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HETEROGENEOUS QUEUEING SYSTEMS ¥ /M2 WITH BALKING

1. Imtroduction. Singh studied in [2] a two-channel queueing system
M/M;[2 with input intensity A and different service rates u, and u, in
two channels. The following queueing discipline was assumed:

(a) If both channels are busy when a new unit applies to service-
it joins the queue with probability g and abandons the system with prob,
ability 1— 8.

(b) If only one channel is occupied, the new unit with probability 1
enters the empty channel and service starts immediately.

(¢) If both channels are empty, the new unit with probability 1 chooses
the faster channel and occupies it immediately.

This system has been compared with a homogeneous system M /M /2
having equal service rates }(u,+ u.) in both channels. A necessary and
sufficient condition has been found under which the steady-state prob-
abilities p, (k¥ =1,2,...) of having k units in a heterogeneous system
are smaller than those for the corresponding homogeneous case. Singh
has also shown that in a class of heterogeneous systems with a given
total of service rates u = u,+ u, the minimum of the expected value
(as well as that of the variance) of the queue length is achieved for

Hy = A(V1+p/i-1).

Here a more general case of the heterogeneous system M /M,;/2 is
considered. We assume that the balking probability now depends on
the length of queue. If there are k (k¥ > 0) units in the system, the new
unit decides to enter with probability ¢, and abandons the system with
probability 1 —g,. Furthermore, if both channels are empty, the entering
unit chooses the first channel with probability z;, and the second channel —
with probability #, =1 —=,.

2. Steady-state distribution of the length of queue. Assuming they
exist, let us define the following steady-state probabilities:

P, — probability of % units present in the deseribed system
(k=0,1,...);
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P10 — probability of one unit present in the system and being
served in the first channel; )
Po,1 — Drobability of one unit present in the system and being
served in the second channel.
They have to satisfy the following system of equations:
— AQoPo+ p1 P10+ H2Po, = 0,
—(Aq1 + 1) Pr,0 + #2P2 + Ao 71 Po = O,
— (A1 + p2) Do, + p1 P2+ Ao Po = 0,
— (A + 1) Pp+ Mp 1 Do + Py =0, 0 =2,3,...,
D1 =Prot+Pors  PotPrt ... =1.
The solution of this system is of the form
(1)  P1=A4ps, Dy =0" "y 10 = A" 0, 1Py, 0 =2,3,...,
where
_ Ao [Agy + pr + (16— 2p5) 7, ]
pa(p— 1) (204, +1)

[] L
a, = q e = =
=1 * w1+ pe 14

(3) po=1/1+4+4 fe"ak)-
k=1

A

H

(2)

It follows from these formulas that the convergence of the series
in (3) is a necessary condition for the existence of the steady-state dis-
tribution (1). Let us notice that the convergence depends only on 4, g
and gq;.

Knowing the solution (1) we can evaluate the following parameters:

the expected value E(Q) of the number of units in the system,

(4) E(@Q) = j np, = p {1+ jne"‘lan_l};
n=1 n=2

the expected queue length

(3) B(L) = ) (n—2)p, =p; D) (n—2)¢" " ty_y;
n=3 n=3
the expected virtual waiting time
o n—1 P2 " el
(6) BV) = D =2 D (0= 1) s

n=2 n=2
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the expected waiting time E (W) for the units which do not resign,

(7) E(W) =S’”;1 q,,p,,/}jmn
n=0

n=2

._A N n-—1 N n—1 .
—77;(%—1)9 an/{qo+Age %},

the expected number of resigning units E(R) in the time interval
of length one,

(8) E(R) =2 (1—g)ps = 491 D (1—ga) " "ty
n=0 n=0

3. Efficiency of the system. From now on the values of parameters
/, nand g (k =0,1,...) are fixed and we assume that they are chosen
so that the steady-state distribution exists. A system is then complete-
ly specified by giving the values of u, and =,. By S(y,, %) we denote
the system with given values of u, and =;; by S(-, »,) — the class of
all systems with u,e[0, x] and fixed =,; by S(g,, -) — the class of all
systems with fixed u, and =,¢[0,1]; and by §(-,-) — the class of all
systems with u,e[0, x] and =,€[0, 1].

We compare now two systems

80 = S(lél)’ “gl)) and 88 = S(l‘(lz), 7"(12))

belonging to S(-, ). Let us denote by E(QY), E(L®), E(VY), E(W®Y)
and E(R®) the corresponding expected values (4)-(8) for the system
89 (1 =1,2).

Definition 1. The system S® is called more efficient than S® if
the inequalities

E(QY) <E(@®), E(I") <E(L¥),
(9)
E(VY) < E(V®), E(WY) <E(W®), E(&RY) <E(R®)

hold.

Definition 2. The system SV is called equally efficient as 8@ if

B(QY) = B(QP), E(Z®) = B(ZY),
(10)
B(VY) = B(V®), E(WY) =E(W?), B(EY) =B(&Y).

Now we prove
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TuEOREM 1. The set of inequalities (9) is equivalent to the single ine-
quality
1 A+ +(p—2p0) 2l Aga+pf) + (0 —200) 2
(11) @, 0 @ — 1, ’
sy (p—py) py (B —p)
and the set of equations (10) is equivalent to
2+ 10+ (p— 20020 g+ + (u— 248 2f)
w8 (n— pd?) # (i— ) '
Proof. It follows from the definition of A (formula (2)) that (11)
is equivalent to
(12) AW < 4@

which is of course equivalent to

1 +1+5 * ay, > 1 +1+4 N ka
o) T ) ZQ ke
A A i

k=1

In view of (1) and (3), the last inequality is equivalent to
(13) P <.

‘Using formulas (4)-(8) we now easily deduce that (12) and (13) are
sufficient and necessary conditions for inequalities (9) to hold. This com-
pletes the proof of the first part of the theorem. Replacing in what was
said above all inequality signs by equality signs we prove the second
part of the theorem.

Three corollaries easily follow from Theorem 1 and its proof.

COROLLARY 1. Any two systems in S(-, ‘) are comparable, i.e. either
one of them is more efficient than the other or both are equally efficient.

COROLLARY 2. Symmetrical systems S(uy, 7)) and S(u—py, 1—m,)
are equally efficient. |

COROLLARY 3. 8W is more efficient than 8@ if and only if inequal-
ity (12) or the equivalent inequality (13) holds.

4. The most efficient systems. Three theorems of this section indicate
the most effective systems in different classes.

THEOREM 2. There exists the most effective system in S(-, m,). It is the
system

7, + Ag, — AV 24 47, (1l—=x 2 . 1
S(H 17T Aqh Q12”91/§ 2 vle o if 7 ;é_‘)_,
1— e

v 1 . 1
8(2’5) o =5
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Proof. According to Corollary 3 it is enough to prove that the quan-
tit-y A (defined in (2)) achieves its minimum at

l‘ﬂa':*lq]—1VQ§+Q1/Q+751(1—”1)/92 ; L1
if Ty 7+ —
0 27'51""1 2
M = 1
ﬁ if Ty = —.
9 2

This can be easily checked by calculating the derivatives.

It may be interesting here to mention paper [1] by Gumbel who
studied heterogeneous systems A /M;/n without balking, assuming ran-
dom choice of an empty channel by a unit which enters the system while
two or more channels are empty. His results for » = 2 coincide with
the statement of Theorem 2 for =z, = 1/2.

From Theorem 2 and Corollary 3 we have
CorROLLARY 4. The most efficient in S(-, 0) is the system

8(Vei+ /e — a1, 0)
which is equally efficient as the most efficient system

S(u— VG +ale+iai, 1)
m S(-,1).
A reasoning similar to that in the proof of Theorem 2 allows for the
formulation of

THEOREM 3. The most efficient in S(u,, ) is the system 8(u;,0) if
H1 < p[2, and the system S(uy,1) if puy> /2. In S(u/2,:) all systems
are equally efficient.

Theorems 2, 3 and Corollary 2 bring us to the final result:
THEOREM 4. In 8(-, ) two most efficient systems are

S(AVE+qjo—2g1,0) and  S(u—AVE+di/e+ g, 1).

Let us notice that in the case ¢, = ¢, = 1 and ¢, = § for k> 2 our
systems reduce to those studied by Singh in [2]. The most efficient are
then the systems

8(AV1+1/e—2,0) and S(p—AV1+1/o+4,1).
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JOANNA HUK (Wroclaw)

NIEJEDNORODNE SYSTEMY OBSLUGI MASOWE]J TYPU M/J;/2
Z REZYGNACJA

STRESZCZENIE

W pracy rozwaza si¢ dwukanalowy niejednorodny system obstugi masowej
M/M;[/2 z poissonowskim strumieniem wejcia o intensywnosci 4 i z wykladniczym
rozkladem czasu obslugi o intensywnosciach u, i x4, w dwu kanalach. Zaklada sie,
Zze zglaszajaca sie do systemu jednostka moze zrezygnowaé z obshlugi z prawdopo-
dobieristwem 1 — ¢;., zaleznym od liczby jednostek w systemie oraz ze jednostka zasta-
jaca oba kanaly wolne wybiera pierwszy z nich z prawdopodobienistwem z, i drugi
z prawdopodobiciistwem 7, = 1 —,.

Dla tak zdefiniowanego systemu znaleziono stacjonarny rozklad liczby jednostek
w systemie oraz obliczono nastepujace drednie charakterystyki (wzory (4)-(8)): srednig
liczbe jednostek w systemie E(Q), srednig dlugosé kolejki E (L), éredni wirtualny
czas ozekania na obsluge E(V), sredni czas czekania na obsluge dla jednostek nie
rezygnujacych z obstugi E (W) oraz Srednia liczbe jednostek rezygnujacych z obstugi
w jednostce czasu E (R). )

Przy zalozeniu, ze systemy S = 8(ud,al) i 8@ = §(uP, a®), nalezace
do klasy S(-, -), sa réwnie efektywne wtedy i tylko wtedy, gdy spelniony jest uktad
réwnan (10), oraz ze system S() jest efektywniejszy niz system S() wtedy i tylko
wtedy, gdy speiniony jest uklad nieréwnosei (9), pokazano, ze systemy symetryczne
S(uy, 7)) i 8(w—py,1—m;) sa réwnie efektywne, i znaleziono warunek konieczny
i wystarczajacy na to, zeby system S() byl efektywniejszy niz system S?) (wniosek 3
z twierdzenia 1).

W twierdzeniach 2, 3 i 4 wskazano najefektywniejsze systemy w nastepuja-
cych klasach systemoéow:

8(-,m;) — klasa wszystkich systemow z u,e[0, u] (u = g, + u,) i z ustalona
wartosciag parametru m,;

S(uy, ) — klasa wszystkich systemow z ustalong wartoscia parametru g,
ime[0,1];

S(,-) — klasa wszystkich systeméw z u,;e[0, u] i 7,¢[0, 1].



