COLLOQUIUM MATHEMATICUM

VOL. XXX 1974 FASC. 1

NOT EVERY EQUATIONAL CLASS OF INFINITARY ALGEBRAS
CONTAINS A SIMPLE ALGEBRA

BY

EVELYN NELSON (HAMILTON, ONTARIO)

An algebra is simple if it has exactly two congruence relations.

Magari [2] proves that, for every non-trivial algebra A (with only
finitary operations), either A has a simple quotient or the subalgebra
of A4 generated by the constant functions and the identity function has
a simple quotient; in the latter case, the simple quotient which Magari
constructs actually has a trivial (i.e. one-element) subalgebra. It follows
from this that every non-trivial equational class of finitary algebras
contains a simple algebra, and, in an equational class of finitary algebras
in which no non-trivial algebra contains a trivial subalgebra, every non-
trivial algebra has a simple quotient.

These results are no longer true if one permits infinitary operations.
This note * consists of two examples. In the first we describe an equational
class of infinitary algebras which contains no simple algebras, and in the
second — an equational class of infinitary algebras which contains a simple
algebra and in which no non-trivial algebra has a trivial subalgebra, but
not every non-trivial algebra has a simple quotient. .

1. Let o be the class of algebras (L, A, v, 0,1, (¢);y, g), Where
(Ly Ay v,0,1) is a bounded distributive lattice with smallest element 0
and largest element 1, ¢; is a nullary operation on L for each ie N, g is
an R,-ary operation on L, and

(1) ¢o = 0;

(2) if ¢ <j, then ¢;A¢; = ¢;;

(3) g((ci)ieN) = 0;

(4) for all countable sequences (b;);.» 0f elements of L and for all
je N, g((bivcj)iel\’) = g((bi)ieN)vcj;

(5) if {b;|ie N} is finite, then g((b;);.n) = 1.
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Note that an algebra satisfies (5) iff it satisfies all identities of the
form g/((;);. ~) = 1, where the sequences (w;);.y run through all countable
sequences from a given infinite set, each with only finitely many different
entries, and thus «/ is an equational class.

Note that if (L, A, v, 0,1, (¢);en g) € &, then either L has only
one element or 0 1 and thus, by (3) and (5), {¢;|?e N} is an infinite
subset of L. The following proposition shows that ./ is non-trivial:

ProposiTioN 1. If (L, A, Vv,0,1) is a bounded distributive lattice
which contains a countably infinite ascending chain ¢, = 0<c, < cy< ¢y
<...<¢€,<..., then there exists a mapping g: L"— L such that L =
(L7 Ay Vy 0,1, (Cieny 9) e .

Proof. Define g: LV—L as follows: For (b;);.ye¢ L", if there exists
a je N such that

(BiV)ien=(Cj5 Cjy evy €y Cip1y Ciray o)y
Tilterms
then g((b);cy) = ¢, Where k is the smallest such j; otherwise, g((b;);y) = 1.
Then L = (L, A, v, 0,1, (¢;);cn,g) obviously satisfies (1) and (2).
For notational convenience, let
C; = (CjyCiyuueyCiyCipryCiygyons)
T J+lterms

Since (¢;Vveo)ien = (¢;VO0)ien = (€)ieny = €0, it follows that L satis-
fies (3). Similarly, for each je N, since ¢ <<j implies ¢; < ¢;, g(¢;) = ¢;.

If (b;):en is a countable sequence of elements of L such that {b;|ie N}
is finite, then, for each je N, {b;v ¢; | ie N} is also finite, and, consequently,
(b;v ¢)ien # T3 thus g((b;)icn) = 1. It follows that L satisfies (5).

To prove that Le & it remains only to show that, for each sequence
(b;);cn Of elements of L and for each je N,

9((biV cj)ieN) = g((bi)ieN) V.
We consider two cases.

Case 1. There exists a £ which is the smallest natural number with
the property that (b;ve;),.xy = & (and then g((b;);.x) = ¢). Then, if j >,

| (b;Ve)ien = (B;VErV6lien = G;
thus .
g((bivcj)jeN) =0 = V6 = g((bi)isN) V.
If j <k, then
(b;Ve;Ver)ien = (b;VeL)ien = Gy

and k is the smallest natural number with this property; thus

9((B:;Ve;)ien) = & = v e; = g((B:)ien) V&
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Case 2. There is no k¢ N such that (b;V ¢;);cxy = €. Then g((b;);en) = 1.
If there exists a ke N with (b;ve;ve,), .y = T, then byve;ve, = ¢, thus
¢; < ¢; consequently,

(b;Ver)ien = (bive;ver)ien = O,y

and this is a contradiction. Thus

g((b:ve)ien) =1 =1ve; = g((b)ien) V-
This completes the proof.
COROLLARY. & 48 non-trivial.
Now, for each algebra L = (L, A, v, 0,1, (¢);n,9g)c </, and for
each je N, L; =[¢;, 1] = {ae L | ¢; < a} is a sublattice of L, and, moreover,
(4) implies that L; is closed under the operation g.

PROPOSITION 2. For each algebra L = (L, A, v, 0,1, (¢;)icn, 9) € &
and for each je N,

L; = (Lj7 ALjy v |Ljy €5 1, (6;V €;)ienry 9|Lj)€&77

and the mapping ¢;: L — L; defined by ¢(a) = ave; is an «/-algebra homo-
morphism.

Proof. To see that L;e o/ it is only necessary to show that it satisfies
(1)-(5). Conditions (1), (2), (4) and (5) follow immediately from the cor-
responding properties of L, since all the operations in L; except the con-
stants are just the restrictions of the corresponding operations on L.
We have

g((e;ve))ien) = 9((‘%)&1\7} ve; =0ve = ¢

since L satisfies (3) and (4), and thus L; satisfies (3).

Since (L, A, V) is a distributive lattice, it follows that ¢; is a lattice
homomorphism. Moreover, since L satisfies (4), it follows that, for all
countable sequences (b;);.y of elements of L, g(gvj((b,-)iE N)) = ‘Pj(g((bi)ie N))
The homomorphism ¢; obviously maps the nullary operations of L to the
corresponding nullary operations of L;, and thus ¢; is an </-algebra
homomorphism. ‘

COROLLARY. &/ contains no simple algebras.

Proof. For any L = (L, A, v, 0,1, (¢);cr,g)e & with 0 1, con-
ditions (3) and (5) imply that there exists a j with ¢; # 0 and ¢; # 1.
But then, if ¢; is the homomorphism described in Proposition 2, the
kernel of ¢; is a proper non-trivial congruence on L, and hence L is not
simple. ‘ ‘

It should be pointed out that one could obtain an example of an
equational class with only finitely many operations which does not contain
a simple algebra by discarding from .7 the constants ¢;, adding a new
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N,-ary operation, say h, and a condition on h analogous to (4), and then
‘“re-introducing’’ the constants ¢; as derived operations, by defining, for
instance, ¢; to be the image under 7 of the sequence with 1 in the ¢-th
place and zeroes elsewhere.

2. Let # be the equational class of all 8,-complete Boolean algebras,
that is, algebras (B, A, v, ’, 0,1, A, /), where (B, A, v, ’, 0, 1) is a Boolean
algebra, and A, \/ are R,-ary operations satisfying the obvious identities.
The two-element Boolean algebra 2 is a simple R8,-complete Boolean
algebra. It was proved in Banaschewski and Nelson [1] that 2 is the
only subdirectly irreducible X,-complete Boolean algebra, and hence 2
is the only simple algebra in £.

Clearly, no non-trivial algebra in # has a trivial subalgebra, since
the class of Boolean algebras already has this property.

It is well known that the lattice B of all regular-open subsets of the
real line is an 8,-complete Boolean algebra [3]; however, if ¢: B—>2 were
an R,-complete homomorphism, then ¢~'({0}) would be an X,-complete
proper prime (and hence maximal) ideal in B. Since every regular-open
subset of the real line is the join (in B) of all the open intervals with
rational end points contained in it, it follows that every N,-complete
ideal in B is complete, and hence principal. But there are no proper principal
ideals in B which are maximal, and hence there is no ¥,-complete homo-
morphism from B to 2.

Thus # provides the desired example of an equational class which
contains a simple algebra, and in which no non-trivial algebra contains
a trivial subalgebra, but not every non-trivial algebra has a simple quotient.
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