 at e and %, in
the sense that pa,(t) >0 when t—->b--0 and t—+a+0, more rapidly than
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any polynomial tends to infinity. This is an immediate consequence of
the following formulas, obtainable by a direct calculation:

|ty — tlal(ia)/ﬂ(iz—h) t— tll—ﬂh(h)/a(tn—h) if a # 05

oy(t) = | WPt g g o if a=0, f%0;
elul2tA+ it if a=f=0,y#0.

Thus, the proposition is proved.

Now we will show that the measure do in Proposition 2 is precisely pdt.
For this, observe first that if the polynomials {P,}, »n=0,1,2, ..,
deg P, = n, are orthogonal with respect to two measures with the same
total mass, then all the moments of the difference measure vanish. This
fact is easily obtainable by induction.

PropOSITION 4. With the same assumptions as in Proposition 2, it is
do = gdt, except for a constant factor (where o is defined above and the a,’s
are the coefficients of L), on the intervals mentioned in the following, and
o = 0 outside them:

If a 0, on <t,, t,> (the t’s are real and different, because it is a < );

If a= 0, on (— oo, > if < 0; on {ty, +o0) if > 0; and on (— oo,
+o0) if f=0.

Proof. By Proposition 1, the polynomials P, that appear in Pro-
position 2 are uniquely determined, and by Proposition 3 they are ortho-
gonal with respect to ¢dt. On the other hand, they are also orthogonal
with respect to do, by assumption in Proposition 2. Therefore, because
of the remark above, all the moments of do— odt vanish (we can suppose
fdo = [odt, multiplying ¢ by a suitable constant).

Therefore, we only need to prove that the problem of moments
My = [t*ds, where My = [t*odt, has a unique solution, which will be
then odi. A sufficient condition for this to be true is ([4], p. 19, Th. 1.10)

[}

Z (Mzk)—ll‘lk — 'l' oo

k=1

Let us see that this actually happens in our case M= [t pdt. In
case a # 0, in which p has compact support, the condition is obviously
satisfied, and it is also satisfied in case a = B = 0, because in thig case it
ig

o0

o(t)=exp(—12) and Mu= [ %% @t =1/3% .1.3-5...(2k—1).

— 00

It remains only to consider the case a= 0, # > 0 (f < 0 is similar).
In this case,

o(t) = Ce™"|Bg+1/0P"
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and then, being 4 > —1,

o
My < C [ (t—1)%p7% 2 431
0

1 -]
Consider the two integrals | and J. The first one is < 0f~**"", and
[} 2

the second one is < C[B(2k+4)T** . The condition is now easily verified,
and the proposition is therefore proved.

Now we are able to fulfill the purpose of this section proving Theo-
rems 1 and 2. Let us begin with the sufficient conditions of both
theorems.

A direct calculation shows that the function o(t) = a, 'exp f (a,/a,) dt
is precisely the g(t) of Theorem 1. Because of the conditons on x and »,
o(t) is summable on {a, b). Since in L, — u/a is not greater than or equal
to zero (a being the coefficient of #* in a,), because of Proposition 1, L
admits one and only one polynomial P, of degree =, for every =, and
with eigenvalues all different. By Proposition 3, such P, are orthogonal
with respect to pdt in <{a, b>. This shows the sufficient conditions of
Theorems 1 and 2.

Consider now the necessary conditions. By Proposition 2, L has
one of the forms given in Theorem 2, and by Proposition 4 it is do = pdi,
except by a constant factor. This proves Theorem 2. Moreover, a direct
calculation shows that p(?) is precisely the function of Theorem 1, and
being ¢(t) summable on (a, b), x and » must have the mentioned prop-
erties. This proves Theorem 1.

Finally, we describe the sitnation when de is a trivial measure,
without proofs. de¢ must consists of either one or two point masses. If
it is a single mass, L is equivalent either to Ly = (at*+ ft)o’’'— to’, with 1/a
not natural, or to Lz = —t?x"+ pix’, p being & non-negative integer.
If do is constituted by two point masses, then L is equivalent to Lz
= (124 ft—1)a'’. The actual form of the polynomials in this cases, without
refering to the orthogonality properties, can be seen in [1].

§ 3. Associated polynomials and proof of Theorem 3. Suppose
Ly = ay2' + a,2"+ a,x satisfies the conditions imposed in Theorem 2.
We will use the notation (d*/dt")f = f®.

DEFINITION. Let # and &k be non-negative integers, and % < n. The
polynomial P, = a¢ "o (aF )™ is called the associated polynomial (with
respect to L) of order n and degree k.

Let us see first that P, is actually a polynomial, a fact which is
algo true for k > =n.
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From o’ = (a,—ab)a; ' ¢ we get 0" = Riag ‘o, R, being a polynomial.

Moreover, it is (af)” = ,.,a},"r with Sp; a polynomial. Consequently,
k
Tk
Py = 2 (,) Sus By 4
=0

and our claim is proved.

We will prove now that degPax < k; later on it will be seen that
deg Pnk = k.

From the definition of Sy we get Sp=1 and 8Spy= Sn;-18,+
+ (n—j41)8p,;-1a¢. Since dega, < 2, we obtain by induction degSn < j.
Analogously, we get R,=1 and Ri= qyRi-1+ (a,—%ag)R;—,, which
implies degR; < 4. Therefore degPaux < k.

On the other hand, if 0 < h < m,

h .
(al o)™ = at ™ exp ([ (anfar) dt) 12 () 8w Ra—s

implies (afo)™ =0 at a and b, in the sense that (afo)™(t)—>0 when
t—>a+ 0 and t—-b— 0, more rapidly than any polynomial tends to infinity.
Applying this fact we have, if k> h,

[ PurPemal~*gdt = [ Pan(al 0)Pdt = (—1)* [ (Pu)Pal dt = 0,

because deg Pnp < h < k.

This implies in particular that for each % > 0 fixed, the polynomials
Pyn_k, n=k,k+1,.., are orthogonal with respect to afpodt, or what
is the same, the functions P¥— P,,,,._,,ag"‘ are orthogonal with respect
to pdt. This fact is well known when L is the Legendre’s operator; in
this case the PPy are usually called associated funections.

Now we are able to prove degPyx = k,fork < n. If k = 0 it is Ppy = 1,
so deg Py, = 0. Suppose now degPy,=h for h < k. We will suppose
degPnr = k' < k and arrive to a contradiction. In fact, because of these
assumptions we must have

k—1
Py = Z cthh,

k=0
which implies
k—1
J (Pax)as *odt = 2 ch f PapPunay " “odt =0,
h=0

because of the orthogonality formula above. Consequently Pnx = 0,
that i3 agg == T—1, Tk—. being a polynomial of degree at most k—1. This
contradicts the fact that p is summable. In synthesis,
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PRrorosITION. The associated polynomials Ppy have degree k. Moreover,
k > h implies

l Pop P agn—kg di = 0; ‘

in particular, for each k > 0, the Py ,.'s, n =1k, k+1, ..., are orthégonal
with respect to ay odt. Moreover, the Pui's satisfy the differential equation

ay@’’ +[a,+ (n—k)ap)a’'—[kai+ tag kK (2n—k—1)]z =0 .

In particular, this proposition says that degPn. = n and the Py,'s
are orthogonal with respect to pdi. By uniqueness we conlcude that
Py, = Py, except for a constant factor depending on 7, and Theorem 3
is therefore proved.

In spite of the fact that the P,z's are polynomialg even in the case
k> ﬂ, the proposition above does not hold in general in this case. So,

deg Py = k is false for Chebychev polynomials, and true for Legendre’s
polynomials if % < 2n.
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