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DAVID M. CLARK (ATLANTA, GEORGIA)

Introduction. It has been shown by Goetz and Ryll-Nardzewski
(2] that if F,,» =1,2,..., is the free algebra on n generators in some
variety V and for some p +# q, F,== F,;, then the natural numbers r
for which F, = F, form an arithmetic sequence. Thus F, has a free
generating set, or basis, of r elements for each such number r. Conversely,
Swierczkowski [6] proved that any arithmetic sequence of natural numbers
is the set of all powers of bases of some free algebra. More specifically,
let Vimn) be the variety of algebras with n-ary operations 6,, 0,, ..., On
and m-ary operations =x,, 7,, ..., %, satisfying identities

0; 7, &y BT @y e B T Tyee By = (0 =1,2,...,m)
and
i 01Y1ee Yn02Yye e Yn Oy =9 (U =1,2,...,n),

and let {k+sd|s =0,1,2,...} be any arithmetic sequence of natural
numbers. Swierczkowski showed that

THEOREM The numbers in the sequence {k+sd|s = 0,1,2,...} are
precisely the powers of bases of the free algebra on k generators in any variety
Vinniay, provided n <k < n+d.

In this paper, we will obtain this theorem as a consequence of some
general results on the structure of the subalgebras of the free V, » -algebras.
We solve the word problem for free V(m n-algebras and obtain a normal
form for the elements of these algebras by using the technique developed
by Evans [1] for the word problems for loops, quasigroups, and other
multiplicative systems. (A general form of this technique has been des-
cribed by Knuth [3].) We also give a counterexample for problem (P 526)
proposed by Marczewski [5].

1. The word problem for free algebras. Let F be the free algebra
on {a,, @y, ...} in Vi, (Where no restriction is meant on the cardinality
of the generating set). The elements of F are equivalence classes of well-

* This work was done while the author held a National Science Foundation
(U. 8. A.) graduate fellowship as part of Doctoral dissertation prepared under the
supervision of Trevor Evans.
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formed Vi ) words on symbols {a,, a,, ...}, where equivalence is defined
in terms of the identities for V., . Every word will be considered to
be a subword of itself. If w,, u,, ..., u, (Or v, v5, ..., ¥,) are words, then
they are the major subwords of 0;u,%u,...u, (or =;v,0,...7,). It will
often be convenient to denote a word 6;w,w,...w, by 60;{w;};_,, and
a word m;w, W, ... Wy bY m;{w;}ir,, when w,, w,, ... are themselves complex
expressions. A reduction of a word w is a word formed by replacing a sub-
word 6; {m;ju,%s... Um}j—1 (OF 7;{0;0,0,...0,}j=1) bY u; (or v;). A word is
reduced if no reduction is possible. We define the rank of a word w, denoted -
by R(w), as follows: The rank of a generator is one, and the rank of any
other word is one more than the maximum of the ranks of its major
subwords. We also define the length of a word to be the total number
of generators and operation symbols occurring in it.

LEMMA 1. If w = wgy Uy, ..., U and w = vy, v,,..., 0 are word
sequences such that w; and v; are reductions of w;_, and v;_,, respectively,
and u; and v; are reduced, then u, and v, are the same word.

Proof. We show that %, and », can always be reduced to the same
word. The proof then follows by induction on the length of w. If the re-
ductions w — %, and w — v, occur in different subwords of w, then u,
and v, clearly have a ecommon reduction. If they occur in the same proper
subword, the lemma follows by induction. Suppose, then, that the re-
duction w — u, involves all of w. Then w has the form x;{6;¢,%,...1,}iw
(or analogously, 6;{m:t,t,...tn}i_,), where %, is &). If u, = v,, the lemma
follows by induction. Otherwise the reduction w — v, occurs in some
subword 0,t,¢,...1, of w. There are three possibilities here:

(i) If w — v, occurs in some t,,p #* j, then this reduction may
be copied in the other occurrences of ,, and the resulting word may be
reduced to wu,.

(ii) If w — v, occurs in t;, replacing it by t;, then this reduction
may be copied in each other occurrence of ¢;, and the result reduced
to t;, which is also a reduction of w,.

(iii) f w — o, involves all of 0,¢,¢,...1,, then there are words
Ty, 79y ..., I'm Such that, for each p,t, = =,r,r,...7n, and », is obtained
by replacing 6,t,t,...%1, by r,. Then v, can be reduced by replacing 0
t;t5...1, by 7, for each b # g. But this reduces v, to m;r,7;...7n = t; = u,.

It follows from Lemma 1 that every word has a unique reduced form.
The following theorem provides a solution to the word problem for F':

THEOREM 1. Words u and v represent the same clement of the free
algebra F if and only if their reduced forms are the same.

Proof. If v and » can be reduced to the same word, they certainly
represent the same element of F. If w and v represent the same element
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.of F, there is a sequence u = w,, W,, ..., W = v such that for each pair
{w;, wi, .}, one is a reduction of the other. The theorem follows by in-
.duction on %, using Lemma 1.

2. Subalgebras of free algebras. In view of Theorem 1, we will identify
elements of F' with the reduced words representing them. By the rank
of an element we mean the rank of this reduced word. A subset S of F
will be called ¢rredundant if no element g of 8 is in the subalgebra gener-
ated by the elements of § with rank less than that of g. Otherwise S
will be called redundant. A subset of F will be called condensed if it con-
tains no subset of the form {6;u,u,...%,}i=; OF {m;V19;...Vn}j_;. A subset
of F is independent in the sense of Marczewsk: [4] if it freely generates
a subalgebra of F. In this section we will show that the property of being
condensed and irredundant is sufficient to assure that a subset of F is
independent. We will then show that any subalgebra of F contains such
a generating set and is therefore free.

Let Xmn be the free Vimq-algebra on a countably infinite set
{®1, @3y @3, ...} of free generators. As in F, the elements of Xy, n are
represented as reduced words on the generators. If «(z,, x,,...,2,) and
V(Lyy Doy ...y Tp) aTO ID Xy ), then u(zy, oy ..., T) = V(T Tay ...,y &) if
and only if w(h,, hgy ..., by) = v(hy, hy, ..., h,) for any subset {h,, ko, ..., b}
of an algebra of Vimn).

LeMMA 2. If u(2y, %3y ...y Z,) aGNnd (21, X3y ..., Zy) are reduced words
i Xmnyy {g1s G2y ---5 gr} 18 @ condensed and irredundant subset of r distinct
elements of F, u(gy, gsy -y gr) and v(gyy goy ...y gr) are reduced in F, and
U(G1s Gay o-os Gr) = V(G1y G2y - -5 Gr)y then U(Ty, Tgy oony Bp) = (D1, Loy ooy Tp)e

Proof. Suppose R(u) > R(v). We proceed by induction on R(u).
If R(u) =1, then u(g:,9sy ...y 9r) = i = g5 = v(g1, g2y .-, g-). Hence,
t =3 and u(®y,2sy..., %) = ©; = (&1, L3y ..., 2). Now assume the
lemma is true for pairs of words of rank less than R(u), where R(u) > 1.
We consider two cases.

Case 1. R(v) = 1. Let u(@y, oy ..oy Tp) = PUs(@yee . Tp)Up(By.e Bp).onry
where § denotes some one of the m 4 n operations. If v(x,, #,, ..., 2,) = @4,
then u(gy, gz5 «--y 9r) = BU1(G1s G2y <oy Gr) Ua (G1y G2y o0y Gr) oo = g =
= 0(gy1y g2y .-+ gr). Since both sides are reduced in F, g; is expressed in
terms of the elements of smaller rank, contradicting the irredundance of

{91, 92y -5 97}
Case 2. R(v) >1. Let u(®y, ®yy ..., @) = pus(@y...2,) Uy (... 2)...
and v(zy, Xay ..oy &) = B0y (21...2,)05(2;...2,)... Then
Bui(g1-.-gr)Ua(g1---9r) ... = B'01(91-..9¢)02(g1--.95)...

Since these are both reduced in F, by Theorem 1 they must be
identical, ie., g =p and w%(g,...9;) = vi(g;...9-). By induction,
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ui(y...2,) = viy(2,...2,) for each ¢, so that u(z,, x5, ..., 2,) = v(2,, 2, ...
ceey &p).

LemMA 3. If {91y 9sy-.-y9-} 8 a condensed and irredundant subset
of F and w(xy, T3y ..., %) 18 @& reduced word in X ny, then u(gy,gay-...,gr)
18 reduced in F.

Proof. The proof is by induction on the rank of w(z,, z;,...,2,).
If R(u) =1, then w(zy, x5y ..., &) = ®;, S0 u(gy, goy ---5 gr) = ¢g; Which
is reduced. Assume the lemma is true for words of rank less than E(u),
where R(u) > 1. Let

U(Tyy Ty ooy By) = T {U;(@q, Ty ..., wr)}?;l

(or analogously, (%, ®s,..., %) = 0;{u;(2y, L3, ..., %r)}j—1). Then each
subword wy(z,, 3, ..., ®,) of the reduced word u(z,,x;,...,2,) must
be reduced, so, by induction, each wuy(g,, gz, ..., g-) is reduced.

Now suppose that u(g,, g,, ..., ¢-) can be reduced. We will show that
U(xy, 4, ..., &) can similarly be reduced, contradicting the hypothesis
that w(xy, 5, ..., @,) is itself a reduced word. Since each major subword
of u(g,, g2y ..., gr) is reduced, the reduction can not occur within a proper
subword of u(g,, gs,...,9,). Hence, each wu,(g,,¢gs,...,9,) must be the
word Orw,(ay, @z, ...)Wy(ay, @y, ...)...wu(ay, ay, ...) for some fixed set
{w,(a1y Bay ee)y ooeyWy(ay, Gy, ...)} ofreduced words in F. Then w;(a,, a,, ...)
is a reduction of «(g,, gsy...,9r) in F:

U(G1s G2y +++y Gr) = T {Opwi(ay, s, ...)... w,(ay, &y, -'-)}Z‘.—_l = Wj(@y, Gy, ...)

We must first show that no word w(«,, «,, ..., 2,) has rank 1. Sup-
pose, then, that E(u;) = 1 for some u;. Then ux (g4, gz, ..., g-) i8 a member

of {g:,9:y...99,}. Since ux(gy, g2y ..., g-) is reduced, and {g,, g3y ..., g}
is irredundant, we must conclude that some w,(a,, a,, ...) is not in the

subalgebra of F' generated by {g¢,,9s,...,9-}. But since wp(a,, a,,...)
is a major subword of each wu;(g,, gs5 ..., g-), it follows that
wi(g1, PYRERE gr) = eiwl(au Qgy ooe)en Wy (ay, Agy ...)

is a member of {g,, gs,...,9,} for 1 =1,2,..., m. This contradicts the
assumption that {g,, g;, ..., g-} is condensed.

Since, for each 7, u;(g,, g2y ...y g-) is Teduced and u;(2,, 25, ..., Zr)
is a word of rank greater than 1, u;(x,, #,, ..., #,) must have the form

Ui (T1y Doy oo Tp) = oi{uf(wla Ty +eey Tr) a1
Then for any A and ¢ such that 1 <h, ¢ <m,
uﬁ(gn Gay -oes gr) = Wi (@yy sy ...) = '“'?(91’ G2y +ee9 Gr)-
By Lemma 2, we conclude that

k k k
UR(Zyy Loy vny Tp) = Ui (Byy Bay ovvy Bp)[= w (@, Tay ..., T¥)],
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so that
W(Byy Doy oovy Bp) = {00 (@1, Bay oney Tp)oo W (Tyy Tay - ooy Tp) it

which is not reduced.
LEMMA 4. Every condensed, irredundant subset 8 of I is free.

Proof. Suppose % (g;, gy -y gr) = V(g1 g2y --+, §r), Where {g;, s, ...
ooy g} = 8, R(¢:)) < R(giy1), and the words wu(zy,2,,...,2,) and
v(®y, &gy ..., o) aTre reduced. By Lemma 3, #(g,, g3y ..., g-) and v(g,, gz, - ..
..., g-) must be reduced, as words in ¥. Then by Lemma 2, u(z,, x,, ...
ceey &p) = V(Tyy By eney Tp).

LeEMMA 5. If S generates a subalgebra (8) of F, then there is a con-
densed, irredundant subset 8’ of F that generates the same subalgebra.

Proof. Define a sequence {8;} of subsets of ¥ as follows: §, = 8.
If weS;, then weS;, ;. If {mpuyts... Unli—1 S S; and [{0x0,0s... 031 = Sil,
then {u;, usy ..., Um} S S;;1 and [{vy, Vay ..., Vu} S Si4].

Note that (8) =(8;,) =8> = ... =8> = ...

Let 8§ = (U 8;. Then ¢(8) = (S). Let T be the union of all subsets
i=1

of S of the form {m;u,...un}i_; OF {6x0,...0,}k-,. The set S—T is clearly
condensed.

We now claim that (§—T) = (8). Indeed, since S—T = S, we have
S—T> = (8) = (8. To show that (§—T) = (8), we must show that
8c(8—T). If seS and s¢T, then s¢S—T. If s<T, by induction on
R(s) we show that se(S—T): If R(s) = 1, s¢T. Assume that elements
of T of rank less than R(s) are in (S—T). Let 8 = m;v,0,...v, (or analo-
gously, 8 = 0;u,%,...u,). Since se¢T, we have {mv,0;... 0}k S S,
S0 {7k0,0;5...Vn}k-y € Sp for some p. Then {v;, Vs, ..., ¥} S Spiy = S.
Now, if v;¢T, by induction, v;e{(S—T). If v;¢T, then v;eS—T. Hence
8e{(S§—T). We now construct an irredundant subset of S— T that gener-
ates the same subalgebra. Let r be the least rank of any element of
S8 —T and, for each t > r, let H, be all elements of S—T of rank less than
or equal to ¢. Define

8" = {heS—T|h¢{Hrn 1>} v Hr.
Then & is clearly condensed and irredundant. To show that (8"
= (8—T)(= (8)), we write S—T as the ascending union
S—T =\ Hy

and show by induction on % that H, = (8'). H, = (8') since H, = §'.
Suppose H, < <8') and let zeHy ;. If ve{(H), then ze(8'). If w¢(Hy),
then 2 has rank %+1 so that zeS < (8.
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As an immediate consequence of Lemma 4 and Lemma 5 we have
THEOREM 2. Every subalgebra of a free Vm ) -algebra is free.

3. Isomorphic free algebras. Let F; denote the free V. -algebra
on generators {a,, @y, ..., G}.

LEMMA 6. The only condensed free generating set for F; is {a,, as,..., a;}.

Proof. Let S be a condensed free generating set for F,. Then S
is also irredundant. Let {g,, g5, ..., 9.} = 8 and w,, w,, ..., w; be reduced
words such that w;(g, g3y .-y 9r) = a;. By Lemma 3, w;(g,, gsy .-+, gr)
is reduced so that w;(x,, @, ..., #;) = 2, where g; = a;. Hence {a,, a,, ...,
..., m} = 8. Since § is irredundant, it contains nothing else.

LEMMA 7. If the subset {uple_, [or {vi}k1] of F is independent, the
subset {0;u %,... Up}iey [07 {730 0,...0,}7_1] ©8 also independent and gener-
ates the same subalgebra.

Proof. Let G be an algebra in Vimg and let y: O;u,us... %, — g
be a mapping into G. We must show that y can be extended to a homo-
morphism. Define a: F — G as the extension of u; - 7;¢:9s...9m tO
a homomorphism. Then

(Oiuyug...up)a = ei{“fgﬂz'ugm};;l = Gi,

80 that a is an extension of ¥ to a homomorphism. Since 7; {0;%,%,... %} 11
= wu;, the subsets generate the same subalgebra.

We now use these results to give an alternative proof of Swierczkow-
ski’s theorem:

THEOREM 3. Suppose d,n,p, and q are positive inlegers such that
2 >q. Then, in the variety Vi niay, Fp = Fy if and only if p,q>n and
» = ¢qmod (d).

Proof. Suppose first that p, ¢ > n and p = g+ rd. Let F, be freely
generated by {a,, @, ..., ag}.

Since ¢ > n, applying Lemma 7 we can replace any n elements
{Ug, Ugy o.ny Un} € {ay, Gy, ..., a;} by the nt+d elements {0;u,u,...u,)e+2
and obtain a free set of ¢+ d generators for ¥,. If this is done r times,
we obtain a free set of ¢+ rd = p generators for F,. Hence, Fq >~ F)p.

If Fp ~ Fy, let {a,, a,, ..., a;} and {b,, b,, ..., by} be free generating

gets for F,. Consider a sequence B,, B,, Bs, ... of subsets of F, such
that B, = {b,, b5, ..., bp} and B; is constructed from B; , by replacing
a subset {0;u,Ug... U} FE bY {Uy, Ugy ..., Up} OF {m0,0,...0n)71 DY

{01, V2 ...y Vn,aq}. By Lemma 7, each B; freely generates F,. Now, if B
is any finite subset of F,, define |B| to be the sum of the lengths of its
elements. Then the sequence |B,|, |B,|, |Bs|,... i8 decreasing and must
therefore be finite. Let B, be the last term of B,, B,, ... Then B; is a con-
densed generating set for F,; by Lemma 6, B, = {a,, a5, ..., ag}. Since B;
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is constructed from B;_,by adding or subtracting d elements, p = g mod (d).
Since p #* q,r > 2. Constructing B, from B, and B, from B,_, required
exchanging n elements for n -+ d elements, or n+d for n, so that both p
and ¢ must be greater than or equal to n.

It follows from Theorem 3 that, given the arithmetic sequence of
natural numbers {k+sd|s =0,1,2,...}, the powers of bases of. the
free algebra Fj in any variety V, ,.q, where n <k < n-+ d are exactly
the numbers in this sequence.

Goetz and Ryll-Nardzewski [2] proved that if an algebra hag a basis.
of one element and a basis of » > 1 elements, then for every positive
integer k there exists a minimal set of k self-dependent generators of the
algebra (x is self-dependent if {x} is not independent). Marczewski [5]
raised the following question (P 526): Can an analogous theorem be
deduced from the weakened assumption that the algebra has bases of
different numbers of elements? Athough a negative answer has already
been established (1), we point out that the algebras examined in this
paper present a further counterexample. In fact, let F,, be the free algebra
on n generators in Vi »), where neither m nor » is 1. If  is in F,, then
{x} is irredundant; since m and n are different from 1, it is also condensed.
By Lemma 4, {r} is independent. Hence, F, contains no self-dependent
elements. Moreover, it is clear that every finite subset of F, contains
an irredundant subset generating the same subalgebra. A subset of F,
containing less than » elements must be condensed, so, in view of Lemma 6,
no subset of less than n elements can generate F),.

(1) Cf. Colloquium Mathematicum 17 (1967), P 526, R1, p. 367.
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