ON SETS OF COMPLETELY UNIFORM CONVERGENCE

 \mathbf{BY}

PAOLO MAURIZIO SOARDI AND GIANCARLO TRAVAGLINI (MILAN)

1. In this paper*, T denotes the circle group, Z the group of the integers, and M(T) the space of all complex regular Borel measures on T. For $E \subseteq Z$, $C_E(T)$ denotes the space of all continuous E-spectral functions on T.

A subset E of Z is called a UC-set if every function in $C_E(T)$ has uniformly convergent Fourier series. Clearly, every Sidon set is a UC-set, while the converse is not true as Figà-Talamanca first showed [2]. For a detailed study and examples of UC-sets we refer to [7] and [9].

We define the UC-constant of a set $E \subseteq Z$ to be

$$\varkappa(E) = \sup \{ \|S_N f\|_{\infty} / \|f\|_{\infty} : f \in C_E(T), f \neq 0, N \in Z^+ \},$$

where

$$S_N f(x) = \sum_{n=-N}^{N} \hat{f}(n) \exp(inx).$$

Clearly, E is a UC-set if and only if $\varkappa(E)$ is finite.

Definition 1. A set $E \subset \mathbb{Z}$ is a set of completely uniform convergence (a CUC-set) if $\sup \{\varkappa(\{E+p\}): p \in \mathbb{Z}\} < \infty$, where $\{E+p\} = \{q+p: q \in E\}$.

This definition was introduced by Ricci in [8]. CUC-sets turn out to be related to subsets of T which are not Helson sets and do not carry unbounded pseudomeasures ([8], Chapter 4).

It is easy to see that a UC-set contained in the set of positive integers is a CUC-set (see [8], Proposition 4.4, and [9]). A question implicitly raised by F. Ricci is whether there exist (non-Sidon) CUC-sets which are essentially different from this example. In this paper we give an affirmative answer by constructing a symmetric non-Sidon CUC-set. Moreover, we show that if there exists a UC-set which is not a CUC-set, then the union problem for UC-sets has a negative answer. As a corollary to the proof,

^{*} This work was partially supported by the C.N.R.

there exist non-UC-sets which do not contain arbitrarily long arithmetic progressions.

2. Arguing as in [7], Theorem 1, it is easy to prove the following proposition (see [8], Proposition 4.4, and [9], p. 283).

PROPOSITION 1. A UC-set E is a CUC-set if and only if there exists a measure $\mu \in M(T)$ such that $\hat{\mu}|(E \cap Z^+) = 1$ and $\hat{\mu}|(E \cap Z^-) = 0$.

The proposition relates CUC-sets with the notion of harmonic separation introduced in [3] and further discussed in [5] and [4].

Definition 2. Two distinct subsets A and B of Z are harmonically separated if there exists a measure $\mu \in M(T)$ such that $\hat{\mu}|A = 1$ and $\hat{\mu}|B = 0$.

We remark that, by Drury's theorem [1], any two disjoint Sidon sets are harmonically separated, while this is not true for UC-sets ([9], Lemma 4).

3. We have the following result:

THEOREM. There exists a symmetric CUC-set which is not a Sidon set.

Proof. We begin with the observation that for any interval $(u, v) \subset [0, 2\pi)$ there exists a (Hadamard) set $\{n_k\}_{k=1}^{\infty} \subset Z^+$ such that

(1)
$$\inf\{n_{k+1}/n_k:\ k\in \mathbb{Z}^+\} \geqslant 2,$$

$$(2) \qquad \qquad \overline{\{\exp(in_k)\}} \subset (u,v)$$

(since the closure of $\{\exp(in)\}\$ coincides with the unit circle).

We choose two intervals $A, B \subset [0, 2\pi)$ such that

$$A+B\subset\left[\frac{\pi}{4},\,\frac{3}{4}\,\pi\right],$$

where $A+B = \{p+q: p \in A, q \in B\}.$

Let Q and R be Hadamard sets which satisfy (1) and (2) with (u, v) = A and (u, v) = B, respectively.

Let E = Q + R. The set E is not Sidon (see, e.g., [6], Theorem 1.4). However, by [9], Theorem 7, E is a UC-set and, by [9], Theorem 2, $E \cup (-E)$ is a UC-set.

Now we show that E and -E are harmonically separated. Indeed, let $\varphi(n) = \exp(in)$; then

$$\varphi \mid E \subset \left[\frac{\pi}{4}, \frac{3}{4}\pi\right]$$
 and $\varphi \mid -E \subset \left[\frac{5}{4}\pi, \frac{7}{4}\pi\right]$.

Let A and -A be the closures of E and -E, respectively, in the Bohr compactification bZ of Z. We can extend φ to a continuous function $\tilde{\varphi}$ on bZ, and by continuity we have

$$\tilde{\varphi} \, | \, E \subset \left[\frac{\pi}{4} \, , \frac{3}{4} \, \pi \right] \quad \text{ and } \quad \tilde{\varphi} \, | \, -E \subset \left[\frac{5}{4} \, \pi , \frac{7}{4} \, \pi \right].$$

Hence $A \cap (-A) = \emptyset$.

Let $V \subset bZ$ be a symmetric neighborhood of 0 such that

$$\overline{(A+V)}\cap(\overline{-A+V)}=\emptyset.$$

Let $U = \overline{A + V}$ and let ψ be a continuous function on bZ such that $\psi \mid U = 1$ and $\psi \mid -U = 0$. Let χ_{V} and m(V) denote the characteristic function and the measure of V, respectively.

Then

$$\boldsymbol{\xi} = \frac{1}{m(V)} \boldsymbol{\psi} * \boldsymbol{\chi}_{V} \in A(b\boldsymbol{Z}).$$

Hence $\xi \mid Z$ is the Fourier-Stieltjes transform of a discrete measure $\mu \in M(T)$.

We have

$$\xi(t) = \frac{1}{m(V)} \int_{V} \psi(t-z) dz.$$

Hence $\hat{\mu}|E=1$ and $\hat{\mu}|-E=0$. Then, by Proposition 1, $E\cup(-E)$ is a CUC-set.

We remark that by the same technique it is possible to construct "large" symmetric sets (of positive density) whose positive and negative parts are harmonically separated.

- 4. We consider the following open questions (1):
- (a) Does there exist a UC-set which is not a CUC-set?
- (b) Is the union of two UC-sets again a UC-set?

We can prove the following result:

PROPOSITION 2. A positive answer to (a) implies a negative answer to (b).

Proof. Let E be a UC-set which is not a CUC-set.

We write

$$E_n^+ = E \cap (0, n], \qquad E_n^- = E \cap [-n, 0),$$
 $F_n^+ = \{E_n^+ + 2^{2n}\}, \qquad F_n^- = \{E_n^- + 2^{2n}\},$ $H^+ = \bigcup_{n=1}^{\infty} F_n^+, \qquad H^- = \bigcup_{n=1}^{\infty} F_n^-.$

By [9], Theorem 3, H^+ and H^- are UC-sets. $H^+ \cup H^-$ is not a UC-set. Otherwise, by [7], Theorem 1, there exists a sequence $\{\mu_n\}$ in M(T) such that

$$\hat{\mu}_n(j) = \begin{cases} 1 & \text{if } j \in (H^+ \cup H^-) \cap (0, n], \\ 0 & \text{if } j \in (H^+ \cup H^-) \setminus (0, n], \end{cases} \quad \operatorname{Sup} \{ \|\mu_n\|_1 \colon n \in \mathbb{Z}^+ \} < \infty.$$

^{(1) (}a) has been solved in the positive (hence (b) in the negative) by J. J. F. Fournier (Note of the Editors).

If

$$\nu_k = \mu_{2^2k} \cdot \exp(-i \cdot 2^{2k}x),$$

then

$$\hat{\nu}_k(j) = egin{cases} 1 & ext{if } j \in E \cap [-k, 0), \\ 0 & ext{if } j \in E \cap (0, k]. \end{cases}$$

By Alaoglu's theorem we have a measure $v \in M(T)$ such that $\hat{v}|(E \cap Z^-) = 1$ and $\hat{v}|(E \cap Z^+) = 0$. Then E is a CUC-set, which contradicts our assumption.

There are many non-trivial examples of subsets of Z whose positive and negative parts are not harmonically separated (see, e.g., [4]): for instance the set $\{\pm n^2\}$. This fact and the technique of the above proof allow us to construct examples of non-UC-sets which do not contain arbitrarily long arithmetic progressions.

REFERENCES

- [1] S. W. Drury, Sur les ensembles de Sidon, Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences, Paris, Série A, 271 (1970), p. 162-163.
- [2] A. Figà-Talamanca, An example in the theory of lacunary Fourier series, Bolletino della Unione Matematica Italiana 3 (1970), p. 375-378.
- [3] P. Głowacki, On decomposition of pseudomeasures on some subsets of lca groups, Colloquium Mathematicum 40 (1979), p. 277-285.
- [4] S. Hartman, On harmonic separation, ibidem 42 (1979), p. 209-222.
- [5] et Y. Meyer, Interpolation harmonique sur les compacts, ibidem 40 (1979), p. 265-276.
- [6] J. M. Lopez and K. A. Ross, Sidon sets, New York 1975.
- [7] L. Pedemonte, Sets of uniform convergence, Colloquium Mathematicum 33 (1975), p. 123-132.
- [8] F. Ricci, A multiplication problem and bounded pseudomeasures, Ph. D. Thesis, University of Maryland, 1977.
- [9] G. Travaglini, Some properties of UC-sets, Bolletino della Unione Matematica Italiana (5) 15-B (1978), p. 272-284.

Reçu par la Rédaction le 20. 10. 1979