FOURIER ANALYSIS OF THE BANACH INDICATRIX

BY

Z. CIESIELSKI (POZNAŃ)

Let \(\varphi(t) \) be a continuous function of bounded variation on \(\langle a, b \rangle \), and let \(N_{\varphi}(x) \) denote the number of solutions of the equation \(\varphi(t) = x \), \(t \in \langle a, b \rangle \); \(N_{\varphi}(x) \) may be infinite. The function \(N_{\varphi} \) is known as the Banach indicatrix (cf. [4]). It was proved by Banach [1] that

\[
\int_{-\infty}^{\infty} N_{\varphi}(y) \, dy = \int_{a}^{b} |d\varphi(t)| = \varphi \text{ var} \varphi.
\]

We shall call the function \(\varphi \) piece-wise monotonic if there exists a finite partition \(a = t_0 < t_1 < \ldots < t_n = b \) such that \(\varphi \) is monotonic (non-decreasing or non-increasing) in each interval \(\langle t_{i-1}, t_i \rangle \).

Let \(\varphi \) be continuous and piece-wise monotonic and let \(m_{\varphi}(x) \) denote the number of components of \(\varphi^{-1}(x) \). Obviously, \(0 \leq m_{\varphi}(x) < \infty \). Now define

\[
N^*_{\varphi}(x) = \begin{cases}
 m_{\varphi}(x) & \text{if } x \neq \varphi(a), x \neq \varphi(b), \\
 m_{\varphi}(x) - \frac{1}{2} & \text{if } x = \varphi(a) \neq \varphi(b) \text{ or } x = \varphi(b) \neq \varphi(a), \\
 m_{\varphi}(x) - 1 & \text{if } x = \varphi(a) = \varphi(b).
\end{cases}
\]

It is easy to see that \(N^*_{\varphi}(x) \leq N_{\varphi}(x) \) for all \(x \in (-\infty, \infty) \), and the equality holds except for at most a countable set of points. It was proved by Kac [3] that for piece-wise monotonic \(\varphi \) with continuous derivative the formula

\[
N^*_{\varphi}(x) = \frac{1}{\pi} \int_{0}^{\infty} du \left[\int_{a}^{b} \cos u(\varphi(t) - x) |d\varphi(t)| \right]
\]

holds for all real \(x \). Kac established this formula without referring to the Banach indicatrix. It turns out, however, that by the methods of Fourier analysis a somewhat stronger result than (2) can be deduced from formula (1). We are also able to derive a similar formula for \(N_{\varphi} \) under the assumption that \(\varphi \) is continuous and of bounded variation on \(\langle a, b \rangle \).
In order to state our results we need the definition of \((C, k)\) summability for integrals. Let \(a\) be a continuous function on \((0, \infty)\). Then we put \((k > -1)\) (cf. \([2]\), p. 111)

\[
(C, k) \int_0^\infty a(u) \, du = \lim_{T \to \infty} \int_0^T \left(1 - \frac{u}{T}\right)^k a(u) \, du.
\]

It is easy to see that

\[
(C, 1) \int_0^\infty a(u) \, du = \lim_{T \to \infty} \frac{1}{T} \int_0^T \left[\int_0^T a(u) \, du \right] \, d\lambda.
\]

Theorem 1. Let \(\varphi\) be a continuous function of bounded variation on \((a, b)\). Then

\[
N_\varphi(x) = (C, 1) \frac{1}{\pi} \int_a^b du \left[\int_a^b \cos u (\varphi(t) - x) \, d\varphi(t) \right]
\]

for almost all real \(x\). Moreover, the right-hand side of this equality converges to \(\frac{1}{2} [N_\varphi(x_+) + N_\varphi(x_-)]\) at each point \(x\), where the limits \(N_\varphi(x_\pm)\) exist. The convergence is uniform over each finite and closed interval of continuity of \(N_\varphi\).

Proof. Notice that the Banach result implies \(N_\varphi \in L^1(-\infty, \infty)\). Let \(J = \langle c, d \rangle, \; -\infty < c < d < \infty,\) and let \(I_E(x)\) be 1 if \(x \in E\) and 0 if \(x \notin E\). Applying (1) to the function

\[
\varphi_J(t) = \max \{c, \min(d, \varphi(t))\}
\]

we obtain

\[
\int_{-\infty}^{\infty} N_{\varphi_J}(y) \, dy = \int_{-\infty}^{\infty} I_J(y) N_\varphi(y) \, dy
\]

\[
= \int_{\varphi^{-1}(J)} |d\varphi(t)| = \int_{a}^{b} I_J(\varphi(t)) |d\varphi(t)|.
\]

Now let \(E\) be a Borel subset of \((-\infty, \infty)\). Then using (3) we can show that

\[
\int_{-\infty}^{\infty} I_E(y) N_\varphi(y) \, dy = \int_{a}^{b} I_E(\varphi(t)) |d\varphi(t)|,
\]

where the left-hand side is the Lebesgue integral and the right-hand side is the Lebesgue-Stieltjes integral. Formula (4) implies that

\[
\int_{-\infty}^{\infty} f(y) N_\varphi(y) \, dy = \int_{a}^{b} f(\varphi(t)) |d\varphi(t)|
\]
holds for any bounded, real valued Borel function. In particular, if $f(y) = \cos u(x - y)$, where x and u are fixed real parameters, equation (5) gives

$$\int_{-\infty}^{\infty} N_\varphi(y) \cos u(y - x) \, dy = \int_{a}^{b} \cos u(\varphi(t) - x) \, d\varphi(t).$$

The partial integral of the Fourier repeated integral of N_φ is

$$S_\omega(x) = \frac{1}{\pi} \int_{0}^{\omega} du \left[\int_{-\infty}^{\infty} N_\varphi(y) \cos u(y - x) \, dy \right],$$

hence by (6)

$$S_\omega(x) = \frac{1}{\pi} \int_{0}^{\omega} du \left[\int_{a}^{b} \cos u(\varphi(t) - x) \, d\varphi(t) \right].$$

To complete the proof it is sufficient to apply the (1.21) Theorem from [5], p. 246.

The suggestion was made to me by Lee Lorch to employ a Tauberian theorem to improve the summability in Theorem 1. This method leads to a slightly stronger result than that obtained by Kac.

Theorem 2. Let φ be a piece-wise monotonic and continuous function on $\langle a, b \rangle$. Then for each real x and for any $k > -1$ we have

$$N^*_\varphi(x) = (C, k) \frac{1}{\pi} \int_{a}^{b} du \left[\int_{a}^{b} \cos u(\varphi(t) - x) \, d\varphi(t) \right].$$

In particular, the integral converges to $N^*_\varphi(x)$.

Proof. Let $I_x(y)$ be 0 if $y \neq x$ and 1 if $y = x$. Then by the very definition of N^*_φ we have

$$N^*_\varphi(x) = \frac{1}{2} \sum_{a \leq t \leq \varphi(y)} \text{var} I_x(\varphi(t)).$$

The total variation of a given function of bounded variation is an additive function of intervals. Therefore

$$N^*_\varphi(x) = \frac{1}{2} \sum_{j=1}^{n} \text{var} I_x(\varphi(t)), \quad \langle t_{j-1}, t_j \rangle$$

where $\langle t_{j-1}, t_j \rangle$, $j = 1, \ldots, n$, are the intervals of monotonicity of φ. Let

$$\psi_{\langle t_{j-1}, t_j \rangle}(x) = \frac{\text{var} I_x(\varphi(t))}{\text{var} I_x(\varphi(t))}, \quad j = 1, \ldots, n.$$
One checks that

\[\psi_j(x) \equiv 0 \quad \text{if} \quad \varphi(t_{j-1}) = \varphi(t_j), \]

and if \(\varphi(t_j) \neq \varphi(t_{j-1}) \), \(\alpha_j = \min[\varphi(t_{j-1}), \varphi(t_j)] \), \(\beta_j = \max[\varphi(t_{j-1}), \varphi(t_j)] \), then

\[
\psi_j(x) = \begin{cases}
2 & \text{for } x \in (\alpha_j, \beta_j), \\
1 & \text{for } x = \alpha_j \text{ and } x = \beta_j, \\
0 & \text{for } x \notin (\alpha_j, \beta_j).
\end{cases}
\]

Notice that

\[
(8) \quad \psi_j(x) = \frac{\psi_j(x_+) + \psi_j(x_-)}{2} \quad \text{for } x \in (-\infty, \infty),
\]

and that

\[
(9) \quad \var_{(\infty, \infty)} \psi_j(x) \leq 4 \quad \text{for } j = 1, \ldots, n.
\]

Combining (7), (8) and (9) we obtain

\[
(10) \quad \var_{(\infty, \infty)} N^*_\varphi(x) \leq 2n < \infty,
\]

and

\[
(11) \quad N^*_\varphi(x) = \frac{N^*_\varphi(x_+) + N^*_\varphi(x_-)}{2} \quad \text{for } x \in (-\infty, \infty).
\]

We remember that \(N^*_\varphi(y) = N^*_\varphi(y) \) for almost all \(y \). Following step by step the proof of Theorem 1 it is not hard to see that the function \(N^*_\varphi \), in Theorem 1, can be replaced by \(N^*_\varphi \). This and (11) give

\[
(12) \quad N^*_\varphi(x) = (C, 1) \frac{1}{\pi} \int_\infty^b \int_a^b d\varphi \left[\int_{a}^{b} \cos u (\varphi(t) - a) |d\varphi(t)| \right].
\]

Equation (6) implies

\[
\int_a^b \cos u (\varphi(t) - a) |d\varphi(t)| = \int_{-\infty}^{\infty} N^*_\varphi(y) \cos u (y - x) dy
\]

\[
= \int_{-\infty}^{\infty} N^*_\varphi(y) \cos u (y - x) dy = \frac{1}{u} \int_{-\infty}^{\infty} N^*(y) d\sin u (y - x)
\]

\[
= -\frac{1}{u} \int_{-\infty}^{\infty} \sin u (y - x) dN^*_\varphi(y),
\]
hence, by (10), for large u we get

\begin{equation}
\left| \int_{a}^{b} \cos u(\varphi(t) - x) |d\varphi(t)| \right| \leq \frac{2n}{u} = O(u^{-1}).
\end{equation}

However, (12) and (13) are the hypotheses of the Tauberian theorem for integrals stated in §6.8 on p. 135 of [2]. Applying this theorem we get the required result.

REFERENCES

Mathematical Institute, Aarhus University, Denmark

Institute of Mathematics of the Polish Academy of Sciences

Reçu par la Rédaction le 23. 2. 1965