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ESTIMATION OF VARIANCE COMPONENTS IN RANDOM MODELS

1. Introduction. This paper is concerned with quadratic unbiased
estimation of variance components in random models under the assumption
of normality. This problem has been considered by others, e.g. by Graybill
and Hultquist [1] and by Seely [3].

Graybill and Hultquist stated conditions under which the best
unbiased estimates of wvariance components can be obtained from the
analysis of variance. Introducing the notion of quadratic subspaces,
Seely extended that result to mixed models. Moreover, Seely obtained
necessary and sufficient conditions for the existence of best quadratic
unbiased estimates for variance components in random models when the
vector of observations has a zero mean.

The aim of this paper is to get similar results for random models
without assuming that the vector of observations has a zero mean. The
main result is stated in theorem 2. Also, an example is given showing
that the assumptions of theorem 2 can be satisfied, and, at the same time,
the assumptions of the other mentioned here theorems can be not.

2. Preliminaries and definitions. Throughout the paper <7, (—, —),
denotes the finite-dimensional Hilbert space of symmetric matrices of
order m X n with the trace inner product, and R”, (—, —), the p-dimen-
sional space of real vectors with the usual inner product. The transpose
of matrix X is denoted by X', the trace of X by tr(X), and the vector
space generated by the column vectors of X by M (X). Moreover, M (X)*
stands for the space brthogonal to M (X), and X~ for a generalized inverse
of X. As usual, the notation y ~ N (x, V) means that the random vector y
has a multivariate normal distriution with vector of means x and cova-
riance matrix V.

In this paper the model

Yy = Zk:Xibi

i=1
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is considered. The X’s stand for known matrices of n rows, and the b’s
except of b,, for random vectors. In addition, X, =1 =(1,...,1) and
X, =1, I being the unit matrix. For ¢« =2, ..., k, it is assumed that
E(b;) = 0 and E(b;b;) = o2V, where the matrix V, is given and o} is
a non-negative parameter. Morcover, it is assumed that V, =1 and
E(b;b;) =0 for ¢ #3j; 4,5 =2,..., k. For convenience, b, is denoted
throughout the paper by o,.

Models with the described structure are called random.

Let ©Q be a subset of R* defined as follows:

Q={c: 0 =(o},...,03), 65=0,1=1,...,k}.

Definition 1. A linear function % of o3, ..., o} is called a parametric
function.
Introducing the notation ¢’ = (¢y, ..., ¢;), it can be written as h = ¢’o.

Definition 2. A parametric function h = ¢'¢ is called estimable
if there exists a matrix Des/ such that E(y’'Dy) = h for all o (.

Definition 3. The function y’ Dy, where Des, is called a quadratic
unbiased estimator of h = ¢’ ¢ if E(y' Dy) = h for all gef.

3. The least squares estimators. Similarly as in [1], let the mapping
8: & —>R™, where m = n(n+1)/2, be defined as

S(A) = (a'117 ]/2(1/12, ce ]/2a'1n7 (122, ]/2(1'237 ey '/2a2n7 cry a’nn);

while A = [a;]e.
Clearly, S is an isomorphism of &, (—, —>, onto R", (—, —), since,
for B;eo/ and c;eR, 1 =1, ...,p,

(1) S(j 6B = chiS(Bi>,
=1 t

t=1

and, for A, Be<,
(2) (4, B) =tr(AB) = (8(4), 8(B)).

Introducing the notation 4, = 11’, 4, = X, V;X;, i =2,..., k,

Wx = Zk;xiAi and W,z = jmiAi7

i=1

where © = (x,, ..., x;) eRF, the covariance matrix V of y and the expected
value of ¥y’ can be represented in the forms V = Wo and E(yy’) = W0,
oe 2, respectively.
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Finally, introducing the notation S(yy') = 2, §(4;) =a;,1 =1, ..., k,
A = [a,, ..., a,] and using (1), it is easily seen that, for oe (2,

k k
E(z) = ) 6i8(4;) = D dia,
i=1 i=1
or, equivalently,
(3) E(z) = Ao.

If y' Dy is a quadratic unbiased estimator of » = ¢'o and if S(D) = d,
then (2) implies that

E(y'Dy) = E(tr(Dyy’)) = E((D,yy">) = <D, E(yy'))
— (d,E(2)) = E(d'?).

This establishes the following result:

LEMMA 1. The parametric function h = ¢’ o is estimable if and only
if there exists a vector deR™ such that Ii(d'z) = h for all oeQ.

Clearly, in view of (3), the parametric funetion b = ¢’ ¢ is estimable
if and only if ce M (T), where T = A" A. Also, d'z is an unbiased estimator
of h = c¢'c if and only if d = f4 g, where f' = ¢'T~A’, while ge M (A)L.

Because of the isomorphism described, the following lemma can be
stated :

LEMMA 2. If b = ¢’ o is an estimable parametric function, then y' Dy
is an unbiased estimator of h if and only if D = I+ @G, where F = W; (T ¢)
and Gesti, while of < of is the linear subspace generated by A,, ..., A,,.

The estimator y' Fy is called the least squares estimator (LSE — for
short) of h.

4. The main results. In this section it is assumed that the random
vectors b,, ..., b, have multivariate normal distributions. Then, in the
framework of the assumptions considered, ¥y ~ N(g,1, Wo), where oe Q.
Also, there hold the relations

Var(y' Py) = 2tr(P WoP Wo)+ 462tr(P WoPA,),
where oe 2 and Pes/, and
(4) Cov(y'Py, y' Ry) = 2tr(PWoRWo)+46itr(PWoRA,),

where ge 2 and P, Re <.

Making use of tr(4B) =tr(BA) ={4,B> and of tr(ad +bB)
= atr(4)+btr(B) as well as of the fact that (4, BY) = (4+4', B)/2
holds for each (n x n)-matrix 4 and each Bes/, formula (4) can be written
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in the form
(5) Cov(y'Py,y' Ry) = 2(WoPWo-+0o;(4,PWo-+WePA,), R,
where ogef.

In the remaining parts of the paper the notation of quadratic sub-
spaces introduced by Secely [3] is essential. In the following definition
of a quadratic subspace as well as some propertics associated with these
subspaces are given:

Definition 4 (Seely [3]). A subspace # of & with the property that
Be# implies B2e# is called a quadratic subspace of .

LEMMA 3 (Seely [3]). Let # be a subspace of </ and let &, be an arbitrary
spanning set for B. Then A is a quadratic subspace of <7 if and only if

(6) A,Be#,>AB+ BA%.

LeMMA 4. Let # be a quadratic subspace of /. Then
(7) A,BeB->ABAc#
and

A,B,CcB=>ABC+CBAcA.

Proof. The first implication is due to Seely and can be found in [3].
The proof of the second implication is as follows:

Let A, B,Ce%#. Then A+Ce#. From (7) it follows that ABA +
+CBCe%# and that (A + C)B(A 4+ C)e#. Since # is a subspace, it follows
from the above-mentioned that 4ABC+ CBA is a member of 4.

Let h be an estimable parametric function.

Definition 5. A quadratic unbiased estimator ' D,y of h is called
uniformly best if Var(y' Dyy) < Var(y’ Dy) for all D such that E(y'Dy) = h
and all oe .

Theorems 1 and 2 given in the sequel provide some properties of
the LSE.

THEOREM 1. Let y ~ N (0,1, Wo), where ce 2, and let h = ¢’ o be an
estimable parametric function. If there exists a uniformly best quadratic
unbiased estimator of h, then this estimator is the LSEK.

Proof. Let y' Dy be a uniformly best quadratic unbiased estimator
of b and let y' Ry be any estimator of zero.

From lemma 2 it follows that 4’ Ry is an estimator of zero if and only
if Res/i-. Now, the Lehmann and Scheffé theorem 5.3 in [2] can be applied
to infer that Cov(y’' Dy, y Ry) = 0 for ResZi and oeQ. Thus, by (5),

(WoDWo+o2(A,DWe+WoDA,), B> =0
for all Res/; and oef.
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Note that WoeDWo-to}(A, DWo+WeDA,) is a symmetric matrix
and, therefore,

WoDWo+oi(A;DWo-+WoDA,)est, for all ge.

In particular, putting ol = 0 and selecting o so that Wo = I it is
easily seen that Des/,. Now, lemma 2 implies that D = F, i.c., y' Dy
is the LSE of h.

THEOREM 2. Suppose that y ~ N(o,1, Wao), where oceQ. For each
estimable parametric function there exists a uniformly best quadratic unbiased
estimator if and only if </ is a quadratic subspace of .

Proof. Necessity. Let o# be the set of all estimable parametric
functions. From lemma 2 it is clear that the mapping ¢: # — ./, defined
by ¢(h) = W (T ¢) is one to one.

Thus, from theorem 1 it follows that

(8) WoDWo+ai(A; DWo+WeDA,)e &, for all Desf, and ceR.
Substituting ¢ = 0 in (8) leads to
(9) WoDWoest, for 2ll 0ef2 and Dess,.
But &, is a subspace of & and, therefore, for all se2 and Des,,
(10) (A, DWo+WoeDA,)esd,.

In particular, putting ¢ =1, D =1 and Wo = 4;+1 for i =2,
..y k—1 in (9) and (10), it is easily seen that, for ¢ =2,..., k-1,

(11) Alest,
and
(12) Ai'Al—i—AlAisdl'

On the other hand, taking D =1 and Wo = A;+ 4,41, 1,j = 2,
...y k—1, formula (9) leads to

(13) A A;+Ajdjesty, 6,5 =2, k=154 #35.

Moreover, from the definitions of 4, and A, it is easily seen that
A} =nd,est; and A} = Iesf,. Now, (11), (12), (13) and (6) imply that
&, 18 a quadratic subspace of «.

Sufficiency. Let &, be a quadratic subspace of «/, hes# and let
y' Dy be the LSE of h. Then (7) implies that WeDWoes/,. On the other
hand, from lemma 4 it follows that A, DWo+ WoDA,eo,. Thus, it is
clear that

2{WeDWo+0}(A4;DWo+WoDA,), RY = Cov(y'Dy,y'Ry) =0
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holds for all Re«i and oeQ. Consequently, from theorem 5.3 in [2],
it follows that y' Dy is the uniformly best quadratic unbiased estimator
of h. This completes the proof of theorem 2.

Example. Let ¥y = (y4,...,¥,) ~N(0;1, 0624, + 0t 4,4 0>-1), where

11’ 0 0 0
Exk kxl Exk kxl
2 = ’ A3= P B
0 0 0 11
Ixk Ixl Ixk 1xl

while k+1 = n.
In this case it is easily seen that

A, A, = A4, = Ocsty,

A A, t A A, = k(A + A, — Aj)est,,

A Ayt A A, = V(A — A, + A;) ety
A% = kAyest,, A2 =1A%s,.

Lemma 3 implies that &/, is a quadratic subspace of .

Moreover, since A4,, A,, A;, I are lineary independent, it follows
from theorem 2 that, for each parametric function b = ¢,0% + cy0% + ;0% +
+e¢,02, where ¢, ¢, ¢s, ¢,e R, there exists a uniformly best quadratic
unbiased estimator.
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R. ZMYSLONY (Wroclaw)

ESTYMACJA KOMPONENTOW WARIANCYJNYCH W MODELACH LOSOWYCH

STRESZCZENIE

W pracy rozwaza sie problem estymacji funkeji paramectrycznych o postaci
clb%+cza§+...+cka,%, gdzie b, jest wartoscia oczekiwang, wspélng dla wszystkich
skladowych wektora losowego y, natomiast of, ..., o} sa komponentami wariancyj-
nymi. Funkcja parametryczna nazywa si¢ estymowalng, jesli istnicje dla niej nie-
obcigzony estymator o postaci y’ Ay, zwany nieobciqzonym kwadratowym estymatorem.

Przy zalozeniu, Zze wektor losowy ma rozklad normalny, podano warunck ko-
nieczny i dostateczny na to, aby dla kazdej estymowalnej funkeji parametrycznej
istnial estymator o jednostajniec najmniejszej wariancji w klasie kwadratowych nic-
obcigzonych estymatorow.



