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Abstract. The present paper presents a theorem which is a generalization of
the boundeduness results of [1], [2] and [3] in that it is eoncerned with solutions of
the equation
1) ¥’ +a(@)g(y, y’)+ b(2)fly)h(y’) = 0.

Besides this theorem the paper containg theorem on the unboundedness of solutions
0f (1). The last two theorems deal <ith conditions under which o solution y({z) of (1)
i oscillatory or limy(z) = 0

=00

Papers [1] and [3] deal with sufficient conditions for the boundedness
and oscillatoriness of all solutions of the equation

y' +o(@)f(y)h(y’) =0
v
if, among other conditions, [ f(s)ds — + oo for [y — oo,
0

The present paper presents a theorem which is a generalization
of the boundedness results of [1] and [3] in that it is concerned with
solutions of the equation

(1) Yy +a@gy,y)+o@f )y =0
v

and, moreover, f f(8)ds — F < + oo for |y| — co. Besides this theorem
0

the paper contains theorem on the unboundedness of solutions of (1).
The last two theorems deal with conditions under which a solution y ()

of (1) is oscillatory or limy(z) = 0.
I—o0

In the sequel we shall assume that a(x)e C (x,, oo), b(x)e C {&,, o0)
F@) e C(R,), h(z)e C(Ry), g(y, 2)e C(Rs), sgnf(y) = sgny, h(z)> 0, with
moe(_.- OO’ m),Rl = (— Cn’ m), _Rz =R1)<R1-

We introduce the following notation:

v o
riy) = (i, He =[50
0 0
e(t) for c¢(t) > 0,
0 for ¢(1) < 0.

ds,
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We have

THEOREM 1. Let b(x)e O iy, o0); for all xelx,, o) and (y,2)e R,
let

1. a(x) =0, {2y =k>0, g(y,23)2=0

o

2. [{p')},dt = K < + oo
I

3. ImP(y) = F< + oo.

Iy|—>e0

Then any solution y(x) of (1) such that

7 K
) % K,exp (T) == [ (y' (20)) + b (20) F (y (o)) exp (T) <7F,

is bounded on its domain of existence {x,, T).

If in addition lim H(z) = + oo, then any solution y(x) satisfying (2)
is bounded together 'ulrith its first derivative on {x,, o) and the first deriv-
ative of any solution is bounded for xe {(x,, o).

Proof. Let y(x) be defined on {z,, #) and satisfy (2). Then from (1)
we have: '

a(z)g(y, ¥')y' ()
My @)

L H(y @) +bio) - Fly(@) = —

hence
(3) H(y'(z))-+b(a)F(y (@) < Ko+ f{b ()}, F(y (1)) dt,
and, since H(z) > 0 for 2 # 0,
(4) Fly(@) < exp( 1:)
for all ze (&, T). If lin} sup |y (z)] = + oo, then a sequence {@; )5, T — %
exists such that Lim F (y(2))) = F, and thus the last relation leads to
a contradiction. 'mrefore necessarily lim: sup |y (z)] < oo.

Now let lim H(z) = + oo supposezalz&t 9 () is an arbitrary solution

|2l—r00

of (1). Then from (3) and (4)
H(y'(x)) < K, +—Kexp(1f)

thus y’(z) is bounded for xe {z,, ). If # < oo, then y(2) is also bounded
on (¥, z) so that = + oo. This completes the proof.

Remark, Evidently, if I = 4 oo, then under the hypotheses. of
Theorem 1 any solution of (1) is bounded for > z,. If a(z) =1, b(x) =1,



Boundedness and oscilatoriness 293

hiz) =1, g(y,2) =g.(¥) 9:(2) and F = + oo, then as a special ease of
Theorem 1 we get Theorem 2 or 3 of [2].

THEOREM 2. Let h(x)e (! Jxy, oo) and suppose that for all re (x4, o0)
and (y,z)e Ry

a(r) <0, D)0, V()=0, gly,2)2=0.
Then any solution y(x) of (1) defined on {ry, o) sueh that K,>> 0 is un-
bounded for & — oo,
Proof. Clearly for all x>«

(5) Hy' (x)) = Ey> 0.

Since H(z)e C(R,) there exists a number y,, sgny, = sgn y'(x,), such
that H(y,) = K,. By the definition of H(z), relation (5) implies that
¥’ () is non-zero and does not change its sign for any o > x,. Let y, < 0.
Then also %' (x) < 0 for xe {x,, oo) and

d z

—H(z) = ——
dz 1(:) h(z) <0

for all 2 = y'(@), so that H(z) is a deereasing function for =~ < 0. Hence
H(y' (2)) = H(y,) and therefore for all @@, y'(v):<y,. This means
that y(z) > — o for & — co. Now let y, > 0. Then the same holds for
y' (@), # > @, and thus, since H(y' (@)} = H(¥o), ¥’ (&) = ¥q, 50 that y(z) —
~ 4 oo for & — co. This completes the proof.
THEOREM 3. In addition to the hypotheses of Theorem 2 suppose that
br)<h< o0, k>0,
If for ze R,
H(2) < Ky < oo,
then a solution y(w) of (1) for which
Ty < H(y' (@) +d(@o) F (3 (w0) = Ky
has no zero to the right of x,.
Proof. From the hypotheses we have
1 1 F,
Fy(e) = (Ey—Ey) +o [ V(O F (y(0)

To
for welz,, T), T + oo, where (»y, ) is the domain of y(x). This yields

1

so that for all @e (»,, x) is y(x) # 0.
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THEOREM 4. Let a(w)e C*(xy, 00), b(®)e C1{x,y, c0) and suppose that
the following conditions hold for all ze {x,, c0), ye R,:
La@x)=z0,a(x)<0,b(x)>0,0(2)<0,f (y)=¢>0;

2. [a)dt< 4 < o, zf b(t)dt = + oo.
0

Zp

If g(y,2) =2 and lim H(2) = H< + oo, then any solution y(z) of (1)
such that |50
(6) K, = H(y' (o)) +b(x) F (y (o)) < H

18 oscillatory or lim y(x) = 0.
T—o0

Proof. We start by proving that if (6) holds for y(z), then z'(x}

is bounded and therefore y(x) exists on <{z,, o0). Using (3) we have
H (y' (2)+b(@) F (y (=) < H (y' (o)) + b (o) F (y (2,));

hence for all ze{z,, T)
(7) H(y ()< K

Let y'(x) be unbounded for # — x; this means that there must exist
a sequence {@;,}r~, such that lim jy'(z;)] = + oo, and in that case (7)

k-

means that H < K,, which contradicts (6). If ¥ < oo, then y(x) is also
bounded on <{w,, ¥); therefore z = + oo. '
Now suppose that y(z) satisties (6) and is not oscillatory; this means
that there exists an x, > z, such that for xe¢ (@;, o), e. g. y(z) > 0. Then
y'@) | a@)y'@) _
+ =3
fr@)  fly@)

Integrating this from @, to « = =,, we get
Y (@) ’[J( ] a(t)y'(t)
f(y(w))+f fly () 7o) f fly (t))

_ Y=
@] fb () h(y' (2))dt.
Since |a| < 4 (1 +a?), we obtain the inequality

y'(x) Ty P
(8) W_+ f[ ('ll(t)] {f'(y(®)—%a(t)}dt < Ky — fb(t YR{y' (t))at,

where

—b(@)h (¥ (2)).

* y'(x,)

L ¥ (@) -
VS ) T /fw(n)+ f (t)at.
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Since lim a(x) = 0, there exists an x, > x; such that for x> x,,

T 00
f'(y(@) —3a(x) > 0. From the boundedness of y’(r) and the continuity
of h(2) we see that there exists an a such that, for all z > =, h(y’(w))
= h(a) > 0. For x> x,, (8) yields

Y ()
fly (@)

Therefore there exists an g > z, such that, for all » > a4, y'(x) < 0. For
xe {xy, o0), (1) yields

(9) < K,—h(a) fb(t)dt.
T

y' (@) = §' (@) + 6 (m:)y(2:) —a(2)y(2)+ [ a'(y)dt—

I3
— [ofly@)n(y @)

and therefore

(10) y' (@) < Eo~R(a) [b@)f(y®)at.
T3

Since for xe {xy, o0), y(x) > 0 and 7'(x) < 0, there exists a lim y(x)
T30

= ¢ > 0. We shall prove that ¢ = 0. Suppose that ¢ > 0. Then
fly@)=1(e)>0

z
and, since [ b(¢)dt— + oo for x— oo, (10) leads to a contradiction.

T
Thus, ¢ = O.S
Supposing that y(r) < 0 for ze {xy, c0), from (9) we see that, for
sufficiently large , y'(x) > 0, and therefore

y' (@) > Ky—N(a) [b(O)f(y(0)at.

Analogously as in the first case we prove the impossibility of lim y(z)
I—00
=c¢< 0.
This completes the proof.

TrroREM 5. The hypotheses are those of Theorem 4 with the assumptions
a'(#)< 0 and [ b(t)di = + oo replaced by
Ty
-4 T

(11) ¢, [b@)@t—C, [{a' (W}, di— o0 for &— oo,
zy %o
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where €y > 0, Ca > 0 are arbitrary constants. Then every solution y(x) of
(1) satisfying (6) is oscillatory or lim y(z) = 0.

T
Proof. Analogously as in the proof of Theorem 4 we show that
if y(x) > 0 for « > x,, then there exists an o, such that, for xe {ay, o),
y(x) > 0,y (¢) < 0. From (1) we have

y'(@) < ¥ (@) + ey () —a@y@) + [ {@m),ya—

— [o@fly@nly @)a,

s0 that

y'(@) < Kyt y(@) [ {0 @ t—l(@f(e) [ b
] #3

Owing to (11), this means that y(») - — oo for # — oo, which is a contra-
diction.
Analogously we complete the proof if y(r) < 0 for we {»,, oo).
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