UNIVERSAL EMBEDDINGS OF $l^1(\alpha)$ INTO THE SPACE
OF CONTINUOUS FUNCTIONS ON A PRODUCT SPACE

BY

N. KALAMIDAS AND TH. ZACHARIADES (ATHENS)

Preliminaries. The ordinals are defined in such a way that an \textit{ordinal} is the set of smaller ordinals. A \textit{cardinal} is an ordinal not in one-to-one correspondence with any smaller ordinal. The \textit{cofinality} of a cardinal α, denoted by $\text{cf}(\alpha)$, is the least cardinal β such that α is a cardinal sum of β-many cardinals, each smaller than α.

A cardinal α is \textit{regular} if $\alpha = \text{cf}(\alpha)$, and \textit{singular} otherwise. We denote by α^+ the least cardinal which is strictly greater than α, and by ω the first infinite cardinal.

If α and β are cardinals, we denote by $\alpha \Delta$ the cardinal sum $\sum_{\beta \in \alpha} \alpha$.

The cardinality of a set A is denoted by $|A|$. We denote by $\mathcal{P}_\alpha(A)$ the set of those subsets of A that have cardinality less than α, and by $\mathcal{P}(A)$ the set of all subsets of A.

Let α and κ be cardinals. We say that α is \textit{strongly κ-inaccessible} if $\beta^\lambda < \alpha$ for every $\beta < \alpha$ and $\lambda < \kappa$. If, in addition, $\alpha > \kappa$, we write $\alpha \gg \kappa$.

For set-theoretic background we refer the reader to [4].

0.1. Theorem (Erdős–Rado). Let $\alpha > \omega$ be a regular cardinal and
\[
\{N_\xi: \xi < \alpha\} \subset \mathcal{P}_\omega(\alpha).
\]
Then there are $A \subset \alpha$, with $|A| = \alpha$, and $N \subset \alpha$ such that
\[
N_{\xi_1} \cap N_{\xi_2} = N \quad \text{for } \xi_1, \xi_2 \in A, \xi_1 \neq \xi_2.
\]

0.2. Proposition. Let α, β be cardinals, $\alpha > \beta \gg \omega^+$, let
\[
\{J_\xi: \xi < \alpha\} \subset \mathcal{P}_\beta(\alpha) \quad \text{and} \quad \{N_\xi: \xi < \alpha\} \subset \mathcal{P}(\alpha)
\]
with $N_\xi \cap N_\eta = \emptyset$ for every $\xi < \eta < \alpha$. Then there exists $A \subset \alpha$, with $|A| = \alpha$, such that
\[
N_\xi \cap J_\eta = \emptyset \quad \text{for every } \xi, \eta \in A, \xi \neq \eta.
\]

The above proposition in the case $\beta = \omega^+$ is contained in [1]. To prove it we use the Hajnal free set theorem.
All topological spaces in this paper are assumed to be infinite and Hausdorff. Let \(X \) be a topological space and \(\alpha \) an infinite cardinal. We say that \(X \) has precaliber \(\alpha \) if every family \(\{ U_\xi : \xi < \alpha \} \) of non-empty open subsets of \(X \) contains a subfamily with the same cardinality and the finite intersection property.

If \(X \) has precaliber \(\alpha \), then \(\text{cf}(\alpha) > \omega \) (Corollary 2.25 in [5]). \(X \) is said to have caliber \(\alpha \) if every family \(\{ U_\xi : \xi < \alpha \} \) of non-empty open subsets of \(X \) contains a subfamily of the same cardinality with non-empty intersection.

The Souslin number \(S(X) \) of \(X \) is defined to be the smallest cardinal \(\alpha \) such that there is no family of \(\alpha \)-many pairwise disjoint non-empty open subsets of \(X \). By the Erdös–Tarski theorem, \(S(X) \) is an uncountable regular cardinal.

\(X \) is called pseudo-\(\alpha \)-compact if for every family of \(\alpha \)-many non-empty open subsets of \(X \) there exists \(x \in X \) such that every neighbourhood of \(x \) meets infinitely many sets from the family.

We set

\[
 r(X) = \min \{ \alpha : X \text{ is pseudo-} \alpha \text{-compact} \},
\]

\[
 \text{ca}(X) = \min \{ \alpha : X \text{ has caliber } \alpha \}.
\]

Then it is clear that

\[
 r(X) \leq \text{ca}(X) \leq d(X)^+,
\]

where \(d(X) \) is the density character of \(X \).

All Banach spaces in this paper are assumed to be real. Let \(X \) be a topological space. By \(C^*(X) \) we denote the Banach space of all real-valued bounded continuous functions on \(X \) with the supremum norm. If \(Y \) is a Banach space and \(\alpha \) a cardinal, we say that \(l_1(\alpha) \) embeds universally in \(Y \) if for any closed subspace \(Z \) of \(Y \), with \(\dim Z = \alpha \), there exists an isomorphic embedding of \(l_1(\alpha) \) into \(Z \). It is clear that an isomorphic embedding of \(l_1(\alpha) \) into \(Z \) exists iff there exist a uniformly bounded family \(\{ z_\xi : \xi < \alpha \} \subset Z \) and a constant \(M > 0 \) such that

\[
 \left\| \sum_{i=1}^n c_i z_\xi_i \right\| \geq M \sum_{i=1}^n |c_i|
\]

for all \(c_1, \ldots, c_n \in \mathbb{R} \), \(\xi_1, \ldots, \xi_n < \alpha \) pairwise different and for each \(n \in \mathbb{N} \). Such a family is said to be equivalent to the usual basis \(\{ e_\xi : \xi < \alpha \} \) of \(l_1(\alpha) \), where \(e_\xi(\eta) = 0 \) for \(\xi \neq \eta \) and \(e_\xi(\xi) = 1 \).

Let \(X \) be a set and \(\{ (A_i, B_i) : i \in I \} \) be a family of subsets of \(X \) with the property \(A_i \cap B_i = \emptyset \) for \(i \in I \). The above family is called independent if for every pair of finite disjoint subsets \(K, F \) of \(I \) we have

\[
 \left(\bigcap_{i \in K} A_i \right) \cap \left(\bigcap_{i \in F} B_i \right) \neq \emptyset.
\]

The connection between independent families of sets and the isomorphic embedding of \(l_1(\alpha) \) into subspaces of spaces of the form \(C^*(X) \) is described by the following lemma, due to Rosenthal [9].
0.3. Lemma. Let X be a set and $\{f_i : i \in I\}$ a family of uniformly bounded real functions on X. Let also r, δ be real numbers with $\delta > 0$ such that if

$$A_i = \{x \in X : f_i(x) > r + \delta\}, \quad B_i = \{x \in X : f_i(x) < r\},$$

then the family $\{(A_i, B_i) : i \in I\}$ is independent. Then the following inequality is valid:

$$\left\| \sum_{j=1}^{n} c_j f_j \right\| \geq \frac{\delta}{2} \sum_{j=1}^{n} |c_j|$$

for every $c_1, \ldots, c_n \in \mathbb{R}$, $i_1, \ldots, i_n \in I$ pairwise different and each $n \in \mathbb{N}$.

If $(X_i)_{i \in I}$ is a family of topological spaces and $f \in C^*(\prod_{i \in I} X_i)$, we say that f depends only on $J \subset I$ if for each $x, y \in \prod_{i \in J} X_i$ with $pr_j(x) = pr_j(y)$ we have $f(x) = f(y)$.

If $J \subset I$, it is clear that $C^*(\prod_{i \in J} X_i)$ embeds isometrically in $C^*(\prod_{i \in I} X_i)$.

Let $(Z_i)_{i \in I}$ be a family of Banach spaces. By $(\sum_{i \in I} \oplus Z_i)_{\infty}$ we denote the Banach space

$$\{z = (z_i)_{i \in I} : z_i \in Z_i \text{ and } \sup_{i \in I} \|z_i\| < +\infty\}$$

with the norm

$$\|z\| = \sup_{i \in I} \|z_i\|.$$

1.1. Definition. Let $(X_i)_{i \in I}$ be a family of topological spaces and

$$X = \prod_{i \in I} X_i.$$

For every cardinal α let

$$C^*_\alpha(X) = \{f \in C^*(X) : \text{there exists } J \in \mathcal{P}_\alpha(I) \text{ such that } f \text{ depends only on } J\}.$$

We set

$$l(X) = \min \{\alpha : C^*_\alpha(X) = C^*(X)\}, \quad k(X) = \min \{\alpha : C^*_\alpha(X) = C^*(X)\}.$$

1.2. Remarks. (i) It is clear that

$$l(X) \leq k(X) \leq l(X)^{+},$$

and if $\operatorname{cf}(l(X)) > \omega$, then $k(X) = l(X)$.

(ii) If X_i is a compact topological space for every $i \in I$, then, by the Stone–Weierstrass theorem, $l(X) = \omega$.

(iii) From [3] we have $k(X) \leq r(X)^{+}$.

5 – Colloquium Mathematicum LVII. 2
1.3. Theorem. Let \(\alpha \) be a cardinal with \(\alpha > \omega^+ \). Let \((X_i)_{i \in I}\) be a family of topological spaces and
\[
X = \prod_{i \in I} X_i.
\]

We suppose that \(X \) has precaliber \(\alpha \) and \(\alpha > k(X) \). If \(Z \) is a closed subspace of \(C^*(X) \) and if, for every \(J \in P_\alpha(I) \), \(Z \) is not contained in \(C^*(\prod_{i \in J} X_i) \), then \(Z \) contains isomorphically a copy of \(l_1(\alpha) \).

Proof. For every \(f \in Z \) there is an \(J_f \in P_{k(X)}(I) \) such that \(f \) depends only on \(J_f \). Without loss of generality we may assume that
\[
I = \bigcup_{f \in Z} J_f.
\]

By transfinite induction, we may construct a family
\[
\{ f_\xi: \xi < \alpha \} \subset Z,
\]
with \(\| f_\xi \| = 1 \), such that if we set
\[
J_f_\xi = J_\xi \quad \text{and} \quad T_\eta = \bigcup_{\zeta < \eta} J_\zeta,
\]
then \(f_\eta \) does not depend only on \(T_\eta \), hence \(J_\eta \not\subset T_\eta \). We distinguish two cases:

Case I. There exists an \(A \subset \alpha \), with \(|A| = \alpha \), such that
\[
T_\eta \cap J_\xi \neq \emptyset \quad \text{for all} \quad \eta \in A.
\]
Since \(X \) has precaliber \(\alpha \), we have \(\text{cf}(\alpha) > \omega \). Hence there exist \(A_1 \subset A \), with \(|A_1| = \alpha \), and rational numbers \(r, \delta \) with \(\delta > 0 \) such that the set
\[
\Lambda_\eta = \left\{ x \in \prod_{i \in J_\eta} X_i: \sup_{z \in \{x\} \times \prod_{i \in I \setminus J_\eta} X_i} f_\eta(z) > r + \delta > r > \inf_{z \in \{x\} \times \prod_{i \in I \setminus J_\eta} X_i} f_\eta(z) \right\}
\]
is non-empty for every \(\eta \in A_1 \), where \(J_\eta = T_\eta \cap J_\eta \). It is clear that \(\Lambda_\eta \) is an open subset of \(\prod_{i \in J_\eta} X_i \). We set \(N_\eta = J_\eta \setminus T_\eta \). Clearly, \(N_\eta \cap N_\xi = \emptyset \) for every \(\eta, \xi \in A_1 \).

By Proposition 0.2 there exists \(A_2 \subset A_1 \), with \(|A_2| = \alpha \), such that \(J_\xi \cap N_\eta = \emptyset \) for every \(\xi, \eta \in A_2 \) with \(\xi \neq \eta \). We set
\[
M_\eta = \Lambda_\eta \times \prod_{i \in I \setminus J_\eta} X_i.
\]
Since \(X \) has precaliber \(\alpha \), there exists \(A_3 \subset A_2 \), with \(|A_3| = \alpha \), such that the family \(\{ M_\eta: \eta \in A_3 \} \) has the finite intersection property. Let
\[
B_\eta = \{ x \in X: f_\eta(x) > r + \delta \}, \quad C_\eta = \{ x \in X: f_\eta(x) < r \}
\]
for every \(\eta \in A_3 \). Clearly, \(B_\eta \) and \(C_\eta \) are not empty. We will see that the above family is independent.
Let F and G be finite disjoint subsets of A_3. Then there is
\[z \in \bigcap_{\eta \in F \cup G} M_\eta. \]
We set $z_\eta = \text{pr}_{J_\eta}(z_\eta)$. There exists
\[y_\eta \in \prod_{\iota \in I \setminus J_\eta} X_\iota \]
such that $f_\eta(z_\eta, y_\eta) > r + \delta$ if $\eta \in F$ and $f_\eta(z_\eta, y_\eta) < r$ if $\eta \in G$. We consider $x \in \prod_{\iota} X_\iota$ such that
\[\text{pr}_{J_\eta}(x) = z_\eta \quad \text{and} \quad \text{pr}_{N_\eta}(x) = \text{pr}_{N_\eta}(y_\eta) \]
for every $\eta \in F \cup G$ (such an x exists, since $J_\eta \cap N_\xi = \emptyset$ for every $\xi, \eta \in A_3$ with $\xi \neq \eta$). Since $f_\eta(x) = f_\eta(z_\eta, y_\eta)$ for $\eta \in F \cup G$, we have
\[x \in \left(\bigcap_{\eta \in F} B_\eta \right) \cap \left(\bigcap_{\eta \in G} C_\eta \right). \]
Thus by Lemma 0.3 the family $\{f_\eta, \eta \in A_3\}$ is equivalent to the usual basis of $l_1(\alpha)$.

Case II. Case I does not hold. Then there exists $A \subset \alpha$, $|A| = \alpha$, such that $J_\eta \cap T_\eta = \emptyset$ for all $\eta \in A$. Then, as in case I, we can find an $A_1 \subset A$, with $|A_1| = \alpha$, such that $\{f_\eta, \eta \in A_1\}$ is equivalent to the usual basis of $l_1(\alpha)$.

1.4. Theorem. Let $(X_\iota)_{\iota \in I}$ be a family of topological spaces, let
\[X = \prod_{\iota \in I} X_\iota \quad \text{and} \quad l(X) = \omega. \]
We suppose that, for each $\iota \in I$, X_ι has precaliber ω^+ and $C^*(\prod_{\iota \in I} X_\iota)$ is separable for every $F \in \mathcal{P}_\omega(I)$. Then, if $C^*(X)$ is non-separable, $l_1(\omega^+)$ embeds universally in $C^*(X)$.

Proof. Let Z be a closed subspace of $C^*(X)$ with $\dim Z = \omega^+$, and $0 < \delta < 1$. There exists a family $\{f_\xi : \xi < \omega^+\} \subset Z$ with $\|f_\xi\| = 1$ and $\|f_\xi - f_\eta\| > \delta$ for every $\xi < \eta < \omega^+$.

For every $\xi < \omega^+$ there is a $g_\xi \in C^*(X)$ such that
\[\|g_\xi - f_\xi\| < \delta/20 \]
and g_ξ depends only on a set J_ξ with $|J_\xi| < \omega$. It is clear that
\[\|g_\xi - g_\eta\| > \delta/20 \quad \text{for every} \quad \xi < \eta < \omega^+. \]
By Theorem 0.1 there is an $A \subset \omega^+$, with $|A| = \omega^+$, and a $J \subset I$ such that
\[J_\xi \cap J_\eta = J \quad \text{for every} \quad \xi, \eta \in A \quad \text{with} \quad \xi \neq \eta. \]
We have that $C^*(\prod_{\iota \in J} X_\iota)$ is separable. Hence we may suppose that $J \neq J_\xi$ for every $\xi \in A$. We distinguish two cases.
Case I. Let \(J \neq \emptyset \). Then there exist \(A_1 \subset A \), with \(|A_1| = \omega^+ \), and \(r \in R \) such that \(A_\xi \neq \emptyset \) for every \(\xi \in A_1 \), where
\[
A_\xi = \{ x \in \prod_{\xi \in J} X_\xi : \sup_{\xi \in J} \{ g_\xi(z) : z \in \{ x \} \times \prod_{\xi \notin J} X_\xi \} > r + \frac{9}{8} > r > \inf_{\xi \in J} \{ g_\xi(z) : z \in \{ x \} \times \prod_{\xi \notin J} X_\xi \} \}.
\]
It is clear that \(A_\xi \) is an open subset of \(\prod_{\xi \in J} X_\xi \). Since \(X_\xi \) has precaliber \(\omega^+ \), it is easy to see that \(\prod_{\xi \in J} X_\xi \) has precaliber \(\omega^+ \), hence there is an \(\xi \in A_1 \), with \(|A_2| = \omega^+ \), such that the family \(\{ A_\xi : \xi \in A_2 \} \) has the finite intersection property. We set
\[
B_\xi = \{ x \in X : g_\xi(x) > r + \frac{9}{8} \}, \quad C_\xi = \{ x \in X : g_\xi(x) < r \}
\]
for every \(\xi \in A \). It is easy to see that the family \(\{ (B_\xi, C_\xi) : \xi \in A_2 \} \) is independent, and so by Lemma 0.3 we have
\[
\left\| \sum_{i=1}^{n} c_i g_{\xi_i} \right\| \geq \left(\frac{9}{16} \right) \sum_{i=1}^{n} |c_i|
\]
for every \(\xi_1, \ldots, \xi_n \in A_2 \) pairwise different, \(c_1, \ldots, c_n \in R \) and \(n \in N \). Thus we have
\[
\left\| \sum_{i=1}^{n} c_i f_{\xi_i} \right\| \geq \left(\frac{9}{20} \right) \sum_{i=1}^{n} |c_i|
\]
for every \(\xi_1, \ldots, \xi_n \in A_2 \) pairwise different, \(c_1, \ldots, c_n \in R \) and \(n \in N \). Thus the family \(\{ f_{\xi_i} : \xi \in A_2 \} \) is equivalent to the usual basis of \(l_1(\alpha) \).

Case II. Let \(J = \emptyset \). Then, as in case I, we find \(A_1 \subset A \), with \(|A_1| = \alpha \), such that the family \(\{ f_{\xi_i} : \xi \in A_1 \} \) is equivalent to the usual basis of \(l_1(\alpha) \).

1.5. Lemma. Let \((X_i)_{i \in I}\) be a family of topological spaces and
\[
X = \prod_{i \in I} X_i.
\]
Then \(C^*(X) \) can be embedded isometrically in
\[
\left(\sum_{\alpha \in \mathcal{A}(I)} \oplus C^*(\prod_{i \in \alpha} X_i) \right)_{\infty}.
\]

Proof. Let \(x^* = (x_i)_{i \in I} \) be an element of \(X \) and take the function
\[
T : C^*(X) \rightarrow \left(\sum_{\alpha \in \mathcal{A}(I)} \oplus C^*(\prod_{i \in \alpha} X_i) \right)_{\infty}
\]
such that \(T(f) = (f_\alpha)_{\alpha \in \mathcal{A}(I)} \), where
\[
f_\alpha : \prod_{i \in A} X_i \rightarrow R \quad \text{and} \quad f_\alpha(x) = f(y), \quad \text{where} \quad y_i = x_i \quad \text{for} \quad i \in A,
\]
and \(y_i = x_i \) for \(i \in I \setminus A \). It is easy to see that \(T \) is a well-defined linear isometry. Combining Theorems 1.3 and 1.4 yields the following general corollary:
1.6. COROLLARY. Let α be a cardinal. Let $(X_i)_{i \in I}$ be a family of topological spaces and

$$X = \prod_{i \in I} X_i.$$

We suppose that X has precaliber α, $\alpha > l(X)$, and $\beta^{l(X)} < \alpha$ for every $\beta < \alpha$. We also suppose that

$$\alpha > \sup \{ \dim C^*(\prod_{i \in I} X_i) : F \in \mathcal{P}_\omega(I) \}.$$

If $\dim C^*(X) \geq \alpha$, then $l_1(\alpha)$ embeds universally in $C^*(X)$.

Proof. Since X has precaliber α, we have $\text{cf}(\alpha) > \omega$.

If $\alpha = \omega^+$, then the corollary reduces to Theorem 1.4. Let $\alpha > \omega^+$ and Z be a closed linear subspace of $C^*(X)$ with $\dim Z \geq \alpha$. We will prove that the conditions of Theorem 1.3 are valid.

If $l(X) = \omega$, then $k(X) \leq \omega^+ < \alpha$.

If $l(X) > \omega$ and $\text{cf}(l(X)) > \omega$, then $k(X) = l(X) < \alpha$.

If $l(X) > \omega$ and $\text{cf}(l(X)) = \omega$, then

$$\alpha > \alpha = \alpha \geq l(X)^{l(X)} \geq l(X)^{\text{cf}(l(X))} > l(X),$$

so $k(X) < \alpha$.

We suppose that there exists $J \in \mathcal{P}_\alpha(I)$ such that

$$\dim C^*(\prod_{i \in J} X_i) \geq \alpha.$$

Then, if $0 < \delta < 1$, there exists a family

$$\{ f_\xi : \xi < \alpha \} \subset C^*(\prod_{i \in J} X_i)$$

with $\|f_\xi\| = 1$ and $\|f_\xi - f_\eta\| \geq \delta$ for every $\xi < \eta < \alpha$. Without loss of generality we may assume that f_ξ depends only on $J_\xi \subset J$ with $|J_\xi| < l(X)$ for all $\xi < \alpha$.

There exists a regular cardinal β such that

$$\alpha \geq \beta > |J|^{l(X)},$$

$$\beta > \dim C^*(\prod_{i \in F} X_i) \quad \text{for every} \quad F \in \mathcal{P}_\omega(J) \text{ and } \beta > l(X).$$

Then there are a $J' \subset J$ and an $A \subset \alpha$, with $|A| = \beta$, such that $J_\xi = J'$ for every $\xi \in A$. Consequently,

$$\dim C^*(\prod_{i \in J'} X_i) \geq \beta.$$

From Lemma 1.5 we have

$$\beta \leq \dim C^*(\prod_{i \in J'} X_i) \leq \sup \{ \dim C^*(\prod_{i \in J'} X_i)^{J_1} : F \in \mathcal{P}_\omega(J') \} < \beta,$$

which is a contradiction. Thus, for Z, the conditions of Theorem 1.3 are valid. Therefore $l_1(\alpha)$ embeds isomorphically into Z.

1.7. Remark. It is clear from the proof of Corollary 1.6 that when \(\alpha \) is a regular cardinal, then condition (\(\ast \)) may be weakened to:

\[
\alpha > \dim C^*(\prod_{i \in F} X_i) \quad \text{for every } F \in \mathcal{P}_\alpha(I).
\]

1.8. Corollary. Let \(\alpha \) be a cardinal. Let also \((X_i)_{i \in I} \) be a family of compact topological spaces and

\[
X = \prod_{i \in I} X_i.
\]

We suppose that \(X_i \) has caliber \(\alpha \) for every \(i \in I \) and

\[
\alpha > \sup \{w(X_i): i \in I\},
\]

where \(w(X_i) \) is the topological weight of \(X_i \). If \(\dim C^*(X) \geq \alpha \), then \(l_1(\alpha) \) embeds universally in \(C^*(X) \).

1.9. Remarks. (i) In the case of a regular cardinal \(\alpha \) we need only the condition \(\alpha > w(X_i) \) for every \(i \in I \), as in Corollary 1.6.

(ii) It is obvious that if \(\alpha \) is an infinite cardinal and \(Y \) a topological space with \(w(Y) \geq \alpha \), which is a continuous image of the product of a family \((X_i)_{i \in I} \) of compact topological spaces with the properties of Corollary 1.8, then \(l_1(\alpha) \) embeds universally in \(C(Y) \).

(iii) Corollary 1.8 extends a result of Argyros and Negrepontis [2] and also contains the result of Hagler [6] for dyadic spaces.

Since \(k(X) \leq r(X)^+ \), Corollary 1.6 gives easily the following

1.10. Corollary. Let \(\alpha \) be an uncountable cardinal, \((X_i)_{i \in I} \) be a family of topological spaces and

\[
X = \prod_{i \in I} X_i.
\]

We suppose that \(X \) has precaliber \(\alpha \) and \(\beta^{(X)} < \alpha \) for every \(\beta < \alpha \). We also suppose that

\[
\alpha > \sup \{\dim C^*(\prod_{i \in F} X_i): F \in \mathcal{P}_\alpha(I)\}.
\]

If \(\dim C^*(X) \geq \alpha \), then \(l_1(\alpha) \) embeds universally in \(C^*(X) \).

Finally, from Theorem 1.3 we obtain easily the following corollary, which is contained in [7].

1.11. Corollary. Let \(\alpha \) be a regular cardinal with \(\alpha \geq \omega^+ \), and \((X_i)_{i \in I} \) a family of topological spaces with \(\alpha \geq k(X) \), where

\[
X = \prod_{i \in I} X_i.
\]
We suppose that \(l_1(\alpha) \) embeds universally into \(C^* \left(\prod_{i \in F} X_i \right) \) for every \(F \in \mathcal{P}_\omega(I) \) such that

\[
\dim C^* \left(\prod_{i \in F} X_i \right) \geq \alpha.
\]

Then \(l_1(\alpha) \) embeds universally into \(C^*(X) \) if \(\dim C^*(X) \geq \alpha \).

Proof. Let \(Z \) be a subspace of \(C^*(X) \) with \(\dim Z = \alpha \). If, for every \(J \in \mathcal{P}_\omega(I) \),

\[
Z \not\subseteq C^* \left(\prod_{i \in J} X_i \right),
\]

then the result follows from Theorem 1.3. We suppose that there is \(J \in \mathcal{P}_\omega(I) \) with

\[
Z \subseteq C^* \left(\prod_{i \in J} X_i \right).
\]

If \(0 < \theta < 1 \), there is \(\{ f_\xi : \xi < \alpha \} \subseteq Z \) with \(\| f_\xi \| = 1 \) and \(\| f_\xi - f_\eta \| > \theta \) for every \(\xi < \eta < \alpha \). For every \(\xi < \alpha \) there are \(J_\xi \subseteq J \), with \(|J_\xi| < k(X) \), and \(f_\xi \) depending only on \(J_\xi \). Since \(\alpha \) is a regular cardinal, \(\alpha \gg k(X) \) and \(|J| < \alpha \), we see that there exist \(A \subset \alpha \), with \(|A| = \alpha \), and \(L \subset J \) such that \(J_\xi = L \) for every \(\xi \in A \). Let \(Y \) be the closed subspace generated by \(\{ f_\xi : \xi \in A \} \). Since

\[
Y \subseteq C^* \left(\prod_{i \in L} X_i \right),
\]

by Lemma 1.5, \(Y \) embeds isometrically in \(\left(\sum_{A \in \mathcal{P}_\omega(L)} \bigoplus Y_A \right)_\infty \), where \(Y_A \) is the closed image of \(Y \) in \(C^* \left(\prod_{i \in A} X_i \right) \) through the canonical projection of

\[
\left(\sum_{A \in \mathcal{P}_\omega(L)} \bigoplus C^* \left(\prod_{i \in A} X_i \right) \right)_\infty
\]

onto

\[
C^* \left(\prod_{i \in A} X_i \right).
\]

If \(\dim Y_A < \alpha \) for every \(A \in \mathcal{P}_\omega(L) \), then

\[
\alpha = \dim Y \leq \sup \{(\dim Y_A)^{|A|} : A \in \mathcal{P}_\omega(L)\} < \alpha.
\]

So there is a \(A \in \mathcal{P}_\omega(L) \) such that \(\dim Y_A = \alpha \) and, consequently, \(l_1(\alpha) \) embeds isomorphically in \(Y_A \), hence in \(Y \), since \(\text{cf}(\alpha) > \omega \) (see [8]). Thus \(l_1(\alpha) \) embeds isomorphically in \(Z \).

Acknowledgment. We want to thank Professor S. Argyros for his suggestions that helped the final form of the paper.
REFERENCES

UNIVERSITY OF ATHENS
DEPARTMENT OF MATHEMATICS
SECTION OF MATHEMATICAL ANALYSIS AND ITS APPLICATIONS
PANEPISTEMIOPOLIS 157 81
ATHENS, GREECE

Reçu par la Rédaction le 20.9.1986;
en version modifiée le 20.1.1988