ANNALES
POLONICI MATHEMATICI
XX (1968)

On a case of mixed inequalities between solutions of first order partial differential equations

by W. Pawelski (Gdańsk)

In part IV of paper [1] we considered the mutual position of two solutions $u(x, y_1, ..., y_n)$ and $v(x, y_1, ..., y_n)$ of the partial differential equation

(1)
$$\frac{\partial z}{\partial x} = f\left(x, y_1, \dots, y_n, z, \frac{\partial z}{\partial y_1}, \dots, \frac{\partial z}{\partial y_n}\right).$$

The solutions were supposed to be defined in the set D determined by the inequalities

(2)
$$|x-x_0| < a$$
, $|y_i-y_i^0| \le a_i-M|x-x_0|$, $i=1,...,n$,

where

$$a > 0$$
, $M > 0$, $a_i > 0$, $a < a_i/M$.

Let \bar{G} be the intersection of D with the plane $x = x_0$. In Theorem 5 of [1] it is assumed that $u \overset{>}{(<)} v$ on a part of \bar{G} while u = v on the remaining part. Thus, in Theorem 5 of [1], the inequality $u \overset{>}{(<)} v$ is assumed to hold on the whole domain \bar{G} .

In the present paper we extend the Theorem 5 of [1] to the case of mixed inequalities assuming that \overline{G} is divided into three parts such that $u \stackrel{>}{\underset{(<)}{}} v$ on one part, $u \stackrel{>}{\underset{(>)}{}} v$ on the second part and u = v on the remaining part of \overline{G} . The first two parts are assumed to be partitioned off from each other by the part where u = v.

We shall only deal with the case where together with the relation u = v also the relations $u_{yi} = v_{yi}$ (i = 1, ..., n) are satisfied in the same part of \bar{G} .

Here as in Theorem 5 of [1] we suppose that the solutions u and v are generated by characteristics according to the definition given by J. Szarski ([5], p. 2-3).

In contrast to the assumption (δ) in [1] (p. 322) we do not assume in the present paper that the curves C which are the projections of the characteristic on the plane $x, y_1, ..., y_n$ reach the boundary of a domain D_1

containing a closed domain $\overline{\Delta}$ (specified in assumptions (β) of Theorem 1 of the present paper as well as in Theorem 5 of [1]).

This property follows from Theorem 2 of paper [2].

Theorem 2 of [2] and a lemma from which the theorem follows immediately will be stated without proof in the first part of the proof of the following main

THEOREM 1. We make the following assumptions:

(a) The function $f(x, y_1, ..., y_n, z, q_1, ..., q_n)$ and its first derivatives with respect to $y_1, ..., y_n, z, q_1, ..., q_n$ are continuous in a domain \mathcal{M}_1 (of the (2n+2)-dimensional space) whose projection on the (n+1)-space $x, y_1, ..., y_n$ covers the set D defined by inequalities (2). The derivatives f_{y_i}, f_z, f_{q_i} satisfy in \mathcal{M}_1 a Lipschitz condition with respect to $y_1, ..., y_n, z, q_1, ..., q_n$ and the inequalities

$$|f_{q_i}| < M, \quad i = 1, ..., n,$$

are fulfilled.

The solutions $u(x, y_1, ..., y_n)$ and $v(x, y_1, ..., y_n)$ are of class C^1 (it would be sufficient to assume that these solutions possess Stotz's differentials on the side surface of D and the continuous derivatives u_{y_k}, v_{y_k} (k = 1, ..., n) in the interior of D) and their elements of contact belong to \mathcal{M}_1 . Moreover, the solutions u and v are generated by characteristics.

- (\beta) $\overline{\Delta}$ will stand for the closed subdomain of D for which $|x-x_0| \leqslant c$, where 0 < c < a, and \overline{G}_0 for the intersection of $\overline{\Delta}$ with the plane $x = x_0$.
- (γ) Let G_1 and G_2 denote n-dimensional domains such that $\overline{G}_1 \subset \overline{G}_0$, $G_2 \subset G_1$ and let B_0 , B_1 , B_2 be the boundaries of G_0 , G_1 and G_2 respectively.
- (8) Denote by P a point lying on a characteristic generating the solution u or v. Let C denote the curve in $\overline{\Delta}$ which is the projection on the plane $x, y_1, ..., y_n$ of the characteristic issuing from such a point $P \in \mathcal{M}_1$ that the projection Q of that point belongs to $\overline{\Delta}$.

Under these assumptions we have: 1° If

(3)
$$u(x_0, y_1, ..., y_n) = v(x_0, y_1, ..., y_n)$$
 in $\bar{G}_1 - G_2$

and

(4)
$$u(x_0, y_1, ..., y_n) \stackrel{>}{(<)} v(x_0, y_1, ..., y_n) \quad in \quad \overline{G}_0 - (\overline{G}_1 - G_2)$$

then

$$u(x, y_1, ..., y_n) = v(x, y_1, ..., y_n)$$
 in $\bar{\Delta}^{\bullet}$

and

(5)
$$u(x, y_1, ..., y_n) \gtrsim v(x, y_1, ..., y_n) \quad in \quad \bar{\Lambda} - \bar{\Lambda}^*$$
,

where \bar{A}^* is a closed set generated by curves C which correspond, according to assumption (8), to characteristics issuing from all the points $(Px_0, y_1, ..., y_n, y_n, ..., y_n)$

 $u(x_0, y_1, ..., y_n), u_{y_1}(x_0, y_1, ..., y_n), ..., u_{y_n}(x_0, y_1, ..., y_n)$ such that their projections $Q(x_0, y_1, ..., y_n)$ belong to $\overline{G}_1 - G_2$ and satisfy the relation (3) (if $\overline{G}_2 \subset G_1$, then $\overline{\Delta}^*$ is a closed domain).

The set $\overline{\Delta} - \overline{\Delta}^*$ is the union of two sets $\hat{\Delta}_1$ and $\hat{\Delta}_2$, where $\hat{\Delta}_2$ is a set generated just as the set $\overline{\Delta}^*$ by curves C belonging to $\overline{\Delta}$ and issuing from the points of G_2 .

$$2^{\circ}$$
 If $u(x_0, y_1, ..., y_n) = v(x_0, y_1, ..., y_n)$ in $\bar{G}_1 - G_2$, $u(x_0, y_1, ..., y_n) \stackrel{>}{(<)} v(x_0, y_1, ..., y_n)$ in $\bar{G}_0 - \bar{G}_1$

and

$$u(x_0, y_1, ..., y_n) \stackrel{\leq}{(>)} v(x_0, y_1, ..., y_n) \quad in \quad G_2$$

then in the case of $\bar{G}_2 \subset G_1$ we have

(6)
$$u(x, y_1, ..., y_n) = v(x, y_1, ..., y_n) \quad \text{in} \quad \bar{\Lambda}^*,$$

$$u(x, y_1, ..., y_n) \gtrsim v(x, y_1, ..., y_n) \quad \text{in} \quad \hat{\Lambda}_1$$

and

$$u(x, y_1, ..., y_n) \leq v(x, y_1, ..., y_n)$$
 in $\hat{\Delta}_2$,

where the sets $\bar{\Delta}^*$, $\hat{\Delta_1}$ and $\hat{\Delta_2}$ are defined in the same manner as in 1°.

In the case where $G_2 \subset G_1$ conclusion 2° is also valid if we suppose additionally that at any point of the set $\overline{G}_1 - G_2$ the equalities

(7)
$$u_{y_i}(x_0, y_1, ..., y_n) = v_{y_i}(x_0, y_1, ..., y_n), \quad i = 1, ..., n,$$
 are fulfilled.

Remark 1. The curves C in 1° corresponding to solutions u or v may be different but they always form the same domain $\Delta_2 = \hat{\Delta}_2 - F'\hat{\Delta}_2$, just as in the case of Δ_1 in Theorem 5 of [1]. Furthermore $\hat{\Delta}_1 = \bar{\Delta} - (\bar{\Delta}^* + \hat{\Delta}_2)$, where $\Delta_1 = \hat{\Delta}_1 - F'\hat{\Delta}_1$ is also a domain. Observe that the envelope Ω_1 of the domain $\bar{\Delta}^* + \hat{\Delta}_2 - F'(\bar{\Delta}^* + \hat{\Delta}_2)$ generated by curves C issuing from the boundary B_1 and contained in $\bar{\Delta}$ is the common part of the boundaries of $\bar{\Delta}^*$ and $\bar{\Delta}_1$ while the envelope Ω_2 of the domain Δ_2 generated by curves C issuing from the boundary D_2 is the common part of the boundaries of $\bar{\Delta}^*$ and $\bar{\Delta}_2$. (For a precise definition of the envelope Ω see [1], Lemma 2, p. 314.)

Remark 2. In the last case of conclusion 2° of Theorem 1, i.e. $G_2 \subset G_1$, it is sufficient to assume that the relations (7) hold for all the points of $B_1 \cdot B_2$ (if $B_1 \cdot B_2$ is not empty) for which there exist neighbourhoods containing no interior points of $\bar{G}_1 - G_2$.

However, it is easy to see that this assumption is equivalent to condition (7), because the derivatives u_{v_i} and v_{v_i} (i = 1, ..., n) are con-

tinuous. If $G_1 = G_2$, relation (7) should be supposed at each point of the boundary $B_1 = B_2$, for the set $\bar{G}_1 - G_2 = B_1$ has no interior points.

Remark 3. If we assume in addition that the weak inequality $u \ \stackrel{>}{\underset{(\leqslant)}{}} v$ holds for the points of the boundary B_0 , then conclusions 1° and 2° of Theorem 1 do not change essentially. In this case inequalities (5) and (6) will be satisfied at all the points of the set $\hat{\Delta}_1$ which are different from those points of B_0 where u = v. This follows directly from Theorem 2 of [4].

Proof of Theorem 1. The proof consists of two parts. In the first part (I) we state Theorem 2 of [2]. From this theorem and from assumptions (α) , (β) and (δ) of our Theorem 1 we deduce that also assumption (δ) of Theorem 5 of [1] is fulfilled. This assumption (δ) is needed since in [1] we have made use of Lemma 2 of [1] in the proof of Theorem 5. The latter theorem will be used to deduce conclusion 1° of our Theorem 1.

In the second part (II) of the proof assertions 1° and 2° of Theorem 1 are proved. The proof of assertion 2° is reduced to the proof of assertion 1° in the same manner as has been done for 3° in Theorem 1 of [3].

I. Theorem 2 and Lemma 1 of [2] from which Theorem 2 follows are stated here in a slightly modified form.

THEOREM 2. Let us introduce the following assumptions:

- (a) The function $f(x, y_1, ..., y_n, z, q_1, ..., q_n)$ and its first derivatives with respect to $y_1, ..., y_n, z, q_1, ..., q_n$ are continuous in a domain \mathcal{M}_1 the projection of which on the plane $x, y_1, ..., y_n$ contains the closed domain $\overline{\Delta}$ (defined in assumption (β) of Theorem 1).
- (β) The derivatives f_{y_i} , f_z , f_{q_i} satisfy in \mathcal{M}_1 a Lipschitz condition with respect to $y_1, \ldots, y_n, z, q_1, \ldots, q_n$ and the inequalities

$$|f_{q_i}| < M \;, \quad i = 1, ..., n \;,$$

are fulfilled.

(γ) The solution $z(x, y_1, ..., y_n)$ of equation (1) is of class C^1 in $\overline{\Delta}$ and is generated by characteristics (the remark to assumption (α) of Theorem 1 concerning the solutions u and v is here also valid).

Under these assumptions there exists a domain D_1 on the plane $x, y_1, ..., y_n$ such that $\overline{\Delta} \subset D_1$ and that the curves C are contained in \overline{D}_1 and reach the boundary of \overline{D}_1 by their right-hand and left-hand extremities (the domain $D_1 - \overline{\Delta}$ is not completely covered by the curves C).

From Theorem 2 it readily follows that assumption (δ) of Theorem 5 [1] is satisfied.

Theorem 2 results immediately from the following Lemma 1 (see [2]) if we note that property B concerning the curves C follows from Lemma 1 of [1].

LEMMA 1. Let us assume that a family of curves K, each curve of which is defined by equations

$$y_i = y_i(x), \quad i = 1, ..., n,$$

in an interval (a, b), a < b, where the functions $y_i(x)$ are continuous (in general the interval (a, b) may be different for every curve of K), has in a set $E \subset E_{n+1}$ the following properties:

A. Through each point of the closed and bounded domain $\overline{\Delta} \subset E$ there passes exactly one curve of K. The curves of K have no limit points belonging simultaneously to the interior of the domain Δ and to the planes x=a and x=b. If a curve issues out from the domain $\overline{\Delta}$ through a point $Q_0(x_0, y_1^0, \ldots, y_n^0)$ of the boundary $F'\Delta$, for $x \to a$ or $x \to b$, then the part of the curve which corresponds to $x \in (a, x_0)$ or $x \in (x_0, b)$ has no points common with $\overline{\Delta}$.

B. If a curve K_0 of K passing through a point P_0 is defined in the interval (a, b) and $(a, \beta) \subset (a, b)$, then all the curves issuing from the points of a sufficiently small neighbourhood of P_0 exist in the interval (a, β) and are uniformly convergent in (a, β) to the curve K_0 .

Under these assumptions there exists a domain $D_1 \subset E_{n+1}$ such that $\overline{\Delta} \subset D_1$ and the curves of K issuing from the points of the closed domain $\overline{\Delta}$ are contained in D_1 and reach the boundary of \overline{D}_1 in both directions (the domain D_1 need not be contained entirely in E).

Remark 4. The assumption contained in A that the curves of K have the uniqueness properties is not an essential restriction because, as is easily seen, uniqueness follows from property B.

II.1. The proof of conclusion 1° is reduced in a simple manner to the proof of conclusions 1° and 2° of Theorem 5 of [1]. In particular, from assumptions (3) and (4) it follows that in case 1° the inequality $u \gtrsim v$ holds in the whole domain $\overline{\Delta}$.

The proof of this proposition is identical with the first part of the proof of Theorem 5 of [1]. Subsequently by using a similar method to that employed in proving Theorem 5 [1] concerning the set Δ_1 one can show that in view of the assumptions of Theorem 1 the domain Δ_2 is uniquely determined both by the curves C which are the projections on the plane $x, y_1, ..., y_n$ of the characteristics generating the solution u and by the curves \overline{C} which are the projections of the characteristics generating the solution v.

The proof of the inequality $u \stackrel{>}{<} v$ in the sets $\hat{\Delta}_1$ and $\hat{\Delta}_2$ is identical with that of 1° and 2° of Theorem 5 [1] (p. 325). Part 1° of the latter theorem concerns the fulfillment of the inequality $u \stackrel{>}{<} v$ in the set $\overline{\Delta} - \overline{\Delta}_1$, and part 2°—the same inequality in the set $\overline{\Delta}_1 - \Omega$.

Moreover, as in the proof of the relations $u_{v_i} = v_{v_i}$ in the set $\overline{\Delta_1}$ given in [1] (p. 325), it clearly follows that assumptions (3), the relation u = v

in $\bar{G}_1 - G_2$ and the inequality $u \gtrsim v$ taking place in the whole set $\bar{\Delta}$ imply the relations $u_{v_i} = v_{v_i}$ (i = 1, ..., n) in $\bar{G}_1 - G_2$.

Hence the equality u=v holds in the closed set $\overline{\Delta}^*$, because the curves C and \overline{C} along which u=v, issuing from the points of the set $\overline{G_1}-G_2$, are identical and form in $\overline{\Delta}$ the set $\overline{\Delta}^*$. The set $\overline{\Delta}^*$ is bounded by the envelope Ω_1 on the side of the set $\hat{\Delta}_1$ and by the envelope Ω_2 on the side of $\hat{\Delta}_2$.

The assumption (γ) implies that the envelopes Ω_1 and Ω_2 either are disjoint sets or have a common part or coincide depending on whether the boundary sets B_1 and B_2 are disjoint, have a common part or coincide.

2. In order to prove conclusion 2° observe first that any two solutions u and v generated by characteristics and taking on together with their derivates u_{v_i} and v_{v_i} the same values in the set $\overline{G}_1 - G_2$ coincide in the whole set generated by the curves C issuing from the points of the set $\overline{G}_1 - G_2$ and contained in $\overline{\Delta}$.

Further let us remark that the conditions imposed on the solutions u and v in 2° imply that the derivatives u_{y_i} and v_{y_i} are also equal in the set $\overline{G}_1 - G_2$.

In particular, if $\bar{G}_2 \subset G_1$, the relations $u_{y_i} = v_{y_i}$ in the interior of the closed domain $\bar{G}_1 - G_2$ follow immediately from the relation u = v. Hence and from the continuity of the derivatives u_{y_i} and v_{y_i} it follows that the equalities $u_{y_i} = v_{y_i}$ hold also on the boundary of $\bar{G}_1 - G_2$. If $G_2 \subset G_1$ the relations $u_{y_i} = v_{y_i}$ are satisfied by assumption (7). These relations also hold along the curves C issuing from the points of $\bar{G}_1 - G_2$ and therefore they hold in the whole closed domain \bar{A}^* .

Hence, since the functions u and v are solutions of equation (1), also the relation $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial x}$ holds true in the whole set \bar{A}^* .

The sets $\hat{\Delta_1}$ and $\hat{\Delta_2}$ arise in the same way as in case 1° and form together with $\overline{\Delta}^*$ the set $\overline{\Delta}$.

The preceding remarks imply that knowing the solutions u and v we can construct two solutions U and V of equation (1) satisfying conditions (3) and (4) of 1° by setting

$$U(x, Y) \stackrel{\mathrm{df}}{=} \left\{ egin{array}{ll} u(x, Y) & \mathrm{in} & \hat{ec{arDeta}}_1 + ar{ec{\mathcal{A}}^{ullet}} \ v(x, Y) & \mathrm{in} & \hat{ec{arDeta}}_2 \end{array}
ight.$$

and

$$V(x, Y) \stackrel{\mathrm{df}}{=} \left\{ egin{aligned} v(x, Y) & \mathrm{in} & \hat{ec{arDelta}_1} + ar{ec{A^*}} \ u(x, Y) & \mathrm{in} & \hat{ec{arDelta}_2} \ \end{array}
ight.$$

where $(x, Y) \stackrel{\text{df}}{=} (x, y_1, ..., y_n)$.

For the solutions U and V assertion 1° holds true, and thus we have:

(8)
$$U(x, Y) \gtrsim V(x, Y) \quad \text{in} \quad \hat{\mathcal{A}}_1,$$

(9)
$$U(x, Y) = V(x, Y)$$
 in $\bar{\Delta}^*$,

(10)
$$U(x, Y) \leq V(x, Y) \quad \text{in} \quad \hat{\Delta_2}.$$

Moreover, from the definition of the solutions U and V it follows that

$$u(x, Y) = \left\{ egin{array}{ll} U(x, Y) & ext{in} & \hat{ec{ec{ec{ec{A}}}}_1 + ar{ec{A}^{ullet}} \ , \ V(x, Y) & ext{in} & \hat{ec{ec{A}}_2} \end{array}
ight.$$

and

$$v(x, Y) = \left\{ egin{array}{ll} V(x, Y) & ext{in} & \hat{ec{arDelta}_1} + ec{ec{ec{arDelta^*}}} \ U(x, Y) & ext{in} & \hat{ec{arDelta}_2} \ . \end{array}
ight.$$

Thus, by virtue of (8)-(10) we deduce the validity of assertion 2°.

Remark 5. The initial conditions occurring in Theorem 1 might be prescribed on sets placed in \bar{G}_0 in a different manner from that followed above.

For instance, instead of the set $\bar{G}_1 - G_2$ one can select a certain closed set $\bar{G}^* \subset G_0$ dividing in a suitable manner the domain \bar{G}_0 into a few separate sets in which mixed inequalities are assumed while in \bar{G}^* the equality u = v is satisfied.

Remark 6. Theorem 1 (and Theorem 5 of [1]) may easily be extended to the case of the whole set D because the number c is selected with the only restriction that 0 < c < a.

Now in the formulation of Theorem 1 the sets $\bar{\Delta}^*$, $\hat{\Delta}_1$ and $\hat{\Delta}_2$ ought to be replaced by appropriate sets $\bar{\Delta}_0^*$, $\hat{\Delta}_1^0$ and $\hat{\Delta}_2^0$ determined in the same manner as before by the curves C which are now required to be defined in the whole set D. Evidently the sets $\bar{\Delta}^*$, $\hat{\Delta}_1$ and $\hat{\Delta}_2$ should then be contained in the sets $\bar{\Delta}_0^*$, $\hat{\Delta}_1^0$ and $\hat{\Delta}_2^0$ respectively.

The proof of the theorem extended in this way follows from the proof given above for Theorem 1 and from the fact that Theorem 1 holds for any closed domain $\overline{\Delta}$ contained in D.

References

[1] W. Pawelski, Remarques sur des inégalités mixtes entre les intégrales des équations aux dérivées partielles du premier ordre, Ann. Polon. Math. 13 (1963), pp. 309-326.

[2] — O pewnej własności krzywych związanych z charakterystykami równań różniczkowych cząstkowych pierwszego rzędu, Zeszyty Naukowe Polit. Gd. Matematyka, 54 (1964), pp. 25-35.

- [3] W. Pawelski Sur les inégalités mixtes entre les intégrales de l'équation aux dérivées partielles $z_x = f(x, y, z, z_y)$, Ann. Polon. Math. 19 (1967), pp. 235-247.
- [4] Remarques sur des inégalités entre les intégrales des équations aux dérivées partielles du premier ordre, Ann. Polon. Math. 19 (1967), pp. 249-255.
- [5] J. Szarski, Sur certaines inégalités entre les intégrales des équations différentielles aux dérivées partielles du premier ordre, Ann. Soc. Polon. Math. 22 (1949), pp. 1-34.

Reçu par la Rédaction le 24. 2. 1965