VOL. XXII 1970 FASC. I

SUR LA LIMITATION DES ÉLÉMENTS DE LA MATRICE FONDAMENTALE D'UN SYSTÈME PARABOLIQUE

PAR

J. CHABROWSKI (KATOWICE)

Le but de cette communication est de montrer que l'estimation d'en bas de la solution fondamentale de l'équation parabolique établie par Besala dans [2] (voir aussi [1], lemme 2) reste valable pour les éléments de la matrice fondamentale du système parabolique de la forme

$$(1) L^{k}(u^{1}, ..., u^{N})$$

$$= \sum_{i,j=1}^{n} a_{ij}^{k}(t, x) u_{x_{i}x_{j}}^{k} + \sum_{i=1}^{n} b_{i}^{k}(t, x) u_{x_{i}}^{k} + \sum_{l=1}^{N} c_{l}^{k}(t, x) u^{l} - u_{t}^{k} = 0, \quad k = 1, ..., N$$

$$(a_{ij}^{k} = a_{ji}^{k}; i, j = 1, ..., n; k = 1, ..., N).$$
Admettons les hypothèses suivantes:

I. Les coefficients du système (1) sont bornés et hölderiens par rapport au couple de variables (t,x) dans $H=(0,T]\times E_n$ (E_n étant l'espace euclidien à n dimensions) et il en est de même de toutes les dérivées du premier ordre des coefficients $b_i^k(t,x)$, où $i=1,\ldots,n$ et $k=1,\ldots,N$, par rapport aux variables x_j , où $j=1,\ldots,n$, et des dérivées du second ordre des coefficients $a_{ij}^k(t,x)$, où $i,j=1,\ldots,n$ et $k=1,\ldots,N$, par rapport aux mêmes variables.

II. Les formes quadratiques

$$A^k(\xi) = \sum_{i,j=1}^n a_{ij}^k(t,x) \, \xi_i \, \xi_j, \quad ext{ où } k = 1, \ldots, N,$$

sont uniformément définies positives, c'est-à-dire qu'il existe un nombre a>0 tel que $A^k(\xi)\geqslant a\,|\xi|^2$ pour tout couple $(t,x)\,\epsilon H$ et pour tout vecteur $\xi=(\xi_1,\ldots,\,\xi_n)$.

III.
$$c_l^k(t,x) \geqslant 0$$
 pour $(t,x) \in H$ et $l, k = 1, ..., N$ où $l \neq k$.

Il résulte des hypothèses I et II qu'il existe la matrice des solutions fondamentales $\{\Gamma_{pq}(t, x; \tau, y)\}$ où $p, q = 1, ..., N, (t, x), (\tau, y) \in H$ et $t > \tau$

(voir [4], chapitre 9, ou bien [5]). Grâce à l'hypothèse III, tous les éléments $\Gamma_{pq}(t, x; \tau, y)$ sont non négatifs (voir [3], théorème 2.1).

THÉORÈME. Les hypothèses I, II, et III étant satisfaites, l'inégalité $c_q^p(t,x)>0$ étant admise dans H pour certains indices $p\neq q$ et (t,\overline{x}) étant un point arbitraire de H, il existe pour tout $\varepsilon>0$ des constantes positives $\Lambda=\Lambda(\varepsilon,\overline{x})$ et $\mu=\mu(\varepsilon,\overline{x})$ telles que

(2)
$$\Gamma_{pq}(t, \overline{x}; \tau, y) \geqslant \Lambda \exp(-\mu |\overline{x} - y|^2)$$
 pour $(\tau, y) \in [0, t - \varepsilon] \times E_n$. Démonstration. Considérons le système adjoint à (1),

$$(3) \qquad \hat{L}^{k}(v^{1}, \ldots, v^{N})$$

$$= \sum_{i,j=1}^{n} \frac{\partial^{2}}{\partial y_{i} \partial y_{j}} \left[a_{ij}^{k}(\tau, y) v^{k} \right] - \sum_{i=1}^{n} \frac{\partial}{\partial y_{i}} \left[b_{i}^{k}(\tau, y) v^{k} \right] + \sum_{l=1}^{N} c_{k}^{l}(\tau, y) v^{l} + v_{t}^{k} = 0,$$
où $k = 1, \ldots, N,$

et posons

$$V(t, \overline{x}; \tau, y) = \exp\left(-\nu \frac{|\overline{x}-y|^2}{t-\tau-\varepsilon'}\right)$$

pour $(\tau, y) \in [0, t-\varepsilon') \times \{|\overline{x}-y|^2 > R\}$, où $\varepsilon' = \varepsilon/2$ et R > 0. On vérifie par un simple calcul que

$$\begin{split} (4) \qquad & \mathcal{L}^q(V) = \sum_{i,j=1}^n \frac{\partial^2}{\partial y_i \partial y_j} \big[\, a_{ij}^q \, V \big] - \sum_{i=1}^n \frac{\partial}{\partial y_i} \big[\, b_i^q \, V \big] + c_q^q \, V + V_t \\ = & \frac{V}{(t-\tau-\varepsilon')^2} \bigg[(t-\tau-\varepsilon')^2 \sum_{i,j=1}^n \frac{\partial^2 \, a_{ij}^q}{\partial y_i \partial y_j} + 2 v (t-\tau-\varepsilon') \sum_{i=1}^n \frac{\partial \, a_{ij}^q}{\partial y_i} \, (\overline{x}_i - y_i) + \\ & + 4 v^2 \sum_{i,j=1}^n a_{ij}^q (\overline{x}_i - y_i) (\overline{x}_j - y_j) - 2 v (t-\tau-\varepsilon') \sum_{i=1}^n a_{ii}^q - \\ & - 2 v (t-\tau-\varepsilon') \sum_{i=1}^n b_i^q (\overline{x}_i - y_i) - (t-\tau-\varepsilon')^2 \sum_{i=1}^n \frac{\partial b_i^k}{\partial y_i} + \\ & + c_q^q (t-\tau-\varepsilon')^2 - v \, |\overline{x}-y|^2 \bigg]. \end{split}$$

Il existe en vertu des hypothèses I et II des costantes C_1 , C_2 et C_3 telles que

$$\mathscr{L}^{q}(V) \geqslant \frac{V}{(t-\tau-\varepsilon')^{2}} \left(C_{1}T^{2} + C_{2}T\nu + C_{3}T\nu \left| \overline{x} - y \right| + 4\nu^{2}a \left| \overline{x} - y \right|^{2} - \nu \left| \overline{x} - y \right|^{2} \right);$$

en prenant un ν suffisamment élevé, on trouve donc que $\mathcal{L}^q(V) \geqslant 0$ pour $(\tau, y) \in [0, t - \varepsilon') \times \{|\overline{x} - y| > R\}$. L'inégalité $c_q^p(t, x) > 0$ dans H entraîne

 $\Gamma_{pq}(t,x;\tau,y)>0$ pour $t>\tau$ (voir [3], corollaire 2.3), d'où

$$\inf \varGamma_{pq}(t, \bar{x}; \tau, y) = \varLambda(\varepsilon, \bar{x}) > 0 \quad \operatorname{pour}(\tau, y) \in [0, t - \varepsilon') \times \{|\bar{x} - y| \leqslant R\}.$$

La suite des fonctions $\{\Gamma_{p1},\ldots,\Gamma_{pN}\}$ satisfaisant au système (3), la fonction

$$W(\tau, y) = \Gamma_{pq}(t, \overline{x}; \tau, y) - \Lambda V(t, \overline{x}; \tau, y)$$

satisfait aux conditions suivantes:

$$1^{o} \mathscr{L}^{q}(W) = -\sum_{l \neq q} c_{q}^{l} \Gamma_{pl} - \Lambda \mathscr{L}^{q}(V) \leqslant 0 \quad \text{pour} \quad (\tau, y) \, \epsilon[0, t - \varepsilon') \times 0$$

$$\times \{|\overline{x}-y|>R\},$$

$$2^{\mathbf{o}}\lim_{(au,y) o(t-s',\zeta)}W(au,y)\geqslant 0 ext{ pour chaque } \zeta ext{ tel que } |\overline{x}-\zeta|\geqslant R,$$

$$3^{\circ} \ W(\tau, y) \geqslant 0 \ \text{pour} \ (\tau, y) \epsilon[0, t - \epsilon') \times \{|\overline{x} - y| = R\}.$$

On a d'après le principe de l'extremum

(5)
$$W(\tau, y) \geqslant 0$$
 pour $(\tau, y) \in [0, t - \varepsilon') \times \{|\overline{x} - y| \geqslant R\}$.

En particulier, (5) est vrai pour $(\tau, y) \in [0, t-\varepsilon) \times \{|\overline{x}-y| \geqslant R\}$ et alors $t-\tau-\varepsilon' \geqslant \varepsilon/2$. En posant donc $\mu = 2\nu/\varepsilon$ dans (5), on a l'inégalité (2), ce qui achève la démonstration.

Remarque. Il résulte du théorème 2.3 de [3] que $\Gamma_{qq}(t,x;\tau,y)$ $\geqslant \Gamma_q(t,x;\tau,y)$ pour $t>\tau$ et pour $x,y\in E_n$, où Γ_q est la solution fondamentale de l'équation $\mathscr{L}^q v=0$. La fonction Γ_q satisfaisant à la condition du type (2) (voir [2] ou [1], lemme 2), la condition analogue reste valable pour la fonction $\Gamma_{qq}(t,x;\tau,y)$.

TRAVAUX OITÉS

- [1] D. G. Aronson and P. Besala, Uniqueness of positive solutions of parabolic equations with unbounded coefficients, Colloquium Mathematicum 18 (1967), p. 125-135.
- [2] P. Besala, On certain property of the fundamental solution of a linear parabolic equation the last coefficient of which is unbounded, Bulletin de l'Académie Polonaise des Sciences, Série de sciences mathématiques, astronomiques et physiques, 9 (1963), p. 155-158.
- [3] J. Chabrowski, Les solutions non négatives d'un système parabolique d'équations, Annales Polonici Mathematici 19 (1967), p. 193-197.
- [4] A. Friedman, Partial differential equations of parabolic type, Prentice-Hall 1964.
- [5] W. Pogorzelski, Étude de la matrice des solutions fondamentales du système parabolique d'équations aux dérivées partielles, Ricerche di Matematica 7 (1958), p. 153-185.

Reçu par la Rédaction le 1. 10. 1968