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On distributions invariant with respect to some
linear transformations

by BOGDAN ZiemiAN (Warszawa)

Abstract. The present paper deals with distributions invariant with respect to
the identity component (denoted by G) of the group of linear transformations pre-
serving an arbitrary non-degenerate quadratic form.

There are two different characterizations of such distributions presented in
this paper. One of them expresses the invariance in differential terms; i.e., G-invariant
distributions are represented as solutions of certain systems of first order linear dif.
ferential equations.

The other characterization given by Theorem 5 establishes a one-to-one cor-
respondence between any G-invariant distribution defined outside the origin and a cer-
tain number (determined by the signature of the quadratic form in question) of distri-
butions on the real line satisfying some compatibility conditions.

The special case of Theorem 5 in which @ is the group of proper Lorentz trans-
formations is known in the literature as Methée theorem.

This paper is a result of lectures on Fourier transformation and linear
differential equations held in the years 1974/1975 by Zofia Szmydt at
the Warsaw University. While attending this lecture I became interested
in one of the problems sugested to me by Z. Szmydt: take task of finding
a fundamental solution of the wave operator using methods to some extent
similar to those presented during the lectures and applied there to the
Laplace operator(?).

Soon, the problem of characterization of distributions invariant with
respect to the group G of proper Lorentz transformations (G-invariant)
became important. In the literature such a characterization is known
as Methée theorem [2]. The proof given by Methée is not elementary;
there is also another version of Methée theorem given by L. Girding and
J. E. Roos. An outline of a proof of this theorem is contained in [1].

The present paper consists of two parts. In Part 1, dealing with Lo-
rentz invariant distributions, I present an elementary proof of Methée

(*) See 3], §37 and 38 or [4].
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262 B. Ziemian

theorem, emphasizing its geometrical interpretation (2). I also give another
characterization of G-invariant distributions. It is covered by Lemma 2
and Theorem 3. In Theorem 3 differential conditions are dctermined
under which any rotation invariant distribution(®) is G-invariant. This
theorem finds an important application in [5].

In the second part of this paper we are concerned with distributions
invariant with respeet to the identity component of the group of linear
transformations preserving the quadratic form:

n

2 2

2 b= Y a5
j=1

i=1

In Theorem 5 we present a characterization of such distributions. Then,
applying this theorem, we give a complete description of distributions
invariant with respect to the identity component of the group of linear
transformations which preserve an arbitrary non-degenerate symmetric
quadratic form on E*, k> 2. As I have mentioned at the begining, the
starting point for this paper was to give basis for a natural construction
of a fundamental solution of the wave operator. This construction is
presented in paper [5] written by Z. Szmydt and me.

This aim, entirely covered by Part 1 of the present paper, explains
the introduction of some facts(*) in Part 1 which are not directly connected
with the problem of characterization of G-invariance, but still they are
useful in [5]. On the other hand, not the whole of the material presented
in Part 1 is neccessary for reading paper [5]. An adequate choice is made
in [6].

In the sequel we use the notation introduced in [4], Section 1.

. I wish to thank Z. Szmydt for her help in the preparation of this
paper.

1. DEFINITION 1. Let G denote the set of all linear transformations
of E"*! preserving the quadratic form ¢2 — [x|* and such that, if (g;); 0. »
is the matrix of such a transformation, then gy, > 0 and det(g;) = 1.
It is not difficult to sce that G together with the operation of superposition
of mappings forms a group (also denoted by ). This group is called the
group of proper Lorentz tmnsformations(s).

(?) See Lemma 1 (on the rectification of orbits) and footnote (!7).

(%) See Definition 2.

(4) See Property 3, p. 268.

(5) G is the identity compounent of the group of Lorentz transformations, i.e.,
the group of all linear transformations of E"*+1! preserving i? — [x|2, with the topology
induced from the space of (n+1) x (»+1) matrices.
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The following are some special transformations belonging to G:

DEFINITION 2. By o, (for |f] < 1) we denote the transformation given
by the formula:
t+pw, P+,
“olt 2) = (1/1—52’ Vip
Linear transformations of the form (id, x B), where R is an orientation
preserving linear transformation of E™ given by an orthonormal matrix,
will be called rotations in E" (shortly: rotations) and denoted by R.
It is not difficult to prove the following two propositions:
ProposiTIiON 1. Let o,, o, be as in Definition 2. Then c,005 = 0,
where y = tanh(tanh~'a+tanh™!g).
ProPoSITION 2. Every element of G can be represented as the com-
posite Riooz0 R, of suitably chosen special transformations.
Notice, that, by Proposition 2, the group G can be defined cquiv-

alently as the group generated by special transformations defined by
Definition 2.

Since oy is symmetric, we have by Proposition 2:
PROPOSITION 3. Leét (;;); j—o,...,n b the matriz of g € G. Then the trans-
formation given by the transposed matriz (g;;); j—o,...n ols0 belongs to G.

DEFINITION 3. (i) Let /A be an open set in E"*!. A is called G-invariant
if it is invariant with respect to every transformation g € G.

(ii) A distribution % € D'(A) (where A is G-invariant) is called ¢n-
variant with respect to G (G-invariant) if it is invariant with respect to
every g € G.

(iii) Let A be an open G-invariant subset of E"*'. An operation
P: CP(A)—>Cy(E") is said to be @-invariant if P(pog) = P(p) for ¢ € 0F(A)
and g €G.
Let us distinguish the following G-invariant sectors in E"*!:
V_ ={t,®): [* <t*,t< 0} the backward light cone,
V, ={t,#): |*<t*t>0} the forward light cone,
Q =EHNT_, Q= EN\T,.
PRrROPOSITION 4. Let n > 3. The following are minimal G-invariant
subsets called the orbits of G:

0, = {(t, ): ©2—|z|* = s} for seE', s <0.
0 = {(t,2): 2—jw* =s, t>0} for s>0,

0; = {{t,»): 2~ x> =8, <0} for s>0,

Oy = {(t,®): 2—|z® =0,t< 0},

mw)() (t, @) € B™H.

(¢) The distinguished role of x, is of no importance. All the considerations remain
valid with «; replaced by any =z;, ¢ = 2,3,...,n.
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OF ={(t,x): — 2> =0, t >0}

Proof. Since all the transformations in G preserve the form #2— |z|?
and do not interchange the upper and the lower sheets of the two sheet
hyperboloids, the above sets must be invariant. In order to prove that
they are minimal, take two arbitrary points p, = (&', #') and p, = (1%, 4?%)
belonging to the same set. Choose rotations B, and R, as in Definition 2
such that R,(p,) = (24, 41,0, ...,0) = ¢%, Ry(p,) = (8%, 9}, 0,...,0) = ¢q%
It is easy to see that, since the points ¢, ¢* also belong to the same set
as p,, Py, there is a transformation g, such that o,(¢') = ¢

The superposition g = R;'oo,0R, is a transformation in G such
that g(p,) = Pa-

PROPOSITION 5. Let w € D'(A) (where A is G-invariant) be a G-invariant
distribution and let H = suppu. Then H is G-invariant, i.e., g(H) =H
for every transformation g € G.

Proof. Since all the transformations g € @ are invertible and onto, it
is sufficient to show g(H') =« H', where H = E"*'\H. To prove this we
need only to show u[p] = 0 for an arbitrary ¢ € C;°(¢(H')). This follows
as a result of the G-invariance of u, since w%u[p] = u[pog] and ¢og
e CY(H').

As an illustration to the above considerations we shall prove the
following

PrOPOSITION 6. If % e D' (B**") is a G-invariant distribution and

SUpp% < _-l«',‘_:'ff_l, then suppu < V..

Proof. Suppose, conversely, that p,e (E_’f—‘\ vV L)Nnsuppu. Then
there is p, € E**! belonging to the same orbit as p,. By Proposition 5,
p, € suppu. This contradiction ends the proof.

Suppose that(’) f: 2,—FE' is a continuous G-invariant function.
Then f must be constant on the orbits of @. In other words, there is a con-
tinuous function h: E'—E' such that:

(1) f(t, @) = h(t*—|2]%).

In order to extend this characterization of G-invariant functions
to the case of G-invariant distributions we write formula (1) in terms
of distributions:

(2) flg) = [ (B2 —lo)p(t, 2)dtds  for p e CF(L2,).

() All the considerations concerning 2, will be also valid for 2, with adequate
changes, see Table of changes footnote (!°). To underline this, in some places twc
versions will be given, the other one in brackets.
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To perform further operations we need the following:
LEMMA 1 (on the rectification of orbits). Let u (u*) (%) denote the map-
ping from ET (E™') defined by the formulae:
p(prs=t—l2k y =2, i=1,...,n

This mapping is invertible and its Jacobian is equal to 2t > 0 (2¢ < 0).
It carries the orbits of @, or just their portions contained in E7'' (E™*)
onto hyperplanes s = const or their subsets. The image of B2 (E™') under
u (u*) is the sector:

Q' = w(BY) = {(s,9): s+ 1yI* > 0},
(Q* = u™ (B = {(s,9): s+yI12> 0}).
Also notice that if ¢ € CF (EVHY) (p € CF (E™F)), then
pou~t e O (2')  (pou™ ' € OF(2Y)).
If v € C3°(2) (y € OF (%)), then you € O (BLHY) (you™ € OF (E2HY)),

It follows by Lemma 1 that for ¢ € C‘O”(ET") formula (2) takes the
form

'/3+|y|273/)
3) o] = [ s ( o )d .
( fle E[ f P s

Formula (3) gives an idea for introducing the following

DEFINITION 4. By J (J*) we denote an operation from the space
Co(ELY") (CX(E™) into OF(E') defined as follows:

o(Vs+yl%, v) X
4 dy f B
(4) J () (s) f Vot ol y forse
= % ‘P(‘/3+|?/[2’ ¥)
4’ J = — """ d
() @l = [

In Proposition 7 below we shall prove that J (J*) can be extended
to the space of C;° functions on 2, (£2,).

PROPOSITION 7. Let J (¢) (J *(@)) be given by formula (4) ((4')) for
@ € CX(E™") (p € CP(E™Y). Then J (J*) can be extended in a unique way
to a continuous(’) G-invariant operation J (J*) from COF(2;) (CF(R2,))
into O (E).

(3) See footnote (7).
(°) An operation P: O (4)—OP (E'), A an open subset of E+t!, is called con-
tinuous if the condition C§’(4) 3 ¢,—0 in D (A) implies P (p,)—0 in D (E?).
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Proof(1%). Let ¢, € CP(L2,). By Proposition 4, for every point p
€ supp g, there is a point ¢ € B} belonging to the same orbit as p and
a transformation g, € @ such that gp(p) = ¢. Let U, « E%*' be an open
neighbourhood of ¢; then V, = g,'(U,) is an open neighbourhood of p.
Let Vpy---y Vp, be a finite %ubcoverlng of the covering {V,},esupps, 20d
let {a;};—,, .. be a partition of unity subordinated to the subcovering
{Vp}i=1,...,x- Define:

k
(5) T(p) =D, J ((apo)ogp,).

To prove that definition (5) is ecorrect, we have to show that it does not
depend on the choice of a subcovering and the partition of unity subordi-
nated to this subcovering. To show this, let W,,..., W, be anothpr
subcovering of supp ¢, with the corresponding transformationsg, , ..., §,, -
Let {8;}, j =1,..., m be a partition of unity subordinated to {w, },
j=1,...,m. For an arbitrary continuous function h: E'—E! define
f: 2 —>El by formula (1). Sinee f is G-invariant, we have:

k

6)  floed =D [ h(*—1al®)(a; ) (¢, x)dtdw

5 grt
= Zk P (900095} (5) o
similarily T
(7) flpol =§? { h(s) (J ((B;*@o)o ) (8)ds
Combining (6) and (7) We] ar:;ve at:
K m

(8) Ju (3 T Wargo)ogy))) ds = [k DT ((890)0d5}) ds

i=1 1 =

for every continuous function k. Since both the functions

k m
D d (@ g)ogy))  and D J((B;-@)ods)
i=1 j=1
are continuous, they must be equal on E', and this ends the proof of the
correctness of (5). A proof that J is a continuous G-invariant operation
is easy and therefore omitted. To prove that J is a unique G-invariant
extension of J, suppose that P is another such extension. Let ¢, € C2(Q,)
and let {a;};,_,. , and g,, ¢ =1,...,k be as in formula (5). Then we

.....

(%) All the considerations concerning £, are also valid for 2, after the following
changes: Table of changes: Replace 2, by @,, E%*! by E**1, J by J*, u by u*.
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have:

4

k
P(p,) = .,S

k
Plaggo) = X I (4 p0)0g5)) = I (o).
=1 =1

In our further consideration J (J*) will always stand for the extension
of J (J*) given by Proposition 7, unless otherwise stated.

Notice that, by applying (5) and (6), formula (2) can be written in
the form

(9) flgl =h[J(p)] for ¢ e CF(L2,).

Our aim is to extend (9) to the case of distributions, but first we shall
list some properties of J (¢) (J*(¢p)) depending on how suppe is situnated.

ProOPERTY 1. If ¢ € CF(2,) (@ € CP(R,)), then J(p)e CX(EY) (J*(p)
€ C7(E"Y)).

Ifp e ORX(V,) (p € CP(V_)), then J (p) € CX(EY) (I (9) € O (E)).

If e CE(2,N\T,) (), then J(9) = J*(¢) € OF(BL).

PROPERTY 2. If a € CF(E), then there are p € CF (V) and y e CF (V)
such that J(¢) = a, J*(y) = a.

If aeCy(E"), then there are ¢ € CF(£2,) (12) and vy e Cy(R,) such
that J () = a, J*(p) = a.

If a € CP(BL), then there is ¢ € O (2,n0,) such that J(p) = J*(p)
= da.
Proof. Let a e CP(BY) and choose fe O (E™ such that [fdy =1

and a@f e CP(2'\E}*'). Then the formula (3 E"
(10) p(t, z) = 2t-a(t*—|2f*)-f(x) for (¢, ) e BV}
defines ¢ such that suppe =« 2,n2, and J(p) = a. By Property 1 we
have J*(¢) = J(p) = «.

We omit similar proofs for « € C{°(EL) and a € C°(E'), noting only
that in the case a € OF°(EY ), ¢ can be defined by (10) and ¢ by the formula

(10%) w(t, ®) = 2t-a(®— |z*) f(x) for (t, ) e B!
with an arbitrary fe CP(E™) satisfying [fdy = 1.

1
Before we conclude the part dealinEg with the properties of J (J%)
we introduce the operation P* defined on C°(E™*!) which to every function
@ € CF (E™*'y assignes the function P*(¢) defined for s > 0 by the right-
hand side of (4) (*).

(*) Notice that 2\ V7, = Q,\V_ = 2,nQ,.

(12) It follows by formula (5) that there is ¢ € C3° (E%+1) such that J(p) = J(p)
= a.

(13) We set ¢ = 0 (p = 0) on E®*! (on E%*!) in formula (10) ((10%)).

(14) The operation P* and its properties, although of no significance for the present
paper will find an application in [5]. ’
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We shall prove the following property of P*.
PROPERTY 3. Let n = 2m, me N,

(i) If ¢ € OF(E"*), then P*(¢) € C™ (B, )NC™(E").
(il) If lim ¢, = ¢ in D(E"*"), then

¥ —~+00

m—1 1

: * a" *
lim—— (P*(9)) (8) = ———5 (P*()) (5)

uniformly on ﬂ .
Proof. To prove (i) take ¢ € C°(E™*!). It is easy to see that the function

defined by (4) is continuous on E' . Also, there exist partial derivatives
of order up to m —1 of the functions

e(Vs+ 1Y%, v)
2Vs + |y|?

For s— 0 they are O((s+ |y|*)"* ™) functions, from which immediately
follows the continuity of 1;, where

p(Vs+ Iylzy'y)
2Vs + |y

B as—>

_ . dk
A Bl 28— J % dy, k=1,...,m—1.
E'IL

As a consequence of the relations:

dk
'&;TP*('P)(S) =) fors>0,%k=1,...,m—1,
we obtain P*(p) € (™ '(E.). The proof of (ii) is omitted.
Let us note that P* is not an extension of J to OF(E"!); P*(p)
= J(p) [E—1 for ¢ € CX(EL).
+

LeMMA 2. Let A be an open G-invariant set and let w € D' (A) be u G-in-

variant distribution. Then wu satisfies the following system of differential
equations:

~

0w ou .
(11) t%:—*—a}la':() fOT’b=1,...,’n

on every open subset A, < A.

Proof. It is sufficient(*®*) to prove (11) in the case % = 1. Let ¢
€ 07 (4,). Since u is G-invariant, we have «[poo,] = u[¢] for all 8, 18] <1,
where o4 is the special transformation from G defined by Definition 2.
In other words, the function @: (—1,1)3 fi»u[poo,] is constant. In

ce,

dd
particular, this means that — = 0. Hen by 1She theorem on

ag p=0

(15) See footnote (6).
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differentiation of distributions depending on a parameter, we obtain

[dﬂ (po ap) ]ﬂ_o] = 0. After a simple computation we get

O

12 a t ta
(12) 25 PO D) o =t o

Combining the above we obtain:

O—u[ O +a a(p]—u[a(t) a(a;)
=" % T T e P T 1"’]

0
= — (t —;—+w1 ?:)[qo] for an arbitrary function ¢ € C5°(4,),

which ends the proof of (11).

LeEMMA 3. Let X = (a, b) X (ay, by) X (ay, b,) X ... X(a,,b,) c B**,
where — oo < a,<b< 400, —coK< gy <b, <<+ for 1=1,...,n

If we D'(X) satisfies the system of equations: Oow[0y, =0, ..., Ow/dy,
= 0, then the're e:msts a unique distribution S € D’((a, b)) such that wlep]

[ Jody] for ¢ € OF(2).

Proof This is done by induction, applying the theorem on distri-
butions independent of one variable.

Now, we can prove a key theorem which gives a full characterization
of all G-invariant distributions on £,.

THEOREM 1. Let v € D'(R2,) be a G-invariant distribution. Then there
exists a unique distribution T € D'(E') such that:

(13) vipl = T[J(p)] for ¢ € OF(2y),

where J(p) is defined by formula (5).
Conversely, if T € D' (E") is an arbitrary distribution, then (13) defines
a G-invariant distribution v e D’ (2,).

Proof. Let x4 be the transformation defined in Lemma 1. Set
(14) »' = vou!

It is not difficult to see('®) that the linear functional given by (14) is a dis-
tribution on Q'. At first we prove that ' satisfies one of the assumptions
of Lemma 3, i.e., that dv'/dy, = 0 for ¢ =1, ..., n (}"). To prove this let
y € O (2'). It is sufficient to show #'[0y/dy;] =0 for i =1,...,n

(*6) See [4], Definition 1.

(1) In the case where v is a function constant on the orbits (as in our case) it
is not surprising that after the rectification of the orbits by u, v! is constant on their
images, i.e., the portions of the hyperplanes 8 — const contained in !, This means
that o! satisfies the equations dv!/dy; = 0 for ¢ = 1, ..., n.
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Applying Lemma 1 (on the rectification of orbits), we see that there

is ¢ € OF (E%*") such that y(s,y) = (pou")(s,y) = ¢(Vs+ |y, y). From
the above, in view of (14) and Lemma 2, it follows:

61/) Y Op - Op -1l
HHL ] = o ——=— - = T4 1
K 0y1j| v [l/s_l_lylz 0t O‘u aa?,,- o‘u
D[Zt(atp x; a.p] 2( ov tafv 0
= — T+ = —2|w, — =
at t = om ' ot 0, [e] ’

t=1,...,n.

Now, in order to apply Lemma 3 to the distribution !, let A,
= (a%, b%) x (a}, b}) X ... X (a3}, d3) and let {4,} be the covering of 0!
by the cubes 4,. Then by Lemma 3 there cxist uniquely determined dis-
tributions 7° e D’((a%, b°)) such that o'[y] = T°[fpdy| for v e Cy(A,).

n
It A,nA, #@, then T° =T° on (a°, b“)m(aﬂ,bﬁf Because {(a?, b%)} is
a covering of E', by the theorem on gluing of distributions there is a unique
distribution T € D' (E') which restricted to every (a®, %) is identical with
T*. We shall prove that

(15) o[y} =T[ [v(s,9)dy] for yeCr(Q)).
En

To prove (15), take a p € 07 (2"). There is a finite number of A ’s say:
4,, 1 =1,...,k such that suppy < .LkJAai'

Denote by y; a partition of unity s:l%lordina,ted to the covering {Aai}.
Then p = Zk'w,., where y; = y;-y and suppy; < 4, for ¢ =1,..., k. The

i=1

relations

dpl = I%[ [wus, pay| = T[ [vils, nay]
ER EP

yield
k k
o[yl = D'y = X T[ [wils, v)ay]
i1=1 =1 "

which immediately gives (15).
From (14) and (15) it follows that:

ole] =v][¢(1/s+|y| ,y)] =T[ f e(Vs+1y2,9) dy]
En

2V's + |y 2Vs + [y|?
=T[J(p)] for ¢eCF(EL).
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Let @, € C°(2,) and J(¢,) be given by formula (5) in the form J(gp,)
k

= Y J((yi'p)0gi '), where g; are chosen so that there exists a covering
=1

2=

{V}icr,.r of suppg, such that g,(V;) < B}t for ¢ =1,...,k and {y;},
% =1,...,k, is a partition of unity subordinated to this covering. Now,
we obtain:

k

k
v[go] = 0[271-'%] = Dol rgu)ogi ']
i=1 -

. =1
= M TJ ((yirpo)ogi)] = TLI (po)]-
i=1

To prove that T is uniquely determined by formula (13), suppose
that there is T, € D'(E") such that v[¢p] = T,[J (p)]. From (13) and Prop-
erty 2 we obtain that T, = T. Since J is a continuous G-invariant opera-
tion, the second part of Theorem 1 is obvious.

COROLLARY 1. If v e D'(2,) is a G-invariant distribution such that
v =0 on EV'\V_, then the distribution T defined by Theorem 1 is equal
to zero on E-.

Proof. This follows from Theorem- 1l and Property 2.
It is not difficult to see that after some changes('®) the proof of The-
orem 1 transforms to the proof of the following.

THEOREM 1*. Let v* € D' (£,) be a G-invariant distribution. Then there
exists a unique distribution T* € D' (E") such that

(13%) v*[p] = T*[J*(9)] for ¢ € C7(2y).
And conversely, if T* € D'(E") is an arbitrary distribution, then (13*) defines
a G-invariant distribution v* € D'(,).

Combining Theorem 1 and Theorem 1* we obtain:

THEOREM 2 (Methée). Let v € D' (E"*'\{0}) be a G-invariant distribu-
tion. Then there ewist unique distributions T and T € D' (E') such that:

v[p] = T[J(9)] for ¢ e C(£2,),
vip]l = T*[J* ()] for ¢ e CF(2y),
and T = T* on E-.

Conversely, to every pair of distributions T,T* € D'(E') such that
T =T" on E there corresponds a wunique G-invariant distribution v
e D' (E™*'\{0}) given by formulae (13™*).

Proof. On account of Theorems 1 and 1%, in order to prove the first
part of Theorem 2 it is enough to show T = T* on E*, i.e. T[a] = T*[a]

(13™)

(18) See Table of changes, footnote (19).



272 B. Ziemian

for a € C(E-). Choose an arbitrary a € C°(E'). By Property 2, there is
¢ € CF(2,n92,) such that J(¢) = J*(¢) = a. Hence

T(a] = T[J(p)] = olp] = T*[J*(9)] = T*[al.

The second part follows by the theorem on gluing of distributions and
by Theorems 1 and 1%

THEOREM 3. (i} Every distribution v € D'(A) (where A is G-invariant)
satisfying on A the equation

0
— =0
PR T

is invartant with respect to all transformations og, |8] < 1, defined by Defini-
tion 2.

(i) If w e D' (A) is rotation invariant and satisfies (16), then u 1is
G-invariant.

Proof. Let w e D'(A) satisfy (16). Then from (12) it follows that

(16) t

d ou ou o
(17) ’@u[¢oaﬂ]|ﬁ=o = _(ta_wl + @ ﬁ) [p] =0 for ¢ e CF°(4).

Let us fix arbitrary ¢ € C3?(A4) and B,, |8,] < 1. To prove (i) it is
sufficient to show:

d
(18) Wu[«po 5] lp=p, = 0-

Set b = goay, h € C7(A). Then by Proposition 1
hoo, = @O0,y,, Where y(a) — tanh(tanh™'a+tanh™ g,).
Hence we obtain: ¥(0) = f,, ¥'(a) # 0,

dhooy) | _ d@oow) | _ Ao |
da gm0 da’ | dy  |y=p
therefore
d(poa,) 1 d(hoa,)

dy

=Py 7"(0) da
From this, applying (17), we obtain

1 u[d(hoaa)
ygy  V'(0) da

d
d_y ’ll/[(;OO O'y]

-+
a=0.
which gives (18).
The second part of Theorem 3 follows from (i) by Proposition 2.
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2. Now we take up the case where instead of *—2* —... —22 we
have the form 2+ ... +8# —2i— ... =22, m>2,2>2, (¢, ..
ceny &) € BT,

Write t = (¢, ..., t,), ® = (2, ..., B,).

We begin with

DEFINITION 5. Let H denote the identity component(*®) of the group
of linear transformations which leave the quadratic form |t|2— |#|2 in-
variant.

In particular, the following transformations belong to H:

. t, + B, z;+ pi
O‘;,(t, 93) = (_;‘Jm “'7tm7m1’ '”’mi—lrﬁ’wiﬂy -“9"”1:)’

ey by @yy ot

V1i— g
Bl<l,e=1,2,...,m,
Ri(t,8) = (V1 —a +aty, tyy ...y fy_gy —aty VL=, 80, eeny by @),
lal<1,j=2,3,...,m.

LEMMA 4. Let w € D' (Q), A =« E™*™, A H-invariant. Suppose that w is

H-invariant. Then w satisfies the following system of differential equations:

0 7 )
h— 4z, —|u =0, +=1,...,mn,

7] 0 .
(h;ﬁ;-—@?ﬁ:)u ==0, J ==2,...,W%

on every open subset A, — A.

Proof. Using the transformations a};, i=1,...,n,and BRI, j =2,...
..., m, wo proceed as in the proof of Lemma 2.

Let § = (fyy .oy tm)y B = (Ryy ..., bp).

In our case we can also define the “rectifying” map

i hy = tP—l®f, Rk, =1¢, i=2,...,m, y=w, j=1,..,n.

The domain of 7 is E}*™ = {(t, #): t, > 0}. Then the properties of z are
analogous to those of u from Lemma 1.

An approach similar to that applied to G-invariant functions leads
to the following continuous operation K: D(E™*")—D(E")

o(Vh,— R+ Y%, hyy) .
2Vh, — B>+ 1y

(K (@) (hy) =

gmtn—1

Y,
where ¢ € OF° (B ™).

(1%) It can be understood in the sense of the topology in the space of (m + n) X
X (m +n) matrices, i.e., in Em+n?,
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It follows immediately from the definition of the group H that for
every point p € E™*"\{0} there is 2 € H such that h(p) € E7*". Replacing
Q, by E™*"\{0}, after similar considerations as in the proof of Proposi-
tion 7, we conclude that K can be extended in a unique way to a continuous
H-invariant operation from D(E™*"\{0}) into D(E'). We shall denote
this extension by K.

In the following considerations we need the property: if a € CP(E"),
then there is ¢ € C3°(E7*™) such that K(p) = a which can be proved in
the way indicated in Property 2.

Now we are in the position to prove the fundamental

THEOREM 4. Let w € D'(E™*"\{0}). If w is H-invariant, then there
is a unique distribution T € D' (E") such that:

(19) ulp] = T[K(p)] for ¢ € CF(E™ "\ {0}).

And conversely, every distribution T € D'(E") defines by means of formula
(19) a unique H-invariant distribution w e D (E™T"\{0}).

Proof. After some obvious technical changes it is sufficient to repeat
the proof of Theorem 1, using the preceding properties of K instead of
Property 2.

Note that in spite of similarities with the case of G-invariant distri-
butions, H-invariant distributions cannot be treated as a special case
of the earlier and thus the assumptions » > 2, m > 2 are significant.

We note that the case m = 1, n = 1 can also be treated with the help
of the above described methods. Namely, there are four operations
Ki: D(I')~>D(E"Y), i=1,2,3,4, where I, ={t, @): t>a}, I,=
={t,»): t> —a}, I ={(t,x): t<a}, I, = {(t,®): t < —a}, such that
a distribution % € D'(E*\{0}) is invariant with respect to the identity
component of the group of linear maps preserving ¢2—ax2 iff there are
four distributions T,, ..., T, € D’(E") such that:

(20) ulg] = Ti[Ki(‘P)] for ¢ e O3’ (1Y), ¢ =1, 2,3, 4,
and T) =T, on B}, T,=T,on B, T, =T, on E', T, =T, on E'.

3. We introduce the following definition.

DEFINITION 6. Let A be a real symmetric non-singular k x % matrix
(k = 2). By G4 we denote the identity component of the set of all linear
transformations g such that ¢ Ag = 4 (*). Let B = B, stand for a non-

(20) Notice that G4 with the operation of superposition of transformations
forms a group.
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singular matrix such that ¢ = C 4 = (B~')*AB~! has the canonical form

& 0...0
0&...0 , legl=1,4=1,...,k.
00. &

In the sequel we shall denote by the same symbols both matrices and
the quadratic forms corresponding to them.

LeMMA 5. Let A = E* be an open set and let w € D'(A). Suppose that
A is a real symmetric non-degenerate matriz and B, C are the matrices cor-
responding to A as in Definition 6. If both the set A and the distribution
u are G 4-invariant, then the set B(A) is Go-invariant and so ts the distribution
v = uoB~! € D'(B(A))

Proof. Let g € G4; then gAg = A and writing 4 = B‘CB we have
(BgB~YY' CBgB~! = C.

Hence BgB~'e G,, because the continuous transformation G, > a
+—>BaB~! maps connected sets onto connected sets. Similarly, if & € G,
then B™'hB € G,. Thus for every h e @, there is ge G, such that &
= BgB~'. Since A is G -invariant, it follows from the above that B(A)
is G-invariant.

In a similar way, % being G -invariant, we derive that woB~! is
Gs-invariant.

THEOREM 5. We retain the assumptions of Lemma 5 with A = E*\{0}.

k
Then we have C = )} ¢;x;. Let m be the number of the positive ¢;’s, and let

iz1
n =k—m.

(i) If m =k, then the distribution w is G -invariant iff there exists
a unique distribution V e D'(E') such that
ulpl = V[Tg(p)l, ¢e C?(Ek\{O}),
where

o)) = g fw B(@)do

(il) ¢f m =1, n =2, then denoting by t the variable corresponding to
the ;> 0 and by x, ... x, (k = n+1) the remaining ones, we have:

the distribution u is G 4 -invariant iff there are exactly two distributions
T, T* € D'(E") such that

ulp]l =T[JIp(p)] on B(L2y),
ulp] = T*[Jp(9)] on B(Qy),
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and T =T" on E', where

JIplp) = (po B™Y), ‘PEC?(B(Qﬂ),

1
—_—J
|det B|

Jr(p) = *(poB™"), @eCr(B(2,);

—J
|det B|
(iii) suppose m =2, n > 2. Denote the variables corresponding to the
positive e;—s by t,,..., 1, and the remaining ones by x,, ..., x,.
The distribution w is @4 -invariant iff there is a unique distribution
T e D' (B") such that

ulpl = T[Egx(p)], ¢ €07 (E*\{0}),
where

Ky =————K(poB™});

(iv) let m =1, n = 1; then denoting the variable corresponding to the
positive ¢; by t and the other one by x we obtain: the distribution w € D' (E*\{0})
is @ -invariant iff there are four distributions T,,T,,T,, T, e D (E")
such that

ulg] = T;[K3(p)] for ¢ GGSO(B(Fi))’ t=1,2,3, 4,
and T, =T, on B, Ty=T,on E-, Ty =T, on E., T, =T, on E',

where
1

— K (poB™Y).
|det B| (po )

Ki(p) =

Proof. It is enough to apply Lemma 5 to Theorem 4 in [4], to Theo-
rem 2 and to the remarks which follow the proof of Theorem 2.
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