VOL. XX 1969 FASC. 2

VARIETIES WITH ISOMORPHIC FREE ALGEBRAS*

 $\mathbf{B}\mathbf{Y}$

DAVID M. CLARK (ATLANTA, GEORGIA)

Introduction. It has been shown by Goetz and Ryll-Nardzewski [2] that if F_n , $n=1,2,\ldots$, is the free algebra on n generators in some variety V and for some $p\neq q$, $F_p\cong F_q$, then the natural numbers r for which $F_p\cong F_r$ form an arithmetic sequence. Thus F_p has a free generating set, or basis, of r elements for each such number r. Conversely, Swierczkowski [6] proved that any arithmetic sequence of natural numbers is the set of all powers of bases of some free algebra. More specifically, let $V_{(m,n)}$ be the variety of algebras with n-ary operations $\theta_1, \theta_2, \ldots, \theta_m$ and m-ary operations $\pi_1, \pi_2, \ldots, \pi_n$ satisfying identities

$$heta_i \pi_1 x_1 \dots x_m \pi_2 x_1 \dots x_m \dots \pi_n x_1 \dots x_m = x_i \quad (i = 1, 2, \dots, m)$$
 and

$$\pi_j \theta_1 y_1 \dots y_n \theta_2 y_1 \dots y_n \dots \theta_m y_1 \dots y_n = y_j \quad (j = 1, 2, \dots, n),$$

and let $\{k+sd | s=0,1,2,...\}$ be any arithmetic sequence of natural numbers. Swierczkowski showed that

THEOREM The numbers in the sequence $\{k+sd \mid s=0,1,2,\ldots\}$ are precisely the powers of bases of the free algebra on k generators in any variety $V_{(n,n+d)}$, provided $n \leq k < n+d$.

In this paper, we will obtain this theorem as a consequence of some general results on the structure of the subalgebras of the free $V_{(m,n)}$ -algebras. We solve the word problem for free $V_{(m,n)}$ -algebras and obtain a normal form for the elements of these algebras by using the technique developed by Evans [1] for the word problems for loops, quasigroups, and other multiplicative systems. (A general form of this technique has been described by Knuth [3].) We also give a counterexample for problem (P 526) proposed by Marczewski [5].

1. The word problem for free algebras. Let F be the free algebra on $\{a_1, a_2, \ldots\}$ in $V_{(m,n)}$ (where no restriction is meant on the cardinality of the generating set). The elements of F are equivalence classes of well-

^{*} This work was done while the author held a National Science Foundation (U. S. A.) graduate fellowship as part of Doctoral dissertation prepared under the supervision of Trevor Evans.

formed $V_{(m,n)}$ words on symbols $\{a_1, a_2, \ldots\}$, where equivalence is defined in terms of the identities for $V_{(m,n)}$. Every word will be considered to be a subword of itself. If u_1, u_2, \ldots, u_n (or v_1, v_2, \ldots, v_m) are words, then they are the major subwords of $\theta_i u_1 u_2 \ldots u_n$ (or $\pi_j v_1 v_2 \ldots v_m$). It will often be convenient to denote a word $\theta_i w_1 w_2 \ldots w_n$ by $\theta_i \{w_j\}_{j=1}^n$, and a word $\pi_j w_1 w_2 \ldots w_m$ by $\pi_j \{w_i\}_{i=1}^m$, when w_1, w_2, \ldots are themselves complex expressions. A reduction of a word w is a word formed by replacing a subword $\theta_i \{\pi_j u_1 u_2 \ldots u_m\}_{j=1}^n$ (or $\pi_j \{\theta_i v_1 v_2 \ldots v_n\}_{j=1}^m$) by u_i (or v_j). A word is reduced if no reduction is possible. We define the rank of a word w, denoted by R(w), as follows: The rank of a generator is one, and the rank of any other word is one more than the maximum of the ranks of its major subwords. We also define the length of a word to be the total number of generators and operation symbols occurring in it.

LEMMA 1. If $w = u_0, u_1, ..., u_k$ and $w = v_0, v_1, ..., v_l$ are word sequences such that u_i and v_j are reductions of u_{i-1} and v_{j-1} , respectively, and u_k and v_l are reduced, then u_k and v_l are the same word.

Proof. We show that u_1 and v_1 can always be reduced to the same word. The proof then follows by induction on the length of w. If the reductions $w \to u_1$ and $w \to v_1$ occur in different subwords of w, then u_1 and v_1 clearly have a common reduction. If they occur in the same proper subword, the lemma follows by induction. Suppose, then, that the reduction $w \to u_1$ involves all of w. Then w has the form $\pi_i \{\theta_i t_1 t_2 \dots t_n\}_{i=1}^m$ (or analogously, $\theta_i \{\pi_i t_1 t_2 \dots t_m\}_{i=1}^n$), where u_1 is t_i^{\P} . If $u_1 = v_1$, the lemma follows by induction. Otherwise the reduction $w \to v_1$ occurs in some subword $\theta_{\sigma} t_1 t_2 \dots t_n$ of w. There are three possibilities here:

- (i) If $w \to v_1$ occurs in some t_p , $p \neq j$, then this reduction may be copied in the other occurrences of t_p , and the resulting word may be reduced to u_1 .
- (ii) If $w \to v_1$ occurs in t_j , replacing it by t'_j , then this reduction may be copied in each other occurrence of t_j , and the result reduced to t'_j , which is also a reduction of u_1 .
- (iii) If $w \to v_1$ involves all of $\theta_g t_1 t_2 ... t_n$, then there are words $r_1, r_2, ..., r_m$ such that, for each $p, t_p = \pi_p r_1 r_2 ... r_m$, and v_1 is obtained by replacing $\theta_g t_1 t_2 ... t_n$ by r_g . Then v_1 can be reduced by replacing θ_h $t_1 t_2 ... t_n$ by r_h for each $h \neq g$. But this reduces v_1 to $\pi_j r_1 r_2 ... r_m = t_j = u_1$.

It follows from Lemma 1 that every word has a unique reduced form. The following theorem provides a solution to the word problem for F:

THEOREM 1. Words u and v represent the same element of the free algebra F if and only if their reduced forms are the same.

Proof. If u and v can be reduced to the same word, they certainly represent the same element of F. If u and v represent the same element

of F, there is a sequence $u = w_0, w_1, ..., w_k = v$ such that for each pair $\{w_i, w_{i+1}\}$, one is a reduction of the other. The theorem follows by induction on k, using Lemma 1.

2. Subalgebras of free algebras. In view of Theorem 1, we will identify elements of F with the reduced words representing them. By the rank of an element we mean the rank of this reduced word. A subset S of F will be called irredundant if no element g of S is in the subalgebra generated by the elements of S with rank less than that of g. Otherwise S will be called redundant. A subset of F will be called condensed if it contains no subset of the form $\{\theta_i u_1 u_2 \dots u_n\}_{i=1}^m$ or $\{\pi_i v_1 v_2 \dots v_m\}_{j=1}^n$. A subset of F is independent in the sense of Marczewski [4] if it freely generates a subalgebra of F. In this section we will show that the property of being condensed and irredundant is sufficient to assure that a subset of F is independent. We will then show that any subalgebra of F contains such a generating set and is therefore free.

Let $X_{(m,n)}$ be the free $V_{(m,n)}$ -algebra on a countably infinite set $\{x_1, x_2, x_3, \ldots\}$ of free generators. As in F, the elements of $X_{(m,n)}$ are represented as reduced words on the generators. If $u(x_1, x_2, \ldots, x_r)$ and $v(x_1, x_2, \ldots, x_r)$ are in $X_{(m,n)}$, then $u(x_1, x_2, \ldots, x_r) = v(x_1, x_2, \ldots, x_r)$ if and only if $u(h_1, h_2, \ldots, h_r) = v(h_1, h_2, \ldots, h_r)$ for any subset $\{h_1, h_2, \ldots, h_r\}$ of an algebra of $V_{(m,n)}$.

LEMMA 2. If $u(x_1, x_2, ..., x_r)$ and $v(x_1, x_2, ..., x_r)$ are reduced words in $X_{(m,n)}$, $\{g_1, g_2, ..., g_r\}$ is a condensed and irredundant subset of r distinct elements of F, $u(g_1, g_2, ..., g_r)$ and $v(g_1, g_2, ..., g_r)$ are reduced in F, and $u(g_1, g_2, ..., g_r) = v(g_1, g_2, ..., g_r)$, then $u(x_1, x_2, ..., x_r) = v(x_1, x_2, ..., x_r)$.

Proof. Suppose $R(u) \ge R(v)$. We proceed by induction on R(u). If R(u) = 1, then $u(g_1, g_2, ..., g_r) = g_i = g_j = v(g_1, g_2, ..., g_r)$. Hence, i = j and $u(x_1, x_2, ..., x_r) = x_i = v(x_1, x_2, ..., x_r)$. Now assume the lemma is true for pairs of words of rank less than R(u), where R(u) > 1. We consider two cases.

Case 1. R(v) = 1. Let $u(x_1, x_2, ..., x_r) = \beta u_1(x_1...x_r)u_2(x_1...x_r)...$, where β denotes some one of the m+n operations. If $v(x_1, x_2, ..., x_r) = x_i$, then $u(g_1, g_2, ..., g_r) = \beta u_1(g_1, g_2, ..., g_r)u_2(g_1, g_2, ..., g_r)... = g_i = v(g_1, g_2, ..., g_r)$. Since both sides are reduced in F, g_i is expressed in terms of the elements of smaller rank, contradicting the irredundance of $\{g_1, g_2, ..., g_r\}$.

Case 2. R(v) > 1. Let $u(x_1, x_2, ..., x_r) = \beta u_1(x_1...x_r)u_2(x_1...x_r)...$ and $v(x_1, x_2, ..., x_r) = \beta' v_1(x_1...x_r)v_2(x_1...x_r)...$ Then

$$\beta u_1(g_1\ldots g_r)u_2(g_1\ldots g_r)\ldots = \beta' v_1(g_1\ldots g_r)v_2(g_1\ldots g_r)\ldots$$

Since these are both reduced in F, by Theorem 1 they must be identical, i.e., $\beta = \beta'$ and $u_i(g_1...g_r) = v_i(g_1...g_r)$. By induction,

 $u_i(x_1...x_r) = v_i(x_1...x_r)$ for each i, so that $u(x_1, x_2, ..., x_r) = v(x_1, x_2, ..., x_r)$.

LEMMA 3. If $\{g_1, g_2, \ldots, g_r\}$ is a condensed and irredundant subset of F and $u(x_1, x_2, \ldots, x_r)$ is a reduced word in $X_{(m,n)}$, then $u(g_1, g_2, \ldots, g_r)$ is reduced in F.

Proof. The proof is by induction on the rank of $u(x_1, x_2, ..., x_r)$. If R(u) = 1, then $u(x_1, x_2, ..., x_r) = x_i$, so $u(g_1, g_2, ..., g_r) = g_i$ which is reduced. Assume the lemma is true for words of rank less than R(u), where R(u) > 1. Let

$$u(x_1, x_2, ..., x_r) = \pi_i \{u_i(x_1, x_2, ..., x_r)\}_{i=1}^m$$

(or analogously, $u(x_1, x_2, ..., x_r) = \theta_i \{u_j(x_1, x_2, ..., x_r)\}_{j=1}^n$). Then each subword $u_k(x_1, x_2, ..., x_r)$ of the reduced word $u(x_1, x_2, ..., x_r)$ must be reduced, so, by induction, each $u_k(g_1, g_2, ..., g_r)$ is reduced.

Now suppose that $u(g_1, g_2, ..., g_r)$ can be reduced. We will show that $u(x_1, x_2, ..., x_r)$ can similarly be reduced, contradicting the hypothesis that $u(x_1, x_2, ..., x_r)$ is itself a reduced word. Since each major subword of $u(g_1, g_2, ..., g_r)$ is reduced, the reduction can not occur within a proper subword of $u(g_1, g_2, ..., g_r)$. Hence, each $u_k(g_1, g_2, ..., g_r)$ must be the word $\theta_k w_1(a_1, a_2, ...) w_2(a_1, a_2, ...) ... w_n(a_1, a_2, ...)$ for some fixed set $\{w_1(a_1, a_2, ...), ..., w_n(a_1, a_2, ...)\}$ of reduced words in F. Then $w_j(a_1, a_2, ...)$ is a reduction of $u(g_1, g_2, ..., g_r)$ in F:

$$u(g_1, g_2, \ldots, g_r) = \pi_j \{\theta_k w_1(a_1, a_2, \ldots) \ldots w_n(a_1, a_2, \ldots)\}_{k=1}^m = w_j(a_1, a_2, \ldots)$$

We must first show that no word $u_k(x_1, x_2, ..., x_r)$ has rank 1. Suppose, then, that $R(u_k) = 1$ for some u_k . Then $u_k(g_1, g_2, ..., g_r)$ is a member of $\{g_1, g_2, ..., g_r\}$. Since $u_k(g_1, g_2, ..., g_r)$ is reduced, and $\{g_1, g_2, ..., g_r\}$ is irredundant, we must conclude that some $w_p(a_1, a_2, ...)$ is not in the subalgebra of F generated by $\{g_1, g_2, ..., g_r\}$. But since $w_p(a_1, a_2, ...)$ is a major subword of each $u_i(g_1, g_2, ..., g_r)$, it follows that

$$u_i(g_1, g_2, \ldots, g_r) = \theta_i w_1(a_1, a_2, \ldots) \ldots w_n(a_1, a_2, \ldots)$$

is a member of $\{g_1, g_2, ..., g_r\}$ for i = 1, 2, ..., m. This contradicts the assumption that $\{g_1, g_2, ..., g_r\}$ is condensed.

Since, for each i, $u_i(g_1, g_2, ..., g_r)$ is reduced and $u_i(x_1, x_2, ..., x_r)$ is a word of rank greater than 1, $u_i(x_1, x_2, ..., x_r)$ must have the form

$$u_i(x_1, x_2, \ldots x_r) = \theta_i \{u_i^k(x_1, x_2, \ldots, x_r)\}_{k=1}^n.$$

Then for any h and i such that $1 \leq h$, $i \leq m$,

$$u_h^k(g_1, g_2, \ldots, g_r) = w_k(a_1, a_2, \ldots) = u_i^k(g_1, g_2, \ldots, g_r).$$

By Lemma 2, we conclude that

$$u_h^k(x_1, x_2, \ldots, x_r) = u_i^k(x_1, x_2, \ldots, x_r) [= u^k(x_1, x_2, \ldots, x_r)],$$

so that

 $u(x_1, x_2, \ldots, x_r) = \pi_j \{\theta_i u^i(x_1, x_2, \ldots, x_r) \ldots u^n(x_1, x_2, \ldots, x_r)\}_{i=1}^m,$ which is not reduced.

LEMMA 4. Every condensed, irredundant subset S of F is free.

Proof. Suppose $u(g_1, g_2, \ldots, g_r) = v(g_1, g_2, \ldots, g_r)$, where $\{g_1, g_2, \ldots, g_r\} \subseteq S$, $R(g_i) \leqslant R(g_{i+1})$, and the words $u(x_1, x_2, \ldots, x_r)$ and $v(x_1, x_2, \ldots, x_r)$ are reduced. By Lemma 3, $u(g_1, g_2, \ldots, g_r)$ and $v(g_1, g_2, \ldots, g_r)$ must be reduced, as words in F. Then by Lemma 2, $u(x_1, x_2, \ldots, x_r) = v(x_1, x_2, \ldots, x_r)$.

LEMMA 5. If S generates a subalgebra $\langle S \rangle$ of F, then there is a condensed, irredundant subset S' of F that generates the same subalgebra.

Proof. Define a sequence $\{S_i\}$ of subsets of F as follows: $S_1 = S$. If $u \in S_i$, then $u \in S_{i+1}$. If $\{\pi_k u_1 u_2 \dots u_m\}_{k=1}^n \subseteq S_i$ and $[\{\theta_k v_1 v_2 \dots v_n\}_{k=1}^n \subseteq S_i]$, then $\{u_1, u_2, \dots, u_m\} \subseteq S_{i+1}$ and $[\{v_1, v_2, \dots, v_n\} \subseteq S_{i+1}]$.

Note that $\langle S \rangle = \langle S_1 \rangle = \langle S_2 \rangle = \dots = \langle S_i \rangle = \dots$

Let $\overline{S} = \bigcup_{i=1}^{\infty} S_i$. Then $\langle S \rangle = \langle \overline{S} \rangle$. Let T be the union of all subsets of \overline{S} of the form $\{\pi_k u_1 \dots u_m\}_{k=1}^n$ or $\{\theta_k v_1 \dots v_n\}_{k=1}^m$. The set $\overline{S} - T$ is clearly condensed.

We now claim that $\langle \overline{S} - T \rangle = \langle S \rangle$. Indeed, since $\overline{S} - T \subseteq \overline{S}$, we have $\langle \overline{S} - T \rangle \subseteq \langle \overline{S} \rangle = \langle S \rangle$. To show that $\langle \overline{S} - T \rangle = \langle S \rangle$, we must show that $S \subseteq \langle \overline{S} - T \rangle$. If $s \in S$ and $s \notin T$, then $s \in \overline{S} - T$. If $s \in T$, by induction on R(s) we show that $s \in \langle \overline{S} - T \rangle$: If R(s) = 1, $s \notin T$. Assume that elements of T of rank less than R(s) are in $\langle \overline{S} - T \rangle$. Let $s = \pi_j v_1 v_2 \dots v_m$ (or analogously, $s = \theta_i u_1 u_2 \dots u_n$). Since $s \in T$, we have $\{\pi_k v_1 v_2 \dots v_m\}_{k=1}^n \subseteq \overline{S}$, so $\{\pi_k v_1 v_2 \dots v_m\}_{k=1}^n \subseteq S_p$ for some p. Then $\{v_1, v_2, \dots, v_m\} \subseteq S_{p+1} \subseteq \overline{S}$. Now, if $v_i \in T$, by induction, $v_i \in \langle \overline{S} - T \rangle$. If $v_i \notin T$, then $v_i \in \overline{S} - T$. Hence $s \in \langle \overline{S} - T \rangle$. We now construct an irredundant subset of $\overline{S} - T$ that generates the same subalgebra. Let r be the least rank of any element of $\overline{S} - T$ and, for each $t \geqslant r$, let H_t be all elements of $\overline{S} - T$ of rank less than or equal to t. Define

$$S' = \{h \in \overline{S} - T \mid h \in \langle H_{R(h)-1} \rangle\} \cup H_r.$$

Then S' is clearly condensed and irredundant. To show that $\langle S' \rangle = \langle \overline{S} - T \rangle (= \langle S \rangle)$, we write $\overline{S} - T$ as the ascending union

$$\overline{S} - T = \bigcup_{k=r}^{\infty} H_k$$

and show by induction on k that $H_k \subseteq \langle S' \rangle$. $H_r \subseteq \langle S' \rangle$ since $H_r \subseteq S'$. Suppose $H_k \subseteq \langle S' \rangle$ and let $x \in H_{k+1}$. If $x \in \langle H_k \rangle$, then $x \in \langle S' \rangle$. If $x \notin \langle H_k \rangle$, then x has rank k+1 so that $x \in S' \subseteq \langle S' \rangle$.

As an immediate consequence of Lemma 4 and Lemma 5 we have Theorem 2. Every subalgebra of a free $V_{(m,n)}$ -algebra is free.

3. Isomorphic free algebras. Let F_t denote the free $V_{(m,n)}$ -algebra on generators $\{a_1, a_2, \ldots, a_t\}$.

LEMMA 6. The only condensed free generating set for F_t is $\{a_1, a_2, \ldots, a_t\}$.

Proof. Let S be a condensed free generating set for F_t . Then S is also irredundant. Let $\{g_1, g_2, \ldots, g_r\} \subseteq S$ and w_1, w_2, \ldots, w_t be reduced words such that $w_i(g_1, g_2, \ldots, g_r) = a_i$. By Lemma 3, $w_i(g_1, g_2, \ldots, g_r)$ is reduced so that $w_i(x_1, x_2, \ldots, x_r) = x_k$, where $g_k = a_i$. Hence $\{a_1, a_2, \ldots, a_t\} \subseteq S$. Since S is irredundant, it contains nothing else.

LEMMA 7. If the subset $\{u_k\}_{k=1}^n$ [or $\{v_k\}_{k=1}^m$] of F is independent, the subset $\{\theta_i u_1 u_2 \dots u_n\}_{i=1}^m$ [or $\{\pi_j v_1 v_2 \dots v_n\}_{j=1}^n$] is also independent and generates the same subalgebra.

Proof. Let G be an algebra in $V_{(m,n)}$ and let $\gamma: \theta_i u_1 u_2 \ldots u_n \to g_i$ be a mapping into G. We must show that γ can be extended to a homomorphism. Define $\alpha: F \to G$ as the extension of $u_j \to \pi_j g_1 g_2 \ldots g_m$ to a homomorphism. Then

$$(\theta_i u_1 u_2 \dots u_n) \alpha = \theta_i \{\pi_j g_1 g_2 \dots g_m\}_{i=1}^n = g_i,$$

so that a is an extension of γ to a homomorphism. Since $\pi_j \{\theta_i u_1 u_2 \dots u_n\}_{i=1}^m = u_j$, the subsets generate the same subalgebra.

We now use these results to give an alternative proof of Swierczkow-ski's theorem:

THEOREM 3. Suppose d, n, p, and q are positive integers such that p > q. Then, in the variety $V_{(n,n+d)}$, $F_p \cong F_q$ if and only if $p, q \geqslant n$ and $p \equiv q \mod (d)$.

Proof. Suppose first that $p, q \ge n$ and p = q + rd. Let F_q be freely generated by $\{a_1, a_2, \ldots, a_q\}$.

Since $q \ge n$, applying Lemma 7 we can replace any n elements $\{u_1, u_2, \ldots, u_n\} \subseteq \{a_1, a_2, \ldots, a_q\}$ by the n+d elements $\{\theta_i u_1 u_2 \ldots u_n\}_{i=1}^{n+d}$ and obtain a free set of q+d generators for F_q . If this is done r times, we obtain a free set of q+rd=p generators for F_q . Hence, $F_q \cong F_p$.

If $F_p \cong F_q$, let $\{a_1, a_2, \ldots, a_q\}$ and $\{b_1, b_2, \ldots, b_p\}$ be free generating sets for F_q . Consider a sequence B_1, B_2, B_3, \ldots of subsets of F_q such that $B_1 = \{b_1, b_2, \ldots, b_p\}$ and B_i is constructed from B_{i-1} by replacing a subset $\{\theta_i u_1 u_2 \ldots u_n\}_{i=1}^{n+d}$ by $\{u_1, u_2, \ldots, u_n\}$ or $\{\pi_j v_1 v_2 \ldots v_m\}_{j=1}^n$ by $\{v_1, v_2, \ldots, v_{n+d}\}$. By Lemma 7, each B_i freely generates F_q . Now, if B_i is any finite subset of F_q , define |B| to be the sum of the lengths of its elements. Then the sequence $|B_1|, |B_2|, |B_3|, \ldots$ is decreasing and must therefore be finite. Let B_s be the last term of B_1, B_2, \ldots Then B_s is a condensed generating set for F_q ; by Lemma 6, $B_s = \{a_1, a_2, \ldots, a_q\}$. Since B_i

is constructed from B_{i-1} by adding or subtracting d elements, $p \equiv q \mod (d)$. Since $p \neq q, r \geqslant 2$. Constructing B_2 from B_1 and B_r from B_{r-1} required exchanging n elements for n+d elements, or n+d for n, so that both p and q must be greater than or equal to n.

It follows from Theorem 3 that, given the arithmetic sequence of natural numbers $\{k+sd \mid s=0,1,2,...\}$, the powers of bases of the free algebra F_k in any variety $V_{n,n+d}$, where $n \leq k < n+d$ are exactly the numbers in this sequence.

Goetz and Ryll-Nardzewski [2] proved that if an algebra has a basis of one element and a basis of n > 1 elements, then for every positive integer k there exists a minimal set of k self-dependent generators of the algebra (x is self-dependent if $\{x\}$ is not independent). Marczewski [5] raised the following question (P 526): Can an analogous theorem be deduced from the weakened assumption that the algebra has bases of different numbers of elements? Athough a negative answer has already been established (1), we point out that the algebras examined in this paper present a further counterexample. In fact, let F_n be the free algebra on n generators in $V_{(m,n)}$, where neither m nor n is 1. If x is in F_n , then $\{x\}$ is irredundant; since m and n are different from 1, it is also condensed. By Lemma 4, $\{x\}$ is independent. Hence, F_n contains no self-dependent elements. Moreover, it is clear that every finite subset of F_n contains an irredundant subset generating the same subalgebra. A subset of F_n containing less than n elements must be condensed, so, in view of Lemma 6, no subset of less than n elements can generate F_n .

REFERENCES

⁽¹⁾ Cf. Colloquium Mathematicum 17 (1967), P 526, R1, p. 367.

^[1] Trevor Evans, On multiplicative systems defined by generators and relations, I. Normal form theorems, Proceedings of the Cambridge Philosophical Society 49 (1953), p. 579-589.

^[2] A. Goetz and C. Ryll-Nardzewski, On bases of abstract algebras, Bulletin de l'Académie Polonaise des Sciences, Série des sciences math., astr. et phys., 8 (1960), p. 157-162.

^{.[3]} D. E. Knuth and P. B. Bendix, Simple word problems in universal algebra (unpublished).

^[4] E. Marczewski, A general scheme of the notions of independence in mathematics, Bulletin de l'Académie Polonaise des Sciences, Série des sciences math., àstr. et phys., 6 (1958), p. 731-736.

^{[5] —} Independence in abstract algebras, Colloquium Mathematicum 14 (1966), p. 169-188.

^[6] S. Świerczkowski, On isomorphic free algebras, Fundamenta Mathematicae 50 (1961), p. 35-44.