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BUSY PERIOD PROBLEMS IN THE GI/G/c QUEUE

.1- Introduction. In the paper we investigate the busy and idle
Periods in a GI/@/co queueing system. At the same time the system is
O(}Ilsidered as a counter in which every item blockades the counter. In
VIew of this interpretation we consider some counter problems, namely
Ve state the probability of an item to be counted and the waiting time
T 2 counted item. These problems have been considered by Takaes [2].

Te some methods of dam theory [1] are used.

2. Basic data. Let us introduce the main notation and assumptions

the basic data of the queueing system considered. Let » = 0,1, ...
enojfe the numbers of successively arriving items, t, = 0 <, <1, < ...

s;"lnpl_lt moments, &, =1,,,—1%, the interarrival times, and yx, the

ar Vice times, We assume that the random variables é&,and g, (n =0,1,...)
© Dositive, independent, and distributed as follows:

for

F(a;) =Pr(§, <®), H(y) =Pr(y,<y), 2=0,y>0.

I]_l S0me situations we use, for simplicity, the random variables & and g

mstl‘ibuted according to F and @, respectively, assuming that they are
Utually independent and also independent of the basic data.

or ’_3- Blockade time of the system. Denote by 7, the maximum of the
Vice times of items being in the system immediately before the input

nOInent of the m-th item. The sequence of random variables 7,
=0,1,...) forms a Markov chain for which

(1)

Where o

Nng1 = max(O, Max (1, £,) — En)’ n=0,1,...,

is the initial value of the chain.

Denote by ¢, the maximum of the service times of the items being
S(BIW;?? System at the arrival moment of the n-th item (including the
im €¢ time of the arriving item). This quantity will be called the blockade

¢ of the system. It is obvious that

{n =MAX(Ny, xn), n =0,1,...
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For successive blockade times we have a Markovian dependence

(2) Cpt1 = MaX({, — &1y Zupr)y 7 =0,1,...,
where {, is the initial value of the chain.

The distribution functions of the considered random variables are
denoted by

Y, () =Pr(n,<2) and Z,(2) =Pr(,<2), 2>0,n=0,1,...

Note that ¥, (0+) is the probability of the system being idle at the arrivat
moment of the x-th item.

THEOREM 1. In the queueing system GI|G|oco, independently of the
initial value 1, the limit

lim Y, (2) = Y(2), 23>0,

n—>o0

exists and satisfies the integral equation
(3) Y (2) =f Y(z+a)H(z+2)dF(®), 23>0,
0

with the boundary condition Y (oo) = 1.
Equation (3) has the solution

(4) Y(Z):Pr(x1_§1<z,X2_51_52<z,.-.), Z>Oc
COROLLARY 1. Independently of the initial value {, the limit
Z(z) =1limZ,(2), 2>=0,

exists and is equal to Z(z) = H(2) Y (2), 2> 0.
Proof of Theorem 1. The recurrence formula (1) for random
variables gives the recurrence formula for the distribution function:

(5) Y, .. (2) =f Y, (2+x)H(z+x)dF(x), =n=0,1,...,

where Y, is the distribution function of the initial value 7,. Now we
prove that the limit Y (2) exists. We show by induction that

(6) Y, (2) =Pr(no—&4—...— &1 < 2,
In-1—Eno1 <%y Yn—a—Epn—2a—En1 <%y ey Xo—Eo—e-.— &1 < %),

n=12.. 2>0.
We have

Y,(2) = Pr(max(n,, Xo)—50<z) = Pr(no— & <2, xo— & <?2).
By the assumption of induction we get
Yn+1(z) =Pr(max(ﬂnyln)-§n< z) =Pr(77n'—§n<z’ Zn_$n<z)
=Pr(ne—&o—..— &, <2 An— 8. <%y .oy ho—Eo—ee =8 <2)y
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Which proves (6). Using the independence assumption for the basic data,
We can write (6) in the form

Y,.(?) =Pr(4,B,), =n=12,...,
Where

4, = {’70*50—---_511—1 < 2},
B, = {Ho—& <2y i—E— & <2,y fnoy—Ep—eeo— &,y < 2.

The sequence of events {4,} is increasing, lim Pr(4,) =1, the

n—o0

Sequence of events {B,} is decreasing, lim Pr(B,) = Pr(x,— & < 2,

Nn—>00

t—§,— ¢ <2,...). In consequence, the limit
lim Pr(4,B,) = Y ()

®Xists and does not depend upon 7,. Taking the limit in (5), we obtain
®Quation (3), Taking the limit in (6), we obtain the solution (4).

Example 1. If we have F(x) = plj (@) + ¢l (@) for 0 <p <1,
9=1-p, a >0, then

Y2) =Y@R)H(Fp+Y(2+a)H(z+a)q.

Hence
Y (2) _ H(z+a)g _ H(z+a)q H(z+2a) _
1-H(@5)p Y(2+a) = _H@p 1_H@eTa)p Y(2+2a) =...
Fina‘lly,
Y(2) = Hztin)g 2>0.

{ 1—H(z+(i—1)a)p’

Inen:'. Distribution . function of the time between counted arrivals.. As
o l0ned earlier, the item is counted if there is no blockade at the input
4 nlz)lent. Denot.e by w(?), 2> 0, the time from the arrival moment of
con(1;:3'_(3011nted item to the arrival of the first counted item under the
lon that the initial blockade time (including the service time of
i e;:“’rnﬂ'llg item) is 2. The counted item starts the blockade time which
ran(;l:al to the service time. Hence the intercount time is a compound
I variable w(y), where % is a random variable distributed according

and independent of the basic data.
The stochastic process w(z), z >0, satisfies the recursive equality

(7)
w(2) = &+ w;(83)1,5e,



198 I. Kopociriska

where {, = max(2— ¢, y), and w,(2), # >0, is the probabilistic copy of
the process w(z), 2 >0, which is independent of & and y.

The probability distribution of the value of the process w(z) is defined
by W(z,w) = Pr{w(z) < w), 2>0, w>0.

Formula (7) may be expressed in the extended form

_ ¢ if 2<< &,
|+ (8y) if 2> E.

For w <2z we have W(z, w) = 0, since w(z) > 2. For w >z we get

(8) o (2)

Wz, w) =Pr(§ <w,z< &) +Pr(f+ow(l)<w, 2>§

=Pr(z < §<w)+fPr (&) < w—a)dF (z)

ZWw—x

= F(w) z)+ff W (max(z—x,y), w—ax)dH (y)dF (z).

Finally, we obtain the integral equation

0 it w<z,

) Wiy w) = {F(w)—F(z)Jr@(W)(z;w) it w> 2,

where the operator O(W) is defined as follows:

(10) O(W)(z,w) = fzw-x W (max (z—=, y), w—x)dH (y)dF (z).

0 0

The solution of equation (9) is of the form

(11) Wiz, w) = Y 0*(f)(z, ),

where @™ is the n-fold convolution of the operator (10) and
(12) f(z,w) = (F(w) —F(z))1w>z, 2>0, w>=0.

The convergence of the sequence (11) is proved in the following
manner. Consider the Markov chain (2) with initial value {, = 2. Then
from (8) we get recursively

(13)  @o(Co) = Eolpyce,+ (Eot @1(81)) e >e,
= 50150<50 + ( EO + 61)1c0>50,;1<51 +- .o '+‘
+ (EO +- .o + §n+1)150>50 ..... 8> tnobnr1<tn+1 +Rn+1(z)’

where

Boi1(2) = (50+- vt &t wn+l(cn+1)) 1c0>£1,...,cn>en'
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COnSequently,
Pr{n(e) <w) = Y 6™(f)(z, 1) +Pr(R,,;(2) < w),
=0

Where f is defined by (12).

. The inequality Pr (Rps1(2) <w) < Pr(&p+...+ &, < w) < F™(w) im-
Dlies that the distribution function of the random variable R,(2) tends
0 Zero uniformly for z. This proves the uniqueness of the solution of
€quation (9). From (13) we obtain the following

CoroLLARY 2. The probability distribution function of the time length

vetween the arrivals of counted items is equal to the distribution of the random
a"iable:

w(x) = &+ 511C0>50+ 521c0>50,c1>51 e

S. Busy period of the system. Denote by 7(z), z > 0, the busy period
he system which starts at the arrival moment, given the initial blockade
‘M 2, The unconditional busy period starts at the arrival moment of

?? )item which finds the system idle and is a compound random variable
1)

of ¢

The stochastic process 7(z), z > 0, satisfies the relation

(14) T(Z) =2 1Z<E+ (§+TI(CI))1Z>G’

lﬁ?re 7(2), 2 >0, is a probabilistic copy of the process z(z2), z >0,
1¢h iy independent of & and ¢,.

b The distribution function of the value of the process (z) is denoted

(2,1), 2 >0, > 0. Formula (14) may be expressed in the extended.

formy,
2 if 2<< ¢,

#(2) ={5+n(cl) if 2> &.

For ! <z we have T(z,t) = 0 since 7(z) > 2. For t >z we get

T(z,t) =Pr(z<t,2< &) +Pr(é+,(L) <tyz>§
zl—x

=1-F@)+ [ [ T(max(2—a,y),t—a)dH (y)dF (z).

Finally, we obtain the integral equation

(15

Tle. 1) — 0 if 1<z,
(1) = {1—F(z)+9(T)(z,t) if t>2)
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‘where O is defined by (10). This equation is analogous to (9) and has
the solution

s

T(z,1) = Y 0™ (f)(z,1),

n=0

‘where f(z,1) = (L—F(2))1;5,, 2>0, t>0.

6. Idle period of the system. Denote by 4(z), # >0, the idle period
-of the system, assuming that the busy period of the system starts from
‘the blockade time 2. The unconditional idle time of the system is a com-
pound random variable A(y).

The following equality holds:

{(16) Mz) = (§—2) Lt + 4, (01,5,

where 1,(z), 2 >0, is a probabilistic copy of the process 1(z), z >0,
‘which is independent of & and ¢,.
The distribution function of the value 1(z), 2 >0, denoted by
L(z,l) =Pr(A() <), 2>0,1>0,
satisfies the equation

0 if 1<z,

(17) LY = {F(z-{—l) —F()+0(D)(z, 1) if I>2,

‘where @ is defined by (10). Equation (17) may be solved analogously
as (9) and (15).

7. Expected values. Consider the expected values of the earlier-
defined stochastic processes: w(z) = Ew(?), t(2) = Er(2), 1(2) = EA(?),
2 >0. Using (7), (14), and (16) we obtain the integral equations

(8) w(e) = g+ 0(0) 4,
o) = #(L~F @)+ [edF(2)+00)(),  Ue) = w(e)—t(), >0,
;
where the operator 6(w) is defined by
0(w) (2) =fszw(max(z—m,y))dH(y)dF(m), 2>0,

.and u, is the expected value of the distribution function F.
The solutions of the above equations may be obtained in a standard
manner, analogously as in the case of (9).
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t; NOW, we establish some conditions for the existence of the solu-
'0ns. The operator § is increasing and

z
pa > 2(1 —F(z))—l—fwdF(a:), 2>0,
0
SS We restrict our considerations to some remarks on equation (18). Using
‘) we get
Ew(l) = E£+Ew(Ly)1,,,, where {; = max({—§, ).
Hence
Ew(Co) = E§, +E521¢0>51 T +E5n+11c0>£1....,:n_,>en +
+Ew(C"‘H)1Co>51x---:¢n>5n+1’ n=1,2...

The random variable &4, is independent of the random variables
4>8pty g fOT 1 =0,1,...,n. Hence

Ew (o) = w1 Ev(Lo) +7(Lo),y
Where

Ev(Co) = 1+Pr(fo > &) +... +Pr (8o > &1y ooy Gy > &)
I8 the expected value of the time ¢, over zero and

7(8o) = Hm B(0(Snri) Legseynt,>ensy) -

n—>o0

Simple conditions for #({,) = 0 are not known.

References

(1] E. Cinlar, On dams with continuous semi- Markovian inputs, J. Math. Anal. Appl.
35 (1971), p. 434-448.

21 L. Takéecs, On the sequence of events, selected by a counter from a recurrent process
events, Teor. Verojatnost. i Primenen. 1 (1956), p. 90-102.

%AYTHE.\IA’I‘ICAL INSTITUTE
NIVERSITY OF WROCLAW
50-384 WROCLAW

Received on 19. 1. 1983

3 — Zastos. Mat. 18.2



