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Linear functional equations with variable coefficients

by L. P. Kucko (Kharkov)

Abstract. Sufficient conditions are found for the existence and uniqueness of local C*-
solutions of multidimensional linear functional equations of the form ¢(Ax)—Q(x)¢(x) = y(x).

1. Introduction and statement of the results. The present paper is devoted
to the study of local C*-solvability (for any right-hand side) of the muitidi-
mensional linear functional equation

(H @ (Ax)—Q(x) @(x) = y(x),

where A: R"— R" is a linear nonsingular operator, Q: R" — C"'z, y: R"—=C™
are C*-maps in a neighbourhood of the origin, ¢: R" = C™ is a map to be
found. The conditions of local nontrivial C*-solvability of the corresponding
homogeneous equation

(2) ¢(Ax)—Q(x)p(x) =0

are also elucidated.

Abel and Schréder equations pertain to this type as well as their various
generalizations detailedly studied in a major series of works of the Krakow
school of functional equations, summed up in the monograph by Kuczma
[7]. In these and in a number of later works the writers investigated
existence and uniqueness of continuous finitely smooth and analytic solutions
of equations in a single variable (xe R'). Multidimensional functional equa-
tions were considered in papers [3], [4], [8], where sufficient conditions for
existence and uniqueness of finitely smooth solutions were obtained; works
[10] and [11] investigated the analytic case.

Equations of type (1) were dealt with in [5], where for a constant
nonsingular matrix Q(x) = Q necessary and sufficient conditions for existence
of an infinitely differentiable local solution of (1) for any night-hand side y(x)
were found, together with necessary and sufficient conditions for existence of
locally nontrivial C*-solution of the corresponding homogeneous equation.
The case where the argument transformation is nonlinear but hyperbolic (the
Jacobi matrix at zero has no spectral points on the unit circle) was
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considered in [2], [6]. The present paper completes investigation of equation
(1) with variable coefficients (with an arbitrary operator function Q(x)).
To be locally C*-solvable, equation (1) must be formally solvable, i.e.,
there must exist a formal map @: R"— C™ such that @¢(Ax)—Q(x) @ (x)
= §(x). (Here, 0, 7 are formal Taylor series at zero.) Let ¢ be any formal
solution of (1) while ¢, is a local C®-map whose Taylor series at zero is
equal to @. We shall seek the solution of (1) in the form ¢ = ¢+, where y

is to be found and is flat at zero('). For  we obtain the equation
W (Ax) = Q(x) ¥ (x) = T(x),

where a map t(x) = — @ (Ax)+Q(x) ¢o(x)+7(x) is flat at zero. Thus, pro-
vided that formal solvability condition holds, local C*-solvability of equation
(1) for any right-hand side is reduced to existence of flat-at-zero local C*-
solution of equation (1) for any right-hand side that is flat at zero.

Let {4;}/-; and |q;]7 | be eigenvalues of operators A and Q(0), respect-
ively. It is well known that absence of the so-called resonance relations, i.e.,
validity of the inequalities

) g;# 14" Jj=1,2,....,m, p >0 — integers,
i=1

is a necessary condition even for a formal solvability of (1) for any right-hand
side y. For a constant nonsingular matrix Q(x) = Q it was shown in [5] that
absence of the resonance relations between moduli of eigenvalues of 4 and
Q(0), 1.e, vahdity of the inequalities

4) lgj # [1 147, Jj=1,2,...,m, p,>0 — integers,
i=1

is a necessary and sufficient condition of local C*-solvability of (1) for any
right-hand side, provided that there exists at least one spectral point of A
lying on a unit circle and distinct from 1 (in all other cases validity of
inequalities (3) is a sufficient condition for local C*-solvability of (1) for any
right-hand side).

Denote by &, (respectively, ¥_, ¥,) the A-invariant subspace of the
space R" that corresponds to the part of the A-spectrum lying inside the unit
disk (respectively, out-side the unit disk, on the unit circle); denote by .#,
the Q(0)-invariant subspace of the space C™ that corresponds to the zero-
spectrum of the operator Q(0).

THEOREM 1. Let ¥, = 0. Then the sufficient condition for equation (1) to
be locally C®-solvable for any right-hand side is the validity of inequalities (3).

('} C*-map f is said to be flat on a set .# if f©(x) =0 for all xe.# and s=0, 1,2, ...
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Now, let ¥, # 0. If ¥, =0, then the sufficient condition for equation
(1) to be locally C*-solvable for any right-hand side is the valdity of
inequalities (4). But if &, # 0, then the sufficient condition for equation (1)
to be locally C*-solvable [or any right-hand side is the validity of (4) plus the
following two conditions:

(a) the subspace .# is Q(x)-invariant for every x from some neighbour-
hood of the origin;

(b) Qo(x) =const = Qy(0), xe.¥,, where Qy(x) 1s a restriction of the
operator Q(x) to the subspace .#,.

Remark 1. Condition (b) is essential for the validity of Theorem 1, with
Y, #0 and ¥, #0, as is shown in the following

ExampLE. Consider a one-dimensional (m = 1) [unctional equation

(5) S, m—ne&, n=v& n, x=(E, nekR?,

where 0 < 4 < 1. Here condition (b) does not hold. We indicate a function
v(x) for which equation (5) is not locally C*-solvable. We put 0, = (k!)~!
and &= A¥E,, k=0,1,2, ..., where ¢, > 0 is sufficiently small. Let ,(Z) be
a C™-function that is flat at zero and satisfies the condition t,(E,) = 6, k
=0,1,2,..., and '

~tam = n >0,
T2(n) = {0, n<0.

We put y(¢&, n) = 7, (&)1,() 0 (5). If (¢, n) 1s a Nat-at-zero C *-solution of
(5) for [|(&, n)ll < o, then ¢ (&, n) is Aat on subspaces (&, 0) and (0, ). From (5)
we obtain

k-1
(6) e m=n"te(X =Y 7 A . IE Il <9

i=0
Since the function ¢(&, n) is flat on the subspace (0, #), the first term in the
right-hand side of (6) converges to zero as k — ac (for every fixed n # 0). It
means that the solution of (5) must be presented by the series

e m=—Yn """y, E I <o
i=0
Hence, by virtue of the choice of 7,
p—1 ,,n-l

PP _ -1 B -1 .
QAo ) = =P eI et Y
1

i=0 .

, h>0,p=12,..,

which contradicts to smoothness (and even continuity) of the function ¢ at
the origin.
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Now, let us consider the homogeneous equation (2). In the case when
det Q (0) = 0 we assume that the origin is an isolated zero of det Q(x). Note
that if condition (3) holds, then equation (2) has no nontrivial formal
-solutions, hence, it can have only locally nontrivial C*-solution that is flat
at zero.

We put o, (4) = min(||A4], 474, k=0, 1,2, ..., and treat hyperbolic
and nonhyperbolic cases separately.

THEOREM 2. Let A be a hyberbolic operator, i.e., ¥, = 0. Equation (2) has
a locally nontrivial C*-solution that is flat at zero if and only if one of the
following conditions:

(7)  the sequence |0, (A)) is not bounded,
(8) the sequence {g,(A)} is bounded, ¥, # 0 and detQ(0) = 0;
is valid.

THEOREM 3. Let A be a nonhyperbolic linear operator, ie, ¥, # 0.

If £, #0 and ¥L_ #0, then equation (2) has a locally nontrivial C>-
solution that is flat at zero.

If ¥, =0 and inequalities (4) hold, then equation (2) has a locally
nontrivial C*-solution that is flat at zero if and only if condition (7) is valid.

If £, #0, _ =0 and inequalities (4) with conditions (a), (b) of Theorem
1 hold, then equation (2) has a locally nontrivial C*-solution that is flat at zero
if and only if one of conditions (7), (8) is valid.

Remark 2. The condition that the sequence 6,(A) is bounded means
that either (4] < 1,i=1,2,...,n0r |4 = 1,i=1,2,..., n, and that Jordan
blocks of dimension 1 correspond to the eigenvalues of A of modulus [ (if
there are any). That the sequence 6,(A) i1s not bounded means that either A
has some eigenvalues with absolute values greater than, some less than, 1, or
that there is a Jordan block of dimension greater than 1 for some eigenvalue
of A of modulus 1.

2. Proof of the theorems.

Proof of Theorem 1. First we remind that if conditions (3) hold, then
equation (1) is formally solvable for any right-hand side, hence, the problem
is reduced to solvability of equation (1) for any right-hand side that is flat at
zero.

(i) For the case when ¥, =0, .¥¢_ =0 and the operator Q(0) has no
eigenvalues on the unit circle the solvability of equation (1) for any right-
hand side was proved in [5].

(i) Suppose now that ¥, =0, ¥, # 0 and conditions (4) are valid.
Denote by .#_ (respectively, .#;) the projection on the subspace ¥ (respect-
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ively, ¥,). Putling x_ = .# x=0 1n (1) we obtain:
9) @ (0. Ay x1)—Q(0, x;) (0, x;) = (0, xy).

(Here A, = #, A, x, = .7, x.) By virtue of (i) and conditions (4), equation (9)
has a local C*-solution ¢(0, x,). Differentiate equation (1) with respect to
x_ and again put x_ =0:

(10) ¢, (0, A, x,)—0Q(0, x)) @, (0, x;) A"
=Q. (0, x)@(0, x)AZ '+ (0, x)AT L

(Here A = #_ A.) By (4), equation (10) satisfies the conditions of (i) and so
has a local C*-solution ¢, (0, x;). On going on with differentiating with
respect to x_ and restricting the equation obtained to the subspace ¥,, we
find a C™-jet (¢(0, x;), ' (0, x;), ...). Let ¢o(x) be the Whitney [9] C™*-
extention of this C*-jet to the o-neighbourhood of the origin. We seek a
solution of equation (1) in the form ¢4+ ¢, where  1s to be found and is flat
on ;. We obtain

(11) ¥ (Ax)—Q(x) ¥ (x) = t(x)

for ¢, where 1(x) = — @o(Ax)+Q(x) @o(x)+y(x) i1s flat on ¥,. We rewrite
(11) in the form

(12) Y (x) = Q)Y (A™ " X)+T(x),

where Q0 (x) = Q(A™ 1 x), T(x) = t(A "' x). Let #(8) be the closed 5-neighbour-
hood of the origin and x;: R*— R' a C*-function taking the value I on
some small neighbourhood of the origin and the value 0 outside #(0). We
consider the linear operator

(TY)(x) = #5(x)3¢5(A7 " ) [Q (Y (A™ ! x)+T(x)]
acting on the space of C*-maps y: #(6) = C™ that are flat on ¥,. To
prove local C™*-solvability of (12) it is enough to prove local C *-solvability
of the [unctional equation

(13) Y (x) = (TY)(x).

Let [%,,}, |v,) be sets of positive numbers. We write .# = #(|7,.],

tvs), 0) for the compact convex set of C*-maps y: #(9) — C™ that are flat
on ¥, for which

(14) WO < Cocllx-lI, vZv, s=0,1,2, ...

By the general fixed-point principle, to show that equation (13} is solvable it
is enough to find constants 7,., v, such that .# is T-invariant.
We choose a vector norm on R" such that |[AZ!]| =4 < 1. Let ||4 "}
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=pand sup ||Q(x)|| = .#. We choose a nondecreasing sequence of numbers
x| €4

v, such that .#A" i < i <1 for all v>v, (s=0,1,2,..). Let thc map ¥
belong to the compact set ¥ defined by inequalities (14). On differentiating
the right-hand side of (13) s times (s =0, [, 2, ...) we obtain

(TY)? (x) = 25(x) 5 (A7 ) QYA ) (A7) +
+rs(xs ll/(X), ll’l(x)a ceey w(g— “(X)).

where I'; stand for terms that do not contain the s-th derivative of the map
Y (Fo(x) = #5(x)%s(A " x)7(x)). Hence, on considering the definition of
compact set (14) we have

H(Tl/,)(b)(x)“ S- '//(/'sv )‘vllx—llv#s+?sv((('0r~ sty f/'.\- I.\') “x*“v

= YsulGows ooy s 13)
N ]
5y

vy, s=0,12,...,

where y,, is a certain linear function with nonnegative coefficients (7o,
= const). We choose consecutively the numbers %, such that

El ‘ysv(((’O\n AR {65_1.\,)
T+ -

sV

< 1.

Then, if Y e A, we have ||(TY)® (x)|| < 6, |Ix_|I', v= v, s=0,1,2,...; that
is, T maps ¢ into itself. Hence, equation (13) has a local C*-solution € .%4.

We note that the above reasoning implies that formal solvability, i.e.,
validity of (3), is sufficient for local solvability of the equation (1) in the case
that ¥, = %, =0.

(1)) We suppose that ¥, # 0, ¥, =0 and conditions (3) hold. By (3),
the map y may be assumed to be flat at zero. The map y can be written in
the form y =y, +vy_, where y, (respectively, y_) is a map that is flat on ¥,
(respectively, #_). To prove solvability of equation (1) it suffices to show
that each of the equations

(15) P+ (Ax)—Q(x) @4 (x) = 74 (),
(16) P (Ax)=Q(x)p_ (x) = y-(x)

1s solvable, where ¢, (respectively, ¢ _) is a map to be found and is flat on
&, (respectively, #_). (If, in particular, ¥_ =0, then the problem is
reduced to solvability of (16).) The proof of existence of local C*-solutions of
(15) 1s carried out in exactly the same way as the proof that (11} is solvable.
We consider now equation (16). First we suppose that the matrix Q (0) is
nonsingular. Then equation (16) is reduced to an equation of the type (15) by
multiplying the both parts of (16) by Q™ '(x) and substitution x+—A"'x.
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Suppose now that the matrix Q(0) in equation (16) is nilpotent. We
rewrile (16) 1n the form

(]7) ¢—(-Y+sx—)=(T(P—)(X+aX—)=
where
(T )(x4, X)) = QAT xo, AT x ) (AL N AT X ) +7 (L x0),

X, =2,x, A, = P, A, 2, is the projection on the subspace ¥,. 7_(x)
=+_ (A~ ' x). First suppose that Q (0} = 0. We choose vector norms on &,
and ¥_ such that for some pu,, u, >1 and some 0 <4, 2, <1 the
inequalities

18) gl ll S PAT Xl < pallxall,  Agllx-ll S HAZ x| < Agllxl

would be satisfied, and we put ||x|| = max {||x.][, l|x_]|} for x =(x,, x_)e R".
Let .# = sup ||Q(x)|l, u=||A""||. For each pair of nonnegative integers s, v

x|l <o
we choose numbers ¢, > 0 such that

(19) ey My < A< 1.

Since, by assumption, Q(0) =0, for any &, we can find d;, > 0 such that
(20) QM <& for |Ix|| < O

For each pair of nonnegative integers s, v we choose numbers ag, > 0 such
that

(21 A, <AOX pyps W s,

We note that, since we are interested in a local C*-solution of (17), the maps

Q(x) and ¥ (x) may be assumed to be equal to zero outside the set S(J)
= xeR"| || 2, x|]| < &}. We consider the compact convex set .¥ = ¥ '(|4,,!

SV

Vsl 105y} 1&g, &) of C*-maps ¢_: S(8) — C™ that are flat on ¥_ and
satisfy inequalities

(22) le? (0l < 6o 6o (x), vy, 5=0,1,2,..,
where
”x”v7 ”x+“ S 5SVa
ésv(x) = asv“x#-“—va 65»‘ < “x+” < 5’
0, O <|lx4l.

Let us show that we can choose numbers %, and a nondecreasing sequence

v; such that the operator T maps the compact set (22) into itself. As in (it),

the proof of possibility of such a choice is carried out by induction on s.
We consider the following cases:

(@) Let J]A4," x|l < &, and, besides, [|[A_! x_|| < é,,. On differentiating
the right-hand side of (17) s-times (s =0, 1, 2, ...) and taking into account



60 L. P. Ku&ko

(18)«20) and compact set definition (22), we obtain that for all v > v,_,
(23) (T ) (I < &5 Gy 3 XI5+ 750 (Boys -y Gsm g DX

s By
sfasvnxu“[u’”( R ’],

where 7y, I1s a certain linear function with nonnegative coefficients (v,,
=const, v_, =0).

(B) Let [|[43! x| <4, though ||[A{!x_|| >é,,. We note that in this
case |[A"'x||=([AZ'x_|| and ||x|| =|/x_|. On taking into account this
notation and also (18), (22), we obtain that for all v > v,_,

(T )P (Il < - #ECs, A3 NIxII” 17+ T (Gous -, Gs—a DX

We choose numbers ¥, > v,_, such that .#i}u° <1 <1 for all v > 7,. Then

:};SV(%OV! RS ] %s—l.v) v
(f“ ’

~

= V.

(24) (T ) (x)l| < %ﬂnxn“[I -

(y) Now, let ||x.|| €9, <||A7'x,|l. Then it follows from (18) that
x4l > 0512 *. On taking into account this inequality and also (18), (21),
(22), we obtain that for all v>v,_,

(25) (T )2 (O S A Gy oty 1 " I1X 117" 14 Fan (Gous - Bom ) XD

AN (e
S(Asvllxllv[ﬁ+ySV( 0 7 s I‘V):l-
Isv

(d) Finally, let |[x,|| > d,,. On taking into account (18) and (22), we
obtain

”(T(p—)(“)(x)" S '/”%.svasv#l_v”x+”_vl'ls—'—iv(%Ow L) %s—l.v)”x-*“—v,

v>vs_l.

We choose v, > v,_, such that .#u;" @ < 4 <1 for all v>v,. Then

Vs ('0\9"~a (('s-l,\')' =
5 Vv

260 (Tp ) (Ol < by “II‘<+II'”\ + p
a!\'{'

v

We put v, = max !, ¥,]. Inequalities (23)«26) imply that

) ¢ . F 2"sv('/’O\w LR} ((’s— l.\') >
”(T(P~) (Y)“ S ('stsv(x) A+ H] v = vs’

(
Sy 6&\‘

where ~=max {4, 2] <1 and x,, is a certain linear function with nonnega-
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tive coefficients. We choose consecutively numbers 7., such that

e f
xsv( 60\'7 ey ‘s— l,r)
g
Agye (’S\'

.+ <1.
Then the operator T maps compact set (22) into itself. Consequently,
equation (17) has a local C™-solution.

Suppose now that the matrix Q(0) is nilpotent, but nonzero. Without
loss of generality, Q{(0) may be assumed to have a normal Jordan form. We
carry out a transformation of the map to be found in equation (16): ¢_ (x)
= A(N)G_ (). where A(x) =diag [Ix||"", ..., [IxII"™} and 0 <|x—a <1,
i # j. This transformation is an isomorphism of the space ol C*-maps that
are flat at zero. Equation (16) will be transformed to a similar equation with
the operator function Q(x) = A~'(Ax)Q(x) A(x). For a mentioned choice of
parameters a; we obtain that 0 (0) = 0 which reduces the case to the one
already considered.

The complete the proof of solvability of (16) it is enough to prove the
following lemma on normalization:

LeMMA. Let A be a hyperbolic linear operator, ie., ¥, =0. Then there
exists a local C*-transformation A(x) of the matrix functign Q(x) to a block-
diagonal form Q(x) = A~ (Ax)Q(x) A(x) = diag |Q, (x), Qo(x)! in which the

-~

matrix Q,(0) is nonsingular and the matrix Q,(0) is nilpotent.
Proof of the lemma. There exists a formal transformation A (x) that

reduces the matrix Q(x) to the matrix é(x) =/‘i_'(A.V)Q(.V)/‘i(.Y) the latter
satisfying the condition

(27) 0(A,x)0Q, = Q,0(x),

where A (respectively, Q) is a semi-simple part of the matrix A (respectively,
Q(0)). This statement 1is, in essence, a variant of the Poincaré-Dulac theorem
(see [1]) for aﬂformal map @: R"xC™ — R"x(C™ defined by the formula
@(x, v) ={Ax, Q(x)y) and it is proved after the same scheme.

It lollows [rom (27) that é(x)=diag ’,él(x), éo(x)}, where er(0) is

nonsingular and Q,(0) is nilpotent. Hence, we may at once assume that the
matrix function Q(x) has the form: Q(x) = diag (Q, (x), Qo(x)} +1(x), where
Q,(0) is nonsingular, Q4 (0) is nilpotent, and 7(x) is a matrix function that is
flat at zero. We seek the transformation A(x) of the matrix Q(x) to an upper
triangular block matrix Q(x) = A" (Ax)Q(x) A(x) in the form:

A(X)=( £ 0 ’ le =Ov
ay,(x) E

where the dimensions of unit blocks correspond to those of Q,(x), Qq(x).
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Thus we arrive at a system for Q(x) and a,,(x):
01(x) = Q1 () + 712 (x) @z (X)+14, (),
0120 = 712 (%),
30 (AX) G, (%) = 71 () + Q0 (X) a3 (X) +T23(X) @z (),
Qo (xX) 431 (4% 0,2 (%) = Qo (x)+ 7,2 (),

where 0, (x), Oo(x), O,,(x) are the blocks of the upper triangular matrix
Q (x) while 7;;(x) are the respective blocks of the matrix 7(x). On substituting
the expression for Q, (x) from the first equation to the third one, we obtain

(28) asy (Ax) = f(X, az, (x)),

where H(x, y) = [(Qo(x)+fzz(x))Y+T21 (x)] [Q1(X)+T2(x)y+11,(x)]7 Y
note that # (x, 0) is a C*-map that is flat at zero while the matrix #7,(0, 0)
1s nilpotent. On restricting equation (28) to the subspace .#_ and following
the line of reasoning employed in the proof of solvability of (11), we prove
existence of a local C*-solution a,, (0, x_) for the equation obtained. Simi-
larly, on differentiating (28) and restricting the equation obtained to the
subspace ¥, we find a C®-jet (a,,(0, x_), a5;(0, x_), ...). Let ay(x) be
a C™-Whitney extension of this jet to the d-neighbourhood of the origin.
We seek the solution of (28) in the form a,, = a,+ ¥, where  1s a matrix
function to be found and is flat on ¥_. For § we obtain the equation

(29) Y (Ax) = 9(x, ¥ (x)),

where 9(x, v) = #(x, ag(x)+y)—a,(Ax); note that %4(x, 0) is flat on ¥_
while the matrix %,(0, 0) is nilpotent. On following the line of reasoning
employed in the proof of solvability of (17), we prove local C®-solvability of
equation (29).

Thus, equation (28) has a C®-solution that is flat at zero. It means that
the matrix Q(x) may be assumed to be upper triangular block matrix with
needed blocks on the diagonal. To transform Q(x) to a block diagonal form
one must apply subsequent transformation

A(x) = (ﬁ “”E(x)), 4,=0.

As a result, we obtain an equation for a,,(x) which is solvable by previous
reasoning. The lemma is proved.

(iv) To complete the proof of Theorem | we must consider the case
when &, # 0 and %, # 0. On restricting equation (1) and its derivatives to
the subspace ¥, and taking into account inequalities (4), we demonstrate, in
the same fashion as in (i), that it i1s enough to consider equation (1) with an
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arbitrary right-hand side y that is flat on %,. Such a map 7 can be written
in the form ; =17, +7_, where 7, (respectively, y_) is flat on ¥, + ¥,
(respectively, on ¥+ ¥ _). This reduces the problem to considering two
equations of the form

(30) Q4+ (AX)=Q(X) @4 (x) = 74 (x),
(31) - (Ax)=Q(x)o_ (x) = y-(x),

where ¢, (respectively, ¢_) is a map to be found and is flat on ¥, + %,
(respectively, ¥+ .#_). (If, in particular, ¥_ =0, then the problem 1is
reduced to solvability of (31).) Solvability of equation (30) is proved exactly
as that of equation (15).

By condition (), Q(x) may be assumed to be a lower triangular block
matrix with nonsingular at zero and nilpotent at zero diagonal blocks. So, to
prove solvability of equation (31) it is enough to prove solvability of two
equations of type (31) with a matrix Q(x) that is nonsingular or nilpotent at
zero. When det Q(0) # 0 equation (31) is reduced to (30). But if the matrix
Q(0) 1s nilpotent, then the proof of solvability of equation (31) is similar to
that of equation (17). Theorem 1 is proved.

Remark 3. Suppose that conditions of Theorem 1 hold, while y(x) in
equation (1) is a C*-map equal to zero on a closed set & which is A- and
A~ tinvariant. From the proof of Theorem 1 one can see that there exists a
local C*-solution of (1) that is equal to zero on the set &.

Proof of Theorem 3. (1) First we suppose that ¥, = ¥ =0 while
the operator A; = #, A is orthogonal. If condition (4) holds, then it means
that the operator Q(0) has no spectral points on the unit circle. Let us show
that in this case equation (2) has no nontrivial solution that is flat at zero.
Let .#, (respectively, .#_) be a Q(0)-invariant subspace of the space C"
that corresponds to the part of Q(0)-spectrum lying inside the open unit disk
(respectively, outside the closed unit disk). We denote by P, (respectively,
Z2_) the projection on the subspace .#, (respectively, .#_). We put Q(x)
=Q(0)+¢q(x), g(0) = 0. Equation (2) is equivalent to the following system

@+ () = Q4 (0@ (AT )+ P, (A7 ' ) @ (AT ! X)),

(32) "
@-(0) =010 ¢-(4,x)-0-1(0) Z_ (¢(x) 9 (),

where Q. (0) = 2, Q(0). We write § for the greatest of the moduli of the
eigenvalues of Q. (0) and Q='(0). Let ¢,, &, > 0 be such that § = |§] +¢, % ¢,
< 1. We take a J-neighbourhood of the origin such that ||g(x)l| < ¢, for
llx|l < 6. Suppose that ¢(x) =(¢. (x), ¢-(x)) is a nontrivial C*-solution of
(32) for ||x|| <6 and is flat at zero. On choosing a suitable norm of the
matrix Q(0) and taking into account orthogonality of the operator A,, from
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(32) we obtain

ol < (131 + e el +e2lle (I = qlle (il lxll < 4,

whence it follows that ¢(x) =0.

(1) Next suppose that ¥, =0 and conditions (4) hold.

(iiA) Let. moreover. the sequence ¢, (1) be bounded. If ¥ =0, then the
case is reduced to the one considered in (i). Let ¥_ # 0. We show that

equation (2) has no local nontrivial C™-solution that is flat at zero. We put
x_ =0 1n (2):

@Ay x;, 00=Q(xy, 0 @(x,, 0 =0.

By (i), ¢(x;, 0) = 0. We differentiate equation (2) with respect to the variable
x_ and put x_ =0 again:

0y (A, X;,0)=Q(xy, 000, (x4, 0AZ!'=0.

By (4) the equation obtained satisfies the conditions of (i), hence, ¢ (x,, 0)
= 0. In exactly the same way one shows that all other derivatives of any
solution ¢ of (2) vanish on ¥,.

Now let the map ¢ that is flat at zero satisfy (2) for ||x|| < d. The above
reasoning shows that ¢ must be flat on &,. Therefore, for any v > 0 there
exists such a constant %, > 0 that ||@(x)]| < %.||x_|]" for ||x|| < J. From (2)
we obtain

k
(33) e(x)=([] QA" xNp(A™*x),  Ix|l <.
i=1
We choose a vector norm on R" so that |[A_']|=4<1. We put .#
= sup ||@(x)|| and choose v so that .#4" < 4 < 1. From (33) we have
x5

o ()| < . 756, 2% ||x_||" < 0, A%

The right-hand side of the inequality obtained tends to zero as k — x: that
1s, @(x) =0.

(11B) Now let the sequence o,(A4) be not bounded. In the case under
consideration it means that there 1s a Jordan block of dimension greater than
1 for some eigenvalue of A of modulus 1.

First we consider several particular cases. Let equation (2) have the form

(34) PpC+n, M—=0QKE, Mo, n=0

that is =2 and a two-dimensional Jordan block corresponds to the
eigenvalue 4 =1 of the operator A. Let us show that equation (34) has a
local nontrivial C*-solution that is flat at zero. We put ¢ (0, n) = g(x), where
g(n) is a C*-map that, together with its derivatives, tends to zero sufficiently
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quickly as n— 0. In accordance with equation (34) we put

U\ [k k=i LN (1)
1 Tkl k+i, 1 1

i=0 S

By means of (35) ¢ is determined as a C”*-map on each line n = ({/k, k
= 1,2, ... Since the origin is an isolated zero of the function detQ(x),

equalities (36) determine ¢ as a C*-map on cach line n ={/k, k= —1,
—2, ... (for a suitable choice of the map g). As k| — oc the lines n = (/k, k
= +1, +2,.... converge to the subspace ({, 0) and the value of ¢ on these

lines tends to zero for a suitable choice of the map g(n).

We write <~ for the bundle of lines: (=0, =0, n=C{_{k, k
= +1, +2,... We note that & is closed and A- and A !-invariant. Let
©o(C, n) be a C*-map of R? into C™ which is equal to ¢ (determined by (35),
(36)) on . We seeck a solution of equation (34) in the form ¢ = ¢y +¥,
where ¢ is a C*-map to be found that is flat at zero and is equal to zero on
7. We obtain the equation

(37) W (l+n, =0 Ny, n=yn

for ¢, where y({, n) = —@o({+n. M+Q((, Moo(l, n) s a C*-map that is
equal to zero on /. By Theorem 1 and Remark 3, equation (37) has a local
C”-solution ¢ that is equal to zero on . Then ¢y,+ i1s a local nontrivial
C ™ -solution of equation (34).

The existence of local nontrivial C™-solution of the equation

o(=C+n. —m=Q,ne(l,n)=0

(in the particular case when n =2 and a two-dimensional Jordan block
corresponds to the eigenvalue A = —1 of the operator A) can be proved
stmilarly.

We consider one more particular case. Let n =4 and two-dimensional
Jordan blocks correspond to the eigenvalues ¢ and e (8 # 0 (mod n)) of
the operator A. We can assume that the matrix A is in real normal form. We
consider the equation

(38) o(icosP—nsinB+C, Ssinf+ncosf+0, (cosf—0sinfi,
(sinff+0cosP)y—Q(E, n. L, O e(E, n. L.0)=0.

We put ¢(0, 0, {, 0) =g((, ), where g 1s a C*-map that, together with its
derivatives, tends to zero sufficiently quickly as ({, 8) — 0. In accordance with

5 — Annales Polonici Math, 49.)
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(38) we put

PR ' !
q)(u.E/l,u)= (H (————/1, u, ZA,‘“x))g (;(A:_k“)’

| g k+ 1Y) (/1 '
(p( A/l ”W ( ﬂ 0 (-—l A%, k/l‘l”u))g(z/l}""u),

where

cosff —sinf )
sin cosf/)

By means of these equalities ¢ is determined as a C*-map (for a suitable
choice of the map g¢(¢,0) on each plane v=1/kA,u, v=(, 0., k
= +1. +2,... As |k]| = ¢ these planes converge to the plane ¢ = 0 and the
value of ¢ on these planes tends to zero for a suitable choice of the map g (v).
Further reasoning is simtlar to that in the two-dimensional case.

Next we consider the general case. Let the matrix A contain a Jordan
block of dimension greater than | corresponding to the eigenvalue 4 = 1. Let
{, n be the variables that correspond to the first two rows of this block. We
write x’ for the set of remaining variables, ie, x =((. 5, x’). We restrict
equation (2) to the suhspace (. n, 0):

(39) o+ 1, 0= n. 0, n 0=

As we have shown above, equation (39) has a local nontrivial C *-solution
@o(l, n). We seek the solution of (2) in the form ¢(x) = @y (L, )+ (x),
where ¥ (x) is a C*-map to be [ound that is flat at zero and is equal to zero
on the subspace (, 1. 0). For  we obtain an equation of type (1) with right-
hand side ;' (x) = —@q(C+n. M+ Q(X) @o(<. #) that 1s flat at zero and is equal
to zero on the subspace (¢, n, 0). By Theorem 1 and Remark 3, the equation
obtained has a local C™-solution ¥ that is flat at zero and is equal to zero
on the subspace ({, i, 0). Then the map ¢(x) = @o({, )+ ¥ (x) is a local
nontrivial C*-solution of equation (2). In the similar way one shows that
equation (2) has a nontrivial solution in the case when the matrix A contains
a Jordan block of dimension greater than 1 corresponding to the eigenvalue
e, B # 0 (mod 2n).

(111) Suppose now that ¥, # 0 but ¥_ = 0 and that conditions (4) plus
conditions (a), (b) of Theorem | hold.

(i1A) Let the sequence o, (A) be bounded. If the matrix Q(0) is nonsingu-
lar, then, on multiplying the both sides of (2) by @~ '(x) and substituting
A~ 'x for x, we reduce equation (2) to the one considered in (iiA).

On taking into account condition (a), we, finally, must consider equation

u=1(,n., A= (
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(2) with a matrix Q(x) that is nilpotent at zero. Like in the nonhomogeneous
case, the problem is reduced to the case when Q(0) = 0. Let a point xqe &,
be such that detQ(x,) # 0. Then, to construct a nontrivial solution of
equation (2) we consider a sequence of points x;, = A% xo, k=0, +1, +2, ...
Let yo # 0 be a vector from the space C™. In accordance with (2) we put

(P(-\'k)=(n Q(xk—.')).vm k=1,2,...,

i=1
—k-1

(40) ’Ck)"‘ 1_[ Q 'xk+| Yo, k= —1, —'2,...,

@ (xo) = yo-

By the choice of the point x4, ¢(x,) #0, k =1,2,... Let ¢o: R" = C" be a
C™-map that is flat at zero and assumes the values determined by (40) on the
sequence {x,}. We seek a solution of (2) in the form ¢ = ¢,+y. For ¢ we
obtain an nonhomogeneous equation whose right-hand side is flat at zero
and is equal to zero on the sequence {x,}. By Theorem 1 and Remark 3, this
equation has a local C*-solution ¥ that is flat at zero and is equal to zero
on the sequence {x,}. Then, ¢ = @o+y is a local nontrivial (¢(x,) # 0, k
=0,1,2,..) C®solution of (2) that is flat at zero.

(iiiB) 1f the -sequence a,(A) is not bounded, then the proof of local
nontrivial C*-solvability of equation (2) is carried out just as the proof
of (nB).

(iv) Finally, suppose that ¥, # 0 and ¥ _ # 0. Since we are interested
in a local solution of equation (2), we may assume that Q(x) = E outside a
certain o-neighbourhood of the origin. Let 4,, A, be the eigenvalues of the
operator A such that |4,| <1 <|4,|. We write h;(x) for linear functionals
satisfying h;(Ax) = 4; h;(x), i =1, 2. We take numbers a, f >0 such that
[A;1%1451% = 1. We put 6(x) = |h; (x)I*|h; (x)}f. Consider the map

e—(a(.t))—l(n Q(A_kx))")Ov X4 7&0$
(X) {0 k=1

41) ‘<, =0,

where y, # 0 is an arbitrary vector from C™. It is easy to check that map (41)
belongs to C™ and is a nontrivial solution of (2). Theorem 3 is completely
proved.

Proof of Theorem 2 (by using the lemma) is carried out similarly.
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