K. FLOREK (Wrocław)

SOME REMARKS ON SOLVING SYSTEMS OF LINEAR EQUATIONS BY A RELAXATION METHOD COMBINED WITH A GENERALIZED HOTELLING METHOD FOR INVERTING MATRICES

Let A, B, C, D_n , and H_n be square matrices of degree r, let I denotes the unit matrix, and |A| the determinant of a matrix A. Let P, Q, X_k , and Y be column vectors of degree r. Let ||A|| and ||P|| denote a metric for the matrix A and for the vector P respectively, such that: for any real number a we have $||Aa|| = |a| \cdot ||A||$; ||P|| > 0 for $P \neq 0$; ||I|| = 1; and for any A, B, C and P, Q the inequalities

$$||AB+C|| \leq ||A|| \cdot ||B|| + ||C||$$

and

$$||AP+Q|| \le ||A|| \cdot ||P|| + ||Q||$$

are fulfilled.

A generalized Hotelling method for inverting matrices ([1], [3]) allows for fixed m=2,3,4,...; for any matrix A satisfying the condition

$$(1) |A| \neq 0;$$

and for any given D_0 , the determination of

$$(2) D_n = (I - H_0^{m^n}) A^{-1}$$

using the algorithm

$$D_{n+1} = \left(I + \sum_{s=1}^{m-1} H_n^s\right) D_n, \quad n = 0, 1, 2, ...,$$

where

$$H_n = I - D_n A$$
.

Moreover, if

$$||H_0|| \leqslant \theta < 1,$$

then the following inequality holds:

$$||D_n - A^{-1}|| \leqslant \frac{\theta^{m^n} ||D_0||}{1 - \theta}.$$

348 K. Florek

For m=2 the procedure (2) reduces to the well-known Hotelling method [2].

If μ_r is the time necessary to perform the multiplication of two square matrices of degree r, and σ the addition or subtraction time of two elements, then the necessary time for the calculation of D_n is equal to

(5)
$$\tau(m,n) = nm(\mu_r + r\sigma).$$

Having given the required precision of the result, which according to (4) means a fixed m^n , the time (5) reaches its minimum for m=3. For this value of m the generalized Hotelling method is faster than the original one. But its disadvantage lies in the necessity (for m>2) of storeing one matrix more in the course of calculation.

Consider now a system of linear equations

$$AX = Y.$$

This system may be solved by a combination of the generalized Hotelling method with the relaxation method

(7)
$$X_k = DY + (I - DA)X_{k-1}, \quad k = 1, 2, 3, ...$$

The following theorem gives an estimate for the precision of the proposed combination of methods:

THEOREM 1. If, for fixed $m \ge 2$, the relations (1) and (3) are fulfilled, and if $D = D_n$ is given by (2), then the procedure (7) leads to an approximate solution of (6) and

$$||X_k-X|| \leqslant \theta^{km^n}||X_0-X||,$$

where X_0 is the initial solution.

Proof. Putting (6) into (7) we have

$$X_k - X = (I - DA)(X_{k-1} - X).$$

Expressing $X_{k-1}-X$ by $X_{k-2}-X$ and so on, in k steps we come to

$$X_k - X = (I - DA)^k (X_0 - X).$$

For $D = D_n$ we have from (2)

$$X_k - X = H_0^{km^n}(X_0 - X).$$

Inequality (3) allows then the formulation of the theorem.

Optimal proportions for the combination of the two methods are stated in the following

THEOREM 2. If the assumptions of theorem 1 are fulfilled, then for a given sufficiently large exponent $\varrho > mr+1$ in the estimate

(9)
$$\frac{\|X_k - X\|}{\|X_0 - X\|} \leqslant \theta^{km^n} \leqslant \theta^{\ell}$$

the minimum calculation time of X_k is reached approximately for

$$k \approx \frac{mr(\mu_r + r\sigma)}{\mu_r + r^2\sigma}$$

and

$$(11) n \approx \ln(\varrho/k)/\ln m,$$

where μ_r and σ have the same meaning as in (5).

Proof. According to (5) and (7) the necessary time for the calculation of X_k is given by

(12)
$$\tau(m, n, k) = nm(\mu_r + r\sigma) + k(\mu_r + r^2\sigma) + \mu_r \left(1 + \frac{1}{\mu_r}\right) + r\sigma.$$

Using (3) and (9) we have for $\varrho > k$

(13)
$$n \geqslant (\ln \varrho - \ln k) / \ln m.$$

If n was a real variable, the minimum calculation time would be obtained for the equality sign holding in (13). For integral n we get only the approximate equation (11). Let us put (11) into (12). Differentiation with regard to k (treated also as a real variable) gives

$$\frac{\partial}{\partial k} \tau(m, n, k) = -\frac{1}{k} m(\mu_r + r\sigma) + \frac{\mu_r}{r} + r\sigma.$$

This derivative is positive for

$$k > \gamma = \frac{mr(\mu_r + r\sigma)}{\mu_r + r^2\sigma},$$

and negative for $k < \gamma$; we have thus (10).

REMARK. The time $\tau(m, n)$ of calculating D_n reaches its minimum for m = 3, but for m = 2 it is only about $5^{\circ}/_{\circ}$ greater. Thus searching for an optimal set of integers (m, n, k), the exponent ϱ given, it is necessary to consider at least two cases m = 2 and m = 3.

References

- [1] M. Altman, An optimum cubically convergent iterative method of inverting a linear bounded operator in Hilbert space, Pacific Journal of Mathematics 10 (1960), pp. 1107-1113.
- [2] H. Hotelling, Some new methods in matrix calculation, Annals of Mathematical Statistics 14 (1943), pp. 1-34.
- [3] A. Kiełbasiński, On the iterative procedures of best strategy for inverting a self-adjoint positive-definite bounded operator in Hilbert space, Studia Mathematica 24 (1964), pp. 13-23.

INSTITUTE OF MATHEMATICS OF THE POLISH ACADEMY OF SCIENCES

Received on 22. 12. 1964.

K. FLOREK (Wrocław)

UWAGI O ROZWIĄZYWANIU RÓWNAŃ LINIOWYCH ZA POMOCĄ ZŁOŻENIA METODY RELAKSACJI I UOGÓLNIONEJ METODY HOTELLINGA ODWRACANIA MACIERZY

STRESZCZENIE

Rozważa się rozwiązywanie równania (5) za pomocą metody relaksacji (6), gdzie $D=D_n$ oblicza się według uogólnionej metody Hotellinga (2). Wzór (7) w tezie twierdzenia 1 podaje oszacowanie dokładności złożonej metody. Wzory (9) i (10) w tezie twierdzenia 2 podają przybliżone wartości parametrów k i n, które minimizują czas osiągnięcia rozwiązania X_k z daną dokładnością (8). We wzorze (9) μ_r oznacza czas mnożenia macierzy kwadratowych stopnia r, a σ czas dodawania dwu elementów macierzy.

К. ФЛЬОРЕК (Вроцлав)

ЗАМЕЧАНИЯ О РЕШЕНИИ ЛИНЕЙНЫХ УРАВНЕНИЙ С ПОМОЩЬЮ КОМБИНИРОВАНИЯ РЕЛАКСАЦИОННОГО МЕТОДА И ОБОБЩЁННОГО МЕТОДА ХОТЕЛЛИНГА ОБРАЩЕНИЯ МАТРИЦ

PESIOME

Рассматривается решение уравнения (5) методом релаксации (6), где $D=D_n$ вычисляется обобщённым методом Хотеллинга (2). Формула (7) в заключении теоремы 1 даёт оценку точности комбинированного метода. Формулы (9) и (10) в заключении теоремы 2 дают приближённые значения параметров k и n, которые минимизируют время получения решения X_k с данной точностью. В формуле (9) μ_r обозначает время умножения квадратных матриц r-го порядка, а σ — время сложения двух элементов матрицы.