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The content of this paper is an attempt of proving the recurrence property for the planar
Lorentz process with periodic configuration of scatteres. This model describes the motion of a
point —like particle in the plane among periodically placed scattering bodies. Trying to give an
indirect proof of recurrence we supposed the contrary and gave an upper bound for the measure
of wandering sets of the phase space. Moreover, a weak form of recurrence is also proved.

0. Introduction

The content of this paper is a modest attempt of proving the recurrence
property for the planar Lorentz process with periodic configuration of
scatteres. This model describes the motion of a point-like particle on the
plane R? among twice periodically placed scatterers with smooth boundary.
The motion is linear at unit speed and the reflections at the boundaries of
the scatterers are elastic, i.c. the angle of incidence equals the angle of
reflection. It is a natural requirement to investigate the ergodic properties of
this process with infinite invariant Liouville measure. In this Kyoto lecture
[Sin (1981)] Sinai expressed that the study of the Lorentz process may be
important in the investigations of statistical physics of solid bodies and in the
understanding of certain phenomena concerning heat conduction. Bunimo-
vich and Sinai gave an excellent detailed study of the Lorentz process in [B—
S(1981)]. They proved exponential correlation decay for the velocity of a
particle in the Lorentz gas (this model is the many — particle variant of the
Lorentz process without interaction between the particles) and they also
proved Donsker’s invariance principle for the Lorentz process, i.e. its weak
convergence to a planar Wiener process. Nevertheless, these results do not
answer the question whether the planar Lorentz process is recurrent or not.
This problem seems to be quite hard. One hopes that the answer is

\

[265]



266 TOWARDS A PROOF OF RECURRENCE FOR THE LORENTZ PROCESS

affirmative because of the analogy with the usual symmetric random walk on
the lattice Z2, which walk is, by Polya’s famous theorem, recurrent. In [K-
Sz(1985)] Kramli and Szdsz proved ‘quasi recurrence’ for the Lorentz
process, that is, they proved that for any fixed constant ¢ > 3/2 the process
returns almost surely to the square with edge (log(n)f in the n-th step for
infinitely many natural numbers n.

Let us turn to the exact definitions and notations. We denote the
configuration space by Q, which is the plane R? from which the union of a
system of disjoint convex compact figures is removed. We suppose that these
figures (the so called scatterers) have smooth (say C*®) boundaries. We also
suppose that this system is twice periodic, i.e. there are two lineagly indepen-
dent vectors such that the configuration of scatterers is invariant under the
plane translations by these vectors, and we also suppose that the scatterers
do not accumulate in finite regions. The phase space of the planar Lorentz
process is M = Q xS!, where S! is the space of unit velocity vectors. The
time evolution S* on the space M corresponds to the linear motion at unit
speed and to elastic reflections at the boundary 6Q of Q. (The angle of
incidence equals the angle of reflection.) Finally, the infinite invariant Liou-
ville measure u on M can be given by the formula du = dq'*’ dq'® dw, where
gV and ¢'® are the two place coordinates of the point x =(q, v)€Q

xS8! = M and w is the angle of the velocity vector v.
In Section 1 we prove that the recurrence and the ergodicity of the

dynamical system (M, $', u) are equivalent. The proofs of this section are not
detailed because they are not central to the topic of this paper.

In Section 2 we suppose that the planar Lorentz process is not recurrent
(ergodic). Using this assumption we prove several types of ‘pathological’
behavior of this process. Moreover, a weak version of recurrence is proved.
The main result of this paper is Theorem 2.1, where an upper bound is given
for the measure of a wandering set W of the discrete time version (N, T, v) of
the process (M, S', ). (For definitions cf. Section 1) The optimal upper
bound zero (non-existence of wandering sets) could give us the wanted
recurrence. In the proof of Theorem 2.1 Donsker’s invariance principle is
heavily used. The Kolmogorov property of the partition for Sinai’s billard
system into local stable transversal fibres is also used. (For this property cf.
Section 4 of the fundamental paper [Sin (1970)].) These two basic results
seem to hold, when the dimension of the phase space is arbitrary, but
planarity is very important in our proofs from the point of view of recurren-
ce, because the analogous symmetric random walk on the lattice Z¢ is
transient for d > 3.

In my opinion, a proof of recurrence must be less elementary than my
approach and it needs a better understanding of the analytic behavior of
Sinai’s billiard system. (For example, quantitative properties of its Markov
partition seem to be very important.)
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The numbering of definitions, propositions, theorems, corollaries are
continuous in each section. The first number denotes the number of the
section. (Thus, Proposition 1.3 follows Definition 1.2.)

1. Simple observations: Recurrence and ergodicity of the ’
Lorentz process are equivalent

Let us consider the planar Lorentz process with periodic configuration of
scatterers (for its definition cf. Section 0). For simplicity we suppose that the
scatterers are discs with radius r (0 <r < 1/2) and their centres are the points
of the lattice Z2. Analogous methods can be applied in the general case. We
denote the configuration space by Q and the phase space Q xS' by M. Of
course, Q = |geR?: o(q, Z*) > r) and S! is the space of unit velocity vectors
(0 is the usual Euclidean metric on the plane R?). So we get a dynamical
system (M, §*, u) endowed with the usual (infinite) Liouville measure u for
which du = dg'" dg"® dw, where w is the angle of the unit velocity vector v
and ¢'V, ¢'? are the coordinates of q. (' is the time-evolution of the system,
expressing the motion of a point-particle in Q, moving at unit speed and
colliding elastically at 8Q = {q€R?: o(q, Z*) =r).) We consider, as usual,
the Poincaré mapping of the original dynamical system (M, S', u) in the
following way: The phase space N of the Poincaré mapping is the boundary
of M, ie. N=06Q xS*. For any element qedQ we identify the elements
(g, v;) and (q, v;) of 6Q xS* iff v, is the reflected pair of the vector v, with
respect to the tangent line of 6Q at the point g. In our notation the element
(g, v) e N always means that the vector v is directed inwards the billiard table
Q. We can introduce the coordinates s, « in the space N, where s is the arc-
length parameter of the point q€dQ, measured counterclockwise around a
scatterer, and a is the signed angle between the vectors n(q) and v, where n(g)
is the normal vector of §Q at the point g, which normal vector is directed
inwards the billiard table. (0 <s <2ar, —n/2 < a < n/2) For x=(q, v)eN
let T(x) denote the point of N that represents the next reflection after the
reflection represented by x. (T is the Poincaré mapping or the section
mapping.) So we get the derived dynamical system (N, T, v), where the
infinite invariant measure v satisfies the following equation:

(1) dv =dsdacosa.
The measure v can be derived from p in a natural way, because for every

measurable function f: N —=[0, 1/2—r] and for every measurable subset
A = N we have

2 u(dy) = [ fdv,

A
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where A, = {$'(x): xeA and 0 <t <f(x)}. Now we introduce the following
subsets of N:

&) No» = (g, ) eN: (P —-a)*+(q? b’ =r*} (a,be2).”

Of course, the measure v is invariant not only under the mapping T but
under the plane-translations by vectors (a, b) €Z? as well. Moreover, these
plane-translations commute with the mapping 7. Let us normalize the
measure v in the following way: v(N, ) = 1. Throughout this paper we shall
not distinguish between sets differing from each other by a set of v-measure
zero.

DeriniTiON 1.1. The dynamical system (N, T, v) (or equivalently, the
Lorentz process) is called weakly recurrent iff the set

(4) = 1(g, V) €N: {lgll £ 00 (k > o0), where T*(q, v) := (4, i)}
has positive v-measure.

DeriNniTiON 1.2, The system (N, T, v) is called (as in the case of finite
measures) ergodic iff for every T-invariant set A < N we have either v(4) =0
or v(N—A4)=0.

If the Lorentz process is not weakly recurrent, ie. v(E) =0, then for
almost every trajectory of the dynamics T there exists a unique element of
this trajectory for which the place component g has the smallest distance
from the point (1/2; 0). Consequently, the set

(5) © W=1{q,v)eN: (¢ —1/2*+(¢?®)* < (¢{" —1/2)* +(¢{*)*
for every k # 0}

has the wandering: property, i.e.

6 v(T*W)nT(W)=0(k+#I) and v(N-— Uo T (W)) = 0.

k=—- o

It is clear that in this case the system (N, T, v) is not ergodic. Conse-
quently, ergodicity is a stronger property than the weak recurrence property.

ProposiTION 1.3. Ergodicity and the weak recurrence property of the
dynamical system (N, T, v) are equivalent.

Proof. Suppose that the system (N, T, v) is weakly recurrent. In this case
we have v(E)>0 and E is a Z2?-translation invariant measurable set.
Factorizing the process by Z>-translations, we get a compact Sinai-billiard
system, which is ergodic, as it was proved in [Sin (1970)]. Consequently, we
get the relation v(N—E)=0. Using this fact, we can prove the usual
recurrence property for the system (N, T, v) as it is stated in Poincar€’s
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recurrence theorem for finite measure spaces. To this end, suppose the
contrary of this property, that is, the existence of a measurable set 4 = N
such that for some measurable subset Bc A we have v(B)>0 and
v(T*(B) nA) = 0 for every positive integer k. Thus a fortiori

7 v(T*(B) n T'(B)) = 0

for every pair of integers k # 1. Using the equation v(N—E)=0 and
choosing a subset of B instead of B we can assume that, iterating the
mapping T, every point of B hits the set N,, infinitely many times. (Here a
and b are appropriate fixed integers.) Choosing again an appropriate subset
of B and taking a suitable image of it under an iteration of 7, we can assume
that B< N,, and v(B) > 0. Now let C = {xeN,,: x returns to N,, infinite-
ly many times}. If F: C = C denotes the ‘first return mapping’ to the set
N,,, then F is an invertible v-preserving transformation of the set C onto
itself, and, in virtue of (7), we have v(F*(B) nF'(B)) =0 for every pair of
integers k # I, which contradicts to the fact v(B) > 0, so it proves the usual
recurrence for (N, T, v).

We want to prove the ergodicity of the system (N, T, v). To that end, it
is enough to prove that the dynamical system (N, o; F; v[ Ny o) is ergodic,
where the letter F denotes again the ‘first return mapping’ to the set N ,.
Let f: Noo =R be any continuous function. By the pointwise ergodic
theorem, the functions

fe():= lim (I/n)X {f(F*(x): 0 < k <n},

n—+ o

fo(x):= lim (I/n)Z {f (F*(0): —n <k <0

n—+ o

exist and they are equal for almost every xeN,,. From the paper [Sin
(1970)] or from [B-S(1973)] we know that for almost every xeN,, there
are local stable and local unstable transversal fibres of the compact billiard
system (which can be obtained from the Lorentz prccess by factorizing it by
Z2-translations), containing the point x. The images of a local stable trans-
versa] fibre y under the iterated mappings F* are shrinking to zero, i.e.
d(F*(y)) =0, where d () denotes the diameter of the set ¢ in the phase space.
This fact and the uniform continuity of the function f imply that either the
function f, is equal to a constant on y or it is not defined in any point of 7.
An analogous statement holds for local unstable transversal fibres and for
the function f_. Thus the so called fundamental theorem for dispersing
billiards (cf. [B-S (1973)]) and the absolute continuity of the partitions of the
phase space into transversal fibres imply that f, is constant almost everyw-
here on the space Ng,, that is, the dynamical system (Nyqo; F; v [NO o) 1S
ergodic. Proposition 1.3 is proved.
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2. On the recurrence of the Lorentz process

In this section we shall modify slightly the model studied in the previous
section. We assume that the moving particle cannot take an arbitrarily long
walk on the billiard table without reflection at the boundary. This property
is usually called the ‘finite horizon property’. To establish this property we
can consider the following, modified configuration of scatterers: The scatte-
rers are the discs of radius r, with centres in the lattice Z? and the discs of
radius r, with centres in the translated lattice Z2+4(1/2; 1/2), such that

8) J2/4<r, <12 and 172 <r +r, < J2/2.

(Of course, we could investigate any twice periodic system of convex,
compact scatterers with smooth boundaries and finite horizon.) Let h be the
maximum of all lengths of paths without collision. We keep the notation
(N, T, v) for this modified dynamical system. The new definition of the cells
N,, (a, beZ) will be the following:

(9) Na,b = {(q, U) eN: (q(l)_a)2+(q(2)_b)2 = rf or
(@"—a—1/22+(q?-b—1/2* =r}}.

The standard normalization of v is again v(N,,;) = 1. The conditions in (8)
easily imply that

(10) T(Nuy) < U (Niit k—al < 2, [I-b]'< 2}.

In the remaining part of this paper we assume, as an indirect assump-
tion, that

(AS) the system (N, T, v) is not weakly recurrent.

Using this condition some ‘pathological’ properties of the process (N, T, v)
and some weak versions of recurrence will be proven, approximating a hoped
—for contradiction.

Let us consider the wandering set W defined by (5) in Section 1. Our
previous indirect assumption guarantees the existence of such a set. Thus the
measure-preserving mapping T translates the set T*(W) simply by one step,
transforming it onto the set T**!(W). Of course, the system (N, T,v)
determines the measure of all such wandering sets uniquely (this is a very
easy exercise). We can ask whether this measure is finite or not and, in the
first case, what upper bound can be given for this measure. The following
theorem gives an answer:

THEOREM 2.1. v(W) < 0, moreover, v(W) < 8.3766% h, where a* (0 < o
< o0) is the diffusion coefficient of the Lorentz process, the existence of which
was proven by Bunimovich and Sinai in [B-S(1981)], and h is the free path
length defined at the beginning of this section.
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Proof. We shall use Donsker’s invariance principle for the planar
Lorentz process with periodic configuration of scatterers and with finite
horizon. This result has also been proved in the paper [B-S(1981)]. It states
that the sequence of the processes q,,/ \/; (0 <t < 1) converges weakly to the
two dimensional Wiener process W, (t) (0 <t < 1) with variance ¢? at time 1,
where 0 < 62 < co. Here the process q,,,/\/; is started from a random (with
respect to the measure v [ N o) point (go, vo) €Ny, and g, denotes the place
component of the point S$™(q,, vo) EM.

Six positive parameters will be used in the proof: p (< 1), K, a, ¢ (j
=1, 2, 3). The actual values of them will be chosen optimally at the end of
this proof. The parameters p and K are chosen in such a way that

(11) P(IW,(0)|l < K for every t,0<t<1)>p.

(Throughout this paper the norm ||(¢'", ¢'?)|| of a vector from R? is defined
by max {|q'V|, |g'®|}.) For a given k, I€eZ and (q, v) €N, there is a unique
Z*-translation carrying T(q, v) into N, ,. Denote by F, (g, v) this translated
copy of T(g,v). Thus F,, is a v-preserving mapping of N, onto itself, and
for every pair (k,l)eZ?> we get a compact Sinai-billiard system
(Nws; Fips v Ny with finite horizon. Let us introduce the following de-
finitions:

(12&) w/k,l:= Wme,l;

(12b) AL = 1a, V) eN: llgnll <(1+e) K /nh

for every integer m, 0 < m < n};

(120  B@:= {g, 0 eN,: o(T"(FP(q, v)) <(1+&,+¢,).K /nh

for every integer m, 0 < m < n} (k, leZ; neN).

Here r(n):= [{/—r;] (the integer part of 2/5), for any element (g, v)€eN,, the
symbol ¢(g, v) denotes the number max }|a, |b|], and, finally, g,, is the place
component of the element T™(q, v) e N. We want to prove that v(W) < aK2.
Let us suppose the contrary: v(W) > aK? In this case there is a positive
integer L such that

(13) ZvW: k<L, || <L) =>aK?.
The invariance principle and (11) easily imply that

(14) liminfv(A4{) > p.

n—+ o

Although the process starts from the cell N, , instead of the cell N o,
the estimate in (14) remains valid, because in the definition of A{"} we have
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written (1+¢,)K V@ instead of K V[n_}_z. It follows directly from (12) that

(15) FLi®™(A®) < BE  for n>no(k, I).
Now (14) and (15) give us
(16) liminfv(B{) > p.

n—+

We want to prove the approximative independence of the sets BY) and
Wi, for large n. To this end, let us take a closer look at the dynamical system
(Nisi; Fri; v Ni). We know from [Sin(1970)] that for almost every point
x €N, there are local stable and local unstable transversal fibres containing
the point x. Let ), be the following o-algebra of measurable sets in the
fundamental set N, ;:

Hia:= A < Ny,: there is a measurable set A" = N, such that
v({(A—A)u(A'—A)) =0 and A’ consists of entire local stable fibres].

At the end of Section 4 in [Sin(1970)] it is proved that the o-algebra
A, is a Kolmogorov o-algebra of the system (N, ,; Fi;;v[ Ny, ie. it
satisfies the following three conditions:

() Fea( A 2 K
(i) the o-algebra (\Fj (¥, consists of the sets of measure O or 1;

(iii) the o-algebra generated by the algebra () Fj (X, ) contains all

measurable subsets of N, ;.

It is important for us that the set Fip (B") is the union of a family of
entire local stable transversal fibres. Indeed if the points (g, v;) €N, and
(92, v2) €N, are contained in the same local stable transversal fibre then for
every non-negative integer m the elements T™(q,, v,) and T™(q,, v,) belong
to the same scatterer, so ¢(T™(q,, v;)) = ¢(T™(q2, v;)). Thus the set B{Y
belongs to the o-algebra F, /™ (., ) and this gives us (using properties (i}-
(iif))

(" lim [v (B} 0 W, ) —v(BE) v(W,)] = 0.
From the relations (16) and (17) it follows that

(18) VBY W) = (W) for n>ny(k, ).
Set n, :=max !n, (k, ]): 'Ikl < L |l <L}. From (13) and (18) we get

(19) v(U{BM AW, [kl <L, )| <L))>paK? for n>n,.
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Let us observe that for n > n,(k, I) the set-inequality B{") = C{") holds,
where

(20) Citi={(@, Y EN: llgmll <(1+&,+e2+83)K\/n
for every integer m, 0 < m < n}. ,

Here we have used the finite horizon property (10). From the last set
inequality and from (19) we get

(21) V(UG W Ik < L, il

<
where n, :=max {n,(k, ): |k| <L, |l| <
set W and (21) give us

L}) > prK?* for n 2= n,,
L}. The wandering property of the
(22) v[ U T"(C& " Wi)] = paK?n
m=1 I'k
l
for every integer n > n,. The definition of the sets C{"} and (22) give us

(23) 4h(1+¢,+¢,+¢3) = pa

Y D)

L
L

Remember that the parameter a occurs in the indirect assumption
v(W) > aK? before the formula (13). From (23) we get contradiction if
px > 4h; we must choose the parameters ¢; small enough, depending on pa.
Thus

(24) V(W) < 4(Ko(p))* b/p

where K, (p) is the infimum of the numbers K for which (11) is true, i.e.

(25) P(IIW, (@)l < Ko(p) for every t,0<t<1)=p.

Since the two-dimensional Wiener process W, (t) consists of two indepen-
dent coordinate Wiener processes with variance ¢2/2, we get from (25) that

(26) L(\/2Ko(p)/o) = /P

where L(x) is the distribution function of the maximal absolute value of the
standard one-dimensional Wiener process running from time O till time 1.
Now (24) and (26) imply that

(27) v(W) < 2(/2Ko (9)/0)? (L(y/2 Ko (P)/0)) " 6% h

The parameter p can be chosen arbitrarily from the interval (0, 1), so, in
virtue of (26), the parameter K,(p) can also be chosen arbitrarily from the
interval (0, o0). The function L(x)/x takes its maximal value near x = 1.5076
(this can be obtained with the help of tables for the function L(x)), and

taking V/5 K, (p)/o = 1.5076 we can write into (27) the minus second power

18 — Banach Center t. 23
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of the number L(1.5076)/1.5076, and we get the required upper bound for
v(W), so Theorem 2.1 is proved.

In the remaining part of this section we prove that the planar Lorentz
process returns to special sets of cells even if this process is not recurrent
(ergodic). To this end, we need a technical modification in the definition of
the cells N,,. Namely, set

(28) *:=1{q, v)eN: a<q? <a+1 and b<q? <b+1].

THEOREM 2.2. For almost all points x € N and for every integer m there are
two strictly increasing sequences ki <k, <ky <...and |, <l, <ly <... of
natural numbers such that

(i) TV()el Nt neZ) (i=1,2,..),
(i) TY(x)e IN%,: neZ) (j=1,2,..),
(iii) g (T (x)) = + o0 (j = 0),
(iv) ¢?(TY(x)) = — o0 (j = 0).

Of course, an analogous statement is true for negative iterates of T and for
horizontal strips of cells N} .

Proof. Suppose that the set A of the points x € N for which the statement
of the theorem is not true has positive v-measure. In virtue of (8) and the
definition of the sets Nj, we have

(29) T(NZp) = U INg: [k—al < 1, JI-b] < 1,
and our assumption (AS) means that for almost every (q, v)eN
(30) llgll =0 (k = o0),

where (q,, v,) = T*(q, v). Obviously, A = A, U 4,, where the set 4, consists
of those points x € N for which there exists an integer m such that there is no
appropriate sequence (k;) and the set A, contains those points xeN for
which there exists an integer m such that there is no appropriate sequence
(). Since A, and A, are T-invariant and Z3-translation invariant sets, using
again the factorization by Z2-translations we get that either v(4,) =0 or
v(N—A,) =0, and the analogous statement is true for 4,. In virtue of the
relation v(A4) > 0 and of the symmetry we can assume that v(4,) > 0, i.e. v(N
—A,;) = 0. Since our system is symmetric with respect to the x-axis, we have
the relation v(N — 4,) = 0 as well. Consequently, for almost every point x e N
there are integers m; and m, such that the set

B, (x):= {neZ: 3keN such that T*(x)eN% ,}

is bounded from above, and the analogous set B,,(x) is bounded from
below. We claim that the sequence (gi!’(x)) is either bounded from below or
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it is bounded from above. (Here g{’(x) is the first coordinate of the place
component of the point (g, v) = T*(x).) Clearly, we can assume that
m; < m,. The semi-boundedness properties of the sets B, (x) and B,,(x)
and (29) imply that from a large threshold K(x) the trajectory {T*(x): k
> K (x)} cannot go from the domain |J {N¥,: m <m;, neZ} to the domain
U IN¥,: m>m,, neZ} (or vice versa) without hitting the finite set of cells
U {N%o: m;y <m <m,}. Thus the sequence (g{"’ (x)) must be either bounded
from below or bounded from above by (30). Set

B, = {xeN: (g{’(x)) is bounded from below}
and
B, = {xeN: (gi"(x)) is bounded from above}.

We have just seen that v(N—(B, U B,))=0, so one of the numbers
v(B;) and v(B,) is positive. By symmetry we can assume that v(B;) > 0.
Because of the T invariance and the Z2-translafion invariance of the set B,
we have v(N—B;) =0, and by the symmetry with respect to the y-axis we
have v(N—B,) = 0. The symmetry with respect to the line y = x gives us
that the trajectory {T*(x): keN) of almost all points xeN is bounded,
which contradicts to the original assumption (AS). Consequently, the indirect
assumption v(4) > 0 leads to contradiction, so Theorem 2.2 is proved.

COROLLARY 2.3. Let ay €N be a fixed natural number. Let us factorize the
Lorentz process in such a way that (q,, vy) ~ (42, v;) iff 9, —q, = (kay; 0) for
an appropriate integer k and, moreover, v, = v,. We claim that this new billiard
system on cylinder surface is recurrent. (It must also be ergodic, cf. Section 1))

Proof. Immediate consequence of Theorem 2.2.

Note. The generic translator vector (agy, 0) in Corollary 2.3 can be
replaced by any non-zero vector of Z2. We have to make minor modifica-
tions only in the proof of Theorem 2.2.

In the remaining part of this paper we shall briefly discuss some
connections between the dynamics T and the ZZ2-translations. Let E,,,
denote the plane-translation on the phase space N defined by the vector
(m, nreZ%. Of course, E,., is a v-preserving action of the group Z2 on the
space N, which commutes with the dynamics T. For (m, n)€Z? let E,, ,: W
— W be the following, v-preserving mapping of the wandering set W onto
itself:

(1) Epn(w):= T*(E,,(W)eW (weW),

where the integer exponent k is chosen in such a unique way that T*(E,, ,(w))
lies in the set W again (for the definition of the set W see (5) in Section 1).
Using the commutativity between E. , and T, it is easy to see that E,, , is a
v-preserving action of the group Z? on the finite measure space (W, v).
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CoroLLARY 24. For every non-zero vector (m,n)eZ? the mapping
E,.. W—>W is ergodic.

Proof. Let A — W be an E,, ,-invariant measurable set. The T-invariant
set {J {T*(A4): keZ) must be E,, ,-invariant. Factorizing the process (N, T, v)
by the plane translation with the vector (m, n), Corollary 2.3 (generalized
along the lines of the Note after it) gives us that either v({J {T*(4): k€Z})
=0or v(N—{J {T*(4): keZ})=0. In the first case we obtain that v(4) =0
and in the second case v(W—A) =0.

Acknowledgement. Thanks are due to A. Kramli and D. Szasz for the
initiation of the problem of recurrence.
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