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On a nonlinear ordinary differential equation

by W. Okrasinski (Wroctaw)

Abstract. A nonlinear dilferential equation of the form
k(wyuy = J(x)u

is considered. Nonnegative solutions u such that u(0) =0 and u(x) > 0 for x > 0 are studied.
Some theorems about the existence and uniqueness of nonnegative solutions are given.

1. Introduction. For a description of the mathematical model of the
infiltration of water the Boussinesq equation is used. This equation has the
form

(L.1) (hhy), = h,

in the one-dimensional case or
1
(1.2) —(xhh,), = h,
X
in the radial case (see [3], [4], [5]). The unknown function h denotes the

height of the saturated region above the impervious base. With respect to
applications, similarity solutions of (1.1) and (1.2) having the form

X
1.3) hix, t) = ( )
( g Fol(t)
are interesting. The function ry(r) denotes the reachness of the saturated
region at the time ¢ (see [3], [4], [5]). In the case of the similarity solutions,
equations (1.1) and (1.2) may be reduced to the ordinary differential equa-
tions

(1.1 (') =(1-x)u"  (xe<0, 1))
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and
(1.2) (wuw')y = A" u (A >1),

where u(x) = g(1 — x) is a unknown function. From a physical point of view
sufficiently smooth solutions u of equations (1.1) and (1.2) satisfying condi-
tions:

(1.4) u(0)=0 and u(x)>0 for xe<0,1>

are interesting. In papers [4] and [5], the existence and uniqueness of
nonnegative solutions of (1.1°) and (1.2') were proved. The methods used were
based on the special form of these equations and on the Banach fixed point
theorem. In papers [1] and [2], the following equation was considered:

(1.5) (k) u) =(1—x)u'.

In this paper we shall investigate the nonnegative solutions of a more
general equation than (1.5), namely

(1.6) (k(wu) = f(x)u'.

From here we shall consider only equation (1.6). For the sake of simplicity
we make the assumption that the equation may be considered on the
nonnegative half-line R, = (0, + o). After a simple modification of assump-
tions the methods and results of this paper may also be applied in cases of
(1.1, (1.2') and (1.5).

2. Reduction of the differential equation to an integral one. Now we make
more precise assumptions about functions f and k. Let R, = (0, +oc). We
suppose that

(i) f: R, =R, is a decreasing continuously differentiable function,

(i) k: R, =R, is a continuously differentiable function such that
k(0) =0 and k(x) >0 for x > 0.

Now we define a class M, of functions in which we shall study the
solvability of equation (1.6).

DerFinmion 2.1, A function u: R, —» R, belongs to the class M, if
and only if ueC(R,)NC,(R:), u(0)=0, u(x)>0 for x>0 and
lim k(u(x))u' (x) = 0.
x—07t

Now we can formulate the following theorem:

THeorREM 2.1. If ue M, is a solution of (1.6), then u satisfies the integral
equation

X

21 W(u(x)) = [Lf ()= S () (x—s)]u(s)ds,
0
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(2.2) W) = [k(s)ds.

0

Proof. Integrating (1.6) from § to x (6 > 0), we obtain
(23)  k(u())u' (x)—k(u@)u' () = f)u(x)—f (@) u(d)—{f'(s)u(s)ds.
s

Let 6 »0%. We get

(2.4) k(u(x)u'(x) = f(x)u(x)—{ f'(s)u(s)ds.
]
Integrating (2.4) from 0 to x, we have
(2.5) W(u(x) = {[f(s)u(s)— [ f'(t)dt] ds.
0 0

Integrating by parts the right-hand side of (2.5), we obtain (2.1).
Now we define a class M of functions in which we shall consider the
solvability of the integral equation (2.1).

DeriniTion 2.2. A function u: R, =R, belongs to the class M if and
only if ueC(R,), u(0) =0 and u(x) >0 for x > 0.

We have M, ¢ M. Now we present the following theorem:

THEOREM 2.2. If ueM is a solution of (2.1), then u belongs to M, and
satisfies equation (1.6).

Proof. Let us note that the function W defined by (2.2) is differentiable
and strictly increasing on R,. Then (2.1) can be written as

(26 u(x) = W ({ [F(5)— () (x — )] u(s)ds),

where W™ ! denotes the inverse function to W, From (2.6) we infer #'(x) exists
for x > 0. We get

2.7 w(x) =[f)ux)—[f ()uls)ds] [k(u(x)] .
0

We have u'€C(R,). Similarly we can show that u''(x) exists and is contin-
uous for x > 0. From (2.7) we conclude that the [unction u satisfies equality
(2.4). From this we infer lim+ k(u(x))u'(x) =0 and it is easy to see that u

x—0

satisfies equation (1.6). The theorem is proved.
Now we give some a priori estimates.
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THeorem 2.3. If ueM is a solution of (2.1), then u is a strictly increasing
Sfunction satisfying the following a priori estimate

(2.8) V(T f(s)ds) < u(x) < VTL(f(0)x),
0

where V™! is the inverse function to

(2.9) V(x) = [—ds.

Proof. Since u(x) is given by (2.7) and f'(x) < 0 for xeR,, we obtain
u'(x) > 0 for x > 0. Therefore, u i1s a strictly increasing function. From (2.4)
we get

(210 Fu() < k() () < [0 =] £ (5)ds]u ().
0

The right-hand side of (2.10) is equal to f(0) u(x). Dividing (2.10) by u(x) and
integrating from 0 to x, we get

211 }f(s) ds < V(u(x) < f(0)x.
0

From (2.11) we obtain (2.8).

From here we shall consider the existence and uniqueness of nonnega-
tive solutions of the integral equation.

3. Solvability of the integral equation. In this section we shall study the
existence of nonnegative solutions of the integral equation. We define the
following integral operator

X

(3.1) T(P(x) =W ([Lf (-1 () (x=5)]p(s)ds)
0

for pe M.
Remark 3.1. We have T(p)eM.

Remark 32 If peM (i=1,2) and p,(x) < p;(x) for x€eR,, then
T(py)(x) < T(p,)(x) for xeR, .
Let

(3.2) o(x) = V1] f(s)ds)

and

(3.3) ¢(x) =V~1{f(0)x).
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Remark 3.3. The functions ¢ and ¢ belong to M and are strictly
increasing. '

Remark 34. We can write inequality (2.8) as
34 @ (x) < ulx) < @(x).

We can show the following lemma:
LemMma 3.1. For xeR,

(3.5) T(p)(x) = ¢(x)
and
(3.6) T(9)(x) < @(x).

Proof. For the proof it is sufficient to prove the following equivalent
inequalities:

(3.5) (L7 6V~ () (x— )] @ (s) ds > W (9 (x)
0
and
(3.6) (L) =" (5} (x=95)] @(s)ds < W(p(x)).
0
Let
(3.7) P(x) = [[f(5)=f'(5)(x—=9)] @(s)ds— W (¢(x))
0
and
(3.8) Y(x) = W(@(x)- L ()~ S () (x—5)]p(s)ds.
0
We have
3.9) Y(x)=f()ex)=[f(5)p(s)ds—k(p(x) @’ (x)
0
and
(3.10 Y'(x) =k(@(x) @ ()= f () @)+ [ f'(s) P(s)ds.
0
But
(3.11) @' (x) = @(x)[k(e(x)] ' f(x)
and
(3.12) @' (x) = ¢(x)[k(@(x)] ' £(0).

3 — Annales Polonici Math. XLIX. 3
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From (3.9), (3.10), (3.11) and (3.12) we obtain

(3.13) P'(x) = — [ f'(s) o(s)ds
0
and
(3.14) Y (x)= = [f' () [@(x)—p(s)]ds.
0

From (3.13) and (3.14) we infer @'(x) > 0 and ¥'(x) > 0 for x€R. . Since
¢(0) =0 and ¥Y(0) =0, we get &(x) >0 and ¥(x) = 0. Hence inequalities
(3.5) and (3.6) are true.

Now we present a theorem concerning the existence of solutions of (2.1)
belonging to M.

THeoreMm 3.1. Equation (2.1) has a solution belonging to M.

Proof. We construct the following sequence of functions belonging to
M:

-UO=?,

_lZn+1=T(yn) for n=09 1’23---

(3.15)

Then, by Lemma 3.1, we have

(3.16) Vst 2 Uy
and
(3.17) L<e forn=0,1,2, ...

Then v,(x) is convergent to the limit u(x) for all xeR,. By the Lebesgue
theorem we obtain that u(x) satisfies equation (2.1) for all xeR, . Because of
the properties of sequence (3.15) we get ueM.

CoroLLArY 3.1. Equation (1.6) has a solution belonging to M,.
This corollary follows immediately from Theorems 3.1 ans 2.2.
Remark 3.5. The sequence of functions

50=@a

5., =T®@,) forn=0,1,2, ...

(3.18)

is convergent to a function # which belongs to M and is a solution of (2.1).
CoroLrLArY 3.2. If ueM is a solution of (2.1), then

(3.19) u(x) <u(x)<iu(x) for xeR,.
Proof of the corollary. From (3.4), (3.15) and (3.18) we have

(3.20) Vo (X) S u(x) < vy(x) for xeR,.
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By (3.15), (3.18) and (3.20) we get
(3.21) ux)Su(x)<v,(x} forn=1,2,...

By the convergence of sequences v, and 0, from (3.21) we obtain (3.19).

4. Uniqueness of nonnegative solutions. At first we show the local
uniqueness of nonnegative solutions.

THEOREM 4.1. There exists an interval <0, a) (« > 0) such that u =u on
€0, 2.
Proof. Let u; and u, denote, respectively, solutions u and u. We have

4.1) k (u; (x))uj (x) = }f(s) u(syds (i=1,2).
0

By w; we denote the inverse function to u; (i = 1, 2). After the substitution
x=w;(u) (i=1,2) we can write (4.1) as

K@ DW W] = (£w()ds  (=1,2).
0

From the last equality we get
4.2) w;(u) = [k(s)[ [ f(wi(0))dt]™ ' ds.
0 0

Let a>0. We shall consider w;(u) (i=1, 2) for ue<0, u,(a)). We
subtract w, and w,. We obtain

4.3)  wi(w)—w;(u)

=§k(s)[£ (wy (0))d c\;f w,(t))dr]™ l\[f(wz(l)) £ (wy (1)) dds.
From (4.3) we get

@4  w(w)—wy(u)

<[f (4, (@)]"? max |f'(s)l max (wl(u)—-wz(u))‘-(i)d

se(0,a) ue{0,ug)

for ue 0, up) (4o €(0, u; (a))). From (4.4) we get

(4.5) max (wy (1) —w, ()
ue{0,ug)

<[f (w @)]"2 max [f(s) r@ds max. (w, (W) ws (u).

se<0,a) S ue{0,up)
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“k
Since _|—(:2ds tends to zero as x = 0", we can find u, €(0, u, (@) such that
5o
uok(s) ’ -1 2
(4.6) ——ds <[ max [ ()] [Sf(us(@)]?.

b S se<0,a>

From (4.5) we infer

4.7 max (w, (u)—w,(u)) = 0.

ue0,up)
From (4.7) we get
uy =u, on €0,ad,
where a = w, (ug).
Now we give the proof of the global uniqueness.

THEOREM 4.2. Equation (2.1) has the unique solution in the class M.

Proof. Let u, and u, denote, respectively, solutions ¥ and u. Let b > «,
where o« is as in Theorem 4.1. Since

uy () =1y (x) = W (W (g (0) = W1 (W (1 (),
by the mean-value theorem we have the inequality

(4.8) uy(x)—u,(x) < max (W1 (s)] [W (uy(x))— W (u, (x))]

se{W(u (@), W(uyb))

for x€<0, b>. From the last inequality we get
49)  uy(x)—u,(x)

<[ min k&I LSS~ f () (x—35)][uz(s)~u, ()] ds

se (up(@.uy(b))
for x€<0, b). Let B= f(0)+b max |f'(s)] and > 0 be a number such that

se{0,b)

(4.10) [ min k(s)]"'Bp~ ' <1.

seuy(a),up(b))

Moreover, we define

(4.11) 0= max e P (uy(s) —u, (s)).
se(0,b)>
From (4.9) and (4.11) we get
(4.12) w,(X)—u, (x) <[ min  k(s)]7! BB ! gef*

se{uy(a)usyb))

for x€ <0, b). From (4.12) we obtain

o<[ min k(] 'Bf e
seuy{a)uz(b))
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By (4.10) we infer o = 0. The global uniqueness is proved.

1]

(2]
(3]

4]

(51

CoroLLary 4.1. Equation (1.6) has the unique solution belonging to M.
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