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Integral transformations on produet spaces

by J. D. EMERY and P. SzEPTYCKI* (Lawrence, Kansas)

Abstract. Let M(Z) denote the (F)-space of (complex valued) measurable func-
tions on a o-finite measure space (Z, dz) and let (X, dz), (¥, dy) be two such spaces.
For a kernel K ¢ M (X X Y) consider the transformation of the form we Dg « M(XY) >
= Kw(y) = ;{K (@, y)w (2, y)dz eV (Y), where D is the natural domain of K con-

gisting of all w s.t. the integral Kw(y) exists and is finite a.e. The objective of the
research is to characterise various properties of the transformation K in terms of
the properties of its kernel K (z,y): corresponding study of the transformations of
the form #e D < M(X) — Ku(y) =A_[K(x;y)u(m)dme9R(I’) was carried out in

[1]. Here necessary and sufficient conditions are given for K to be continuous,
closed or closable. Also the question of compatibility is investigated.

1. Introduction. In [1] a theory was developed of integral transfor-
mations of the form

(1.1) (Eu)(y) = [ Ko, y)u(@)dp(@),
X

where (X, u), (Y, v) are o-finite measure spaces and X (z, y) is a measurable
complex valued function on X X ¥ — the kernel of K. The objective of
this theory is twofold: 1) to relate various properties of K .as a linear
transformation between the spaces IM(X) and M(Y) of measurable com-
plex valued finite a.e. functions on X and Y respectively to some specific
properties of its kernmel K (z,y) and 2) to study continuous extensions
of K beyond its proper domain

(1.2) Dg = {u(X); [ 1K (2, y)u(@)|du(a) < oo ae. v}
X
The theory, general as it is, leads to some interesting results for
special integral transformations, in particular for Fourier transform;
see [2], [3].

In this paper we propose to outline a similar theory for transfor-
mations of the form

(1.3) (E* w)(y) = [ E(@,y)w(z, y)du(w)
* The work of the second anthor was partly supported by NSF Grant GP-16292,
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acting between the spaces M(X x ¥) and PY). It was originally hoped
that a development of the second aspect of the theory would allow to
include in a framework similar to that of [1] some basic results about
singular integral transformations. This aim we were not able to accomplish,
the difficulties encountered are illustrated by an example in Section 4.
The first aspect of the theory, however, becomes considerably simpler
in the case of the transformation (1.3) than in that of (1.1) and this fact
alone seems to be of some interest and makes the study of transformations
of the form (1.3) worthwhile. Even though some of the results that follow
could be obtained directly without serious difficulties we preferred for
the sake of upiform exposition to reduce them to the corresponding
results in [1].

2. Some definitions and basic facts about tramsformations K¥.
Throughout this paper (X, u), (¥, ») will denote two fixed o-finite measure
spaces and for an arbitrary o-finite measure space (Z, ») we shall denote by
M(Z, ») = PM(Z) the space of all complex valued, measurable finite
almost everywhere functions on Z provided with the linear metric topology
of convergence in measure on all subsets of finite measure. This topology
may Dbe given by the translation invariant metric

lu(2)]

(21)  oz(u, 0) = gz(lul, 0) = oz() = | ————"— (&) du(2),
“ z 2 ) 1)

where pe IYZ), ¢ > 0 a.e. and [¢(2)dx(z) < co. In particular the function
Z

¢ may be chosen so that the last integral is equal to 1.

We assume that some metrics of the form (2.1) have been chosen
on PM(X), IM(Y), PYX x Y), which we shall denote by ox, ov; 0xx¥-

For any fe (Z) we shall denote by |f| the function z — |f(z).

If 4, B are topological spaces, then we say that A is a topological
subspace of B, 4 = B if A = B and the emboedding 4 >a — a< B is contin-
uous.

By an (F')-space we shall mean a complete metric vector space, in
particular M(Z) is an (F)-space.

A topological subspace 4 of M(Z) is an (FL)-subspace of M(Z) if
for every ued and ve YZ) the inequality |v(2)] < |u(2)] a.e. implies
veA. We shall denote by (I) and (FL) the families of (#)-subspaces and
(FL)-subspaces of a given space M(Z).

For a kernel K(z, y)e M(X x Y) we consider the transformation

(2.2) IT#; Dpw = X X Y) > DY),
where the proper domain Dy of E* is defined by

(2.8) Dpp = {we ME X T); [|E(w, y)0(z, y)|du(@) < o ae}
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and for every we Dpaps K#*q is given by (1.3). In agreement with the no-
tation introduced above |K|* will denote the transformation of the form
(1.3) with the kernel K (z, ¥)|, and DI g Bhe proper domain, of this trans-
formation.

It is immediate that D,y is vector subspace of WYX x ¥), E¥ is
linear,

(2.4) D st

= Dyt

and

(2.5) weDpy, weMIxY), W|<|wl ae. inply w'eDpy.
Moreover, we have °

(2.6) Dyy is dense in M(X x ¥).
To prove (2.6) we take any function fe X)), f> 0 a.e. such that

xf fdu(®) < oo and then define ge M(X x ¥) by letting g(«, v) =].—K%v);)T
it X(z,y) # 0 and g(x,y) = f(») otherwise. It follows that geD 4 ’a,nd
for every we M(X x Y) the functions defined by w,(z,¥y) = w(w, y) if
lw(z, y)|
lw(, ¥)|
Des and wy (2, y) = w(®, y) a.e. and a fortiori in PUX x ¥).

Remark. Using terminology of [1] one could restate property (2.5)
by saying that every transformation K* is non-singular.

Repeating the proof of Theorem 4.1 in [1] we obtain the following
proposition.

ProPOSITION 2.1. Let K (x, y) be a kernel and define for every we Dt

(2.6) 0 (1) = exxr (W) + er (IE[*|w]).
Them
1) eg4 8 @ complets metric on Dy and Dy with the metrio oy is
an (FL) subspace of M(X x ¥).
2) The transformation K¥: Deu > M(Y) is continuous.
We shall study now the following two problems:

1) Find necessary and sufficient conditions on the kernel I (z, y)
in order that the transformation E¥*: D_, c MI x ¥) - M(Y) is
M(X xY) - (MY) closable.

2) Find necessary and sufficient conditions on X (x, y) in order
that K* be M(X x ¥Y) = VM(Y) continuous.

The following three conditions on a kernel K(z,y) were introduced
in [1]. Let X' denote the non-atomic part of X and {a,} be all the atoms
of X (which by o-finiteness of X must form an at most countable set).

lw(z, ¥)| < ng(z, y) and w, (2, y) =n g (@, y) otherwise, belong to
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(A) K(@,y) =0 a.e. on X' x Y.
(B) Let 4,, = {y<Y; K(ay,,¥y) 7 0}. Theny(limsup4,,) —w(ﬂ UAm)
— 0. m—>00 n=lm=n
(C) Let B,, denote the closed linear extension in IM(Y) of the seb
- !
{K (ay, y)}n)m‘ Then. n B, = {0}

M=l

Clearly conditions (B), (C) are meaningtul only if {a,} is countable.
If {a,} is finite, then 4, and B,, are empty for m sufficiently large.

The following results were obtained in [1], Theorem 5.1 and Theorem
5.2. Consider the transformation K: Dz < M(X) - M(Y) defined by
(1.1) and (1.2) and assume that K i8 non-singular, i.e. there is ve D,
v> 0 a.e. Then K is M(X) — M(Y) closable if and only if the kernel
K(z,y) of K satisties (A) and (C); K is continuous if and only if K (w, y)
satisfies (A) and (B).

The problem of finding such a direct description of closed transfor-
mations K is open and examples were given in [1] of transformations
closed but not continuous and closable but not closed.

The corresponding results for transformations K# depend on the
following obvious remark.

Let weDyy, w 7 0 a.e. and define the mapping 4, of M(X) into
MEX x Y) by

(2.8) (Guu)(@, y) = w(@, y)u(z), weM(X).

Then 4, is a topological isomorphism of IM(X) onto a closed subspace
of M(X x Y) and if we define K, (v, y) = K (=, ¥)w(x, ), then we have
%e Dg,, if and only if 4,4 ¢ Dg. Since the kernel K, (w, y) satisfies (A), (B)
if and only if K (z, y) satisfies (A), (B) the preceding remarks yield (a) = (b)
part of the following theorem.

THEOREM 2.1. The following conditions are equivalent:

(a) ¥ is M(X x X) —IM(X) continuous,

(b) K(#,y) satisfies (A) and (B),

() Dpy = M(X x X).

To prove that (b) = (a) we observe that if w,eD i and w, -0
in M(X x ¥), then for every atom a; of X w,(a;, ¥) - 0 in V(). If (A)
is satisfied, then

(E*w,)(y) = ) K (ar, y)wn (@, ¥) ().

It I'c Y is any set of finite measure, then by (B) »(En ﬂ U 4,)—0

Rl men N—»oo

and it follows that for every ¢ > 0 there exists N such that »(# N U 4,)

m=N



Inlegral transformations . 21

< e. Also for every fixed N, Z’ X (ay, Y)wa(a, y) —— 0 in M(XY), and it

follows that IK¥ is contmuous (b) (e) is trivial and (e) = (a) follows
from Proposition 2.1 and closed graph theorem.

We take up now the question of closability. By an argument similar
to that used in the necessity part of Theorem 2.1 we conclude using
Theorem 5.1 of [1] that if K* is closable, then K,,(x, ¥) must satisfy (A)
and (C) for every weD iy W FE O @l ‘We shall prove even more:

PROPOSITION 2.2. In order that K be closable it is necessary that K (x, y)
satisfy (B).

Proof. If E¥ is closable, then K, (, y) satisfies (A) and as already
remarked K (z, y) satisfies (A). If the set (a,} of atoms of X is finite there
is nothing to prove, thus we can assume that {a,} is infinite. Oonsider
now the sequence {w,} defined as follows:

Wy y) =22 27Ny, @) (4l E @y 9))

l=0

for m = n, K(a,, y) # 0 and w,(%, ¥) = 0 otherwise. Then w, ¢ M(X x ¥),
n=112.. and w,—0 is MX x¥). Moreover, recalling that 4,,
={y: K(an,y) # 0} we get

E* fg) = N E (G, 9)] 0 (G 9)] ()

m=1

(D2 aay,, ) D 2" ™aa, =11,
l=0 m=n

' [~}
where 4, = |J 4, This shows that w,eD 4, #» =1,2,..., and the

me=n
same computa,tion gives K¥w, = . Sinee xz, oy 1 in- M, Where

ﬂ 4,, and by the hypothesis l{# is closable, it fo]lows that yz = 0

=]
and K (z,y) satisfies (B).

Proposition 2.2 and Theorem 2.1 give

THEOREM 2.2. K¥ is M(X X ¥) — M(X) closable if and only if it s
MEXY) > M(Y) continuous.

In particular the problem of characterisation of closed transforma-
tions K disappears in the case of transformations K*.

3. (F)-compatibility and (FL)-compatibility. Let U,V be linear
Hausdorff topological spaces and 7': Dy < U — V be a linear transfor-
mation. We recall, see [1], that T is A-semiregular if 4 is a linear topo-
logical subspace of U, A N Dy is dense in 4 (in its topology) and T|p,~4
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iy A -V continuous. If V is complete and T is A-semiregular, then
there is a unique continuous transformation T',: 4 — V, called A-exten-
sion of T, such that Tulppns = Tlopna-

If ¥ is a family of linear topological subspaces of U, then 7T satisfies
the §-compatibility condition if for every A, Be{ such that T is A-semi-
regular and B-semiregular we have T,| .5 = T5|l4~5-

It is easy to show (Proposition 1.5 in [1]) that if T is closable, then
T satisfies the §-compatibility condition, where § is the family of all
topological subspaces of U. If was also shown in-[1], Theorem 7.1, that
it K: Dgc M(X) - M(Y) is a non-singular integral transformation,
then K satisfies the (F')-compatibility condition if and only if K is clo-
sable, note that if K is singular, i.e. D = {0}, then this result is trivial.

An analogous result remains true also in the case of transforma-
tions I¥*:

THROREM 38.1. A itransformation K ot © M X Y) > M(Y)
satisfies the (I')-compatibility condition if a/nd O‘M’l if K¥ is closable, i.c.
if and only if E¥ is comtinuous.

Proof. It is easy to see using the remarks preceding Theorem (2.1)
that if K satisfies the (F')-compatibility condition, then so does the trans-
formation K,, for every weD_, such that w # 0 a.e. In particular for
every such w, K, must be closable and this, by the result of [1] stated
above, implies that X, (2, y) = w(z, y) K (2, v) satisfies (A) and (C), in
particular & (@, ) must satisfy (A).

To verify that K(w»,y) satisfies (B) we use Proposition 1.6 of [1].
Assuming that K* is not closable we shall construct a sequence w,, e D .
with the following properties: (i) w,, —— 0-in M(X x ¥) and K#uw,, n 0

# 0 in M(Y), (ii) I‘o1 every forma,l senes 2, 4, w, and for any sequence

of its partial sums 2 @,y = Sy, the conditions s, — w, weDy 1mp1y
fne=1

Sy W in D u. By virtue of Proposition 1.6 of [1] this will imply
that K¥ fails to satisfy the (F)-compatibility condition.

Non-closability of K* and condition (A), sa.tlsfled by K (2, y), imply
existence of a sequence w,nefDK# such that w,—— —0in IM(X x Y) and
(E*w,)(y) = Z'K(am, Y)Wy, (G s y)—>v(y) # 0 in SJJI(Y) If follows that

=1

for every integer N we have Z K@y Y)Wy (0, ¥) — v(y) in M(T),
MmN n—

also, since w,, D4 there exist increasing se quences of integers N, n, such
that the functions defined by wi(a;, ¥) = wn, (a7, %) for N <Il< Ny,
and w(w, ¥) = 0 otherwise satisfy K#w,,—» v in IM(Y) and, obviously

Wy ——— 0 in WM(X X ¥). Thus {wy} sa,tlsfy (1 it is also easy to check
that this sequence satisfies (ii) and the proof is complete,
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. As concerns the (FL)-compatibility we have a result similar to
Theorem 9.1 in [1].

THEOREM 3.2. For every fe M(X X XY) define

(3.1) éx#(f) = oxxr(f) +sup{or (E¥w); we®D i 0] < |f] a.e}.

Then oy is @ complete metric on M(X X ¥Y) with the following properties:

(1) The closure 'IDK# of Dy 0 M(X X X)) with metric QK# 18 an (FL)-
subspace of M(X X ¥);

(2) K: Dy —~ JM(Y) s éz# continuous; denote by It# the Zﬁx# extension
of ¥,

(3) Por every (I"'L)-subspaoe A of EDE(X X 1’) such that K* is A-semi-
regular we have A < JDK# and K% = K#l 4-

The proof is quite similar to those of Proposition 9.1 and Theorem
9.1 in [1] and we omit if.

‘We also have the following result which again is obtained by a repe-
tition of an argument of [1], Proposition 9.2.

ProrostTioN 3.1, If K(z, y) =0, then f)K# = Dpg

Consider now the function ve M(X x Y) defined by v(w, y) = K(z, y)™*
| K (2, y)| if K(2,y) # 0 and v(w, y) = 1L otherwise. Then, by immediate
inspection éx#(fvf) = 0p4(f) and it follows that feD,, if and only if
fefD(K”)# =D = CDK? by Proposition 3.1 and (2.4). Thus we get

PROPOSITION 3.2, Dy = Dy

By Theorem 3.2 we also get the necessity part in the following

CoroLLARY 3.1. If A is an (FL)-subspace of M(X x ¥), then BE¥ is
A-semiregular if and only if A = Dpy.

The sufficiency of the condition follows from the closed graph
theorem.

4. An example. The transformation K with the kernel K (x, y)
=1/(x—y), %, 9ye(0,1) =X = ¥ is singular, i.e. Dg = {0}, In consi-
deration of the Hilbert transform it is natural to study the transformation

1
we (@) ~ [ O 4o = K¥w,  wio,y) = ule)—u(y
0

whose domain contains in particular all Holder continuous integrable
functions on (0.1). It was hoped that some results about the Hilbert
transform could be obtained by studying continuous extensions of K¥*
to (F')-subspaces of M(X x ¥). The following proposition together with
Corollary 3.1 show that even L*-extension of the Hilbert transform cannot
be obtained in this manner within the framework of (¥ L)-subspaces of
MX x Y).
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ProposITION 4.1. Let K (x, y) = 1/(z—y), 2, y e (0, 1); then for every p;
1< p < oo there is a function we IP(0, 1) such that [|K (, )| |w(x) —u(y)|
dz = co on a -set of positive measure. In particular u(v)—u(y) ¢’DK#.

Proof. For 0 < e< 1 we define

|f(«) f

lz—y|>e
It is immediate that for every p, 1< p < oo, T,: LP(0,1) — IM(0, 1) is
a bounded mapping satistying op(T.(f+9) < ox(T.f)+ ox(T.g). If for
every fe L?(0, 1), Tf(y) were finite a.e. it would follow by the uniform
boundedness pnnclple that T': LP(0, 1) — M(0, 1) is bounded. However,
if »,(w) = sign(sin2”nz), » =1,2,..., denote the sequence of Rade-
macher functions, then by an easy computation we get for ye (127",
(I+1)27", 0 <1< 2%,

Vaw  ana (1)) =f—|f(72:—';l("’)l .

(I—-28)2— % (I+28+2)2— 7
y €T
o — ’iJ| I—25—120 (I—25—1)2— % y—=x I+29+422" (14+-284-1)2— 7 E=y
1
2 2 2 — oo
2 28 +1 + 2s +1 (2s+12”" ’
s<? - sl

which shows that 7': Z#(0, 1) — (0, 1) cannot be bounded and the set
of w’s with the desired property is of 2nd category in L”(0, 1).
Remark. By approximating the functions r,(s) by suitable piece-
wise linear functions we conclude that Proposition 4.1 remains valid if
L?(0,1) is replaced by C([0,1]).
The above results suggest that a study of extensions of K¥ in a more
general class of (I7)-subspaces of IM(X X ¥Y) would be of some interest.
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