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Let Q = R", n > 2, be a compact domain with C* smooth boundary X = 02,
and let {A?}2, be the eigenvalues corresponding to the Dirichlet problem for
the Laplace equation

(1) —Au=4*uin Q and u=0 on Q.

Consider the distributio_n

®) alt) = f cos A;t €S'(R).
j=1

J

It turns out that sing supp o is relevant to the periods of periodic geodesics in
Q.

S
Let y= (J L be a curve in Q such that every [, either is an arcx; x, 4+,
k=1

which is a geodesic on the smooth surface X = 0Q or is a straightline
segment [x,, X,+ ], and the points x, X5, ..., X5, X;+; = X; belong to X. Set
for convenience xo = x;, lo =1L, L+, =1;. The curve y will be called a
periodic geodesic in  if the following conditions hold: ‘

(i) if [, = X, X, ., is a geodesic on 0%, then the curvature of 0Q vanishes
at x,.and x;,,,

(ii) for every k=1, ..., s either [, or [, is a segment, and if both I,
and [, ,, are segments, then they are not tangent to 0Q at x,,, and satisfy
the usual law of reflection at x,,, with respect to 0Q,

(i) if I,_, =x,_,x, is a geodesic on AQ and I, = [x,, x,,,] is a
segment, then [, is tangent to /,_, (and then to 0Q) at x, and X, x,,, is an
asymptotic direction for 0Q at x,,

@iv) if L_; =[x, x,] is a segment and [, = X, x,,, is a geodesic on
0Q, then I, _, is tangent to [, (and then to dQ) at x, and X,_, x, is an
asyptotic direction for 0Q at x,.

[307]
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Fig. 1

The number T, = Y ||, where [} is the length of I, is called the period
k=1

(length) of y. By ¥, we denote the set of all periodic geodesics in Q.

It follows from the results of Anderson-Melrose [1] and Melrose-
Sjostrand [13] that if for every xe€dQ the curvature of 0Q at x does not
vanish of infinite order, then
(3) singsuppo < {—T,: YL, U (0} U (T,: yeLy}.

This is a special case of the so called Poisson relation for manifolds with
boundary. In this connection we should mention the following question
raised by M. Kac [6]: is it true that if Q, and Q, are two domains in R?
with the same spectrum of the Laplacian, then , and 2, are congruent?
This problem seems to be very difficult, although it is well known that the
spectrum {A}} carries some information about the geometry of Q (cf. [6], [3],
[51, [10], [12)].

In this paper some results of V. Petkov and the author are presented,
which aim at showing that for generic domains Q in R? the Poisson relation
(3) becomes an equality.

To explain what we mean by “generic” we will use the space CZ, (X, R")
of all C* embeddings X — R" endowed with the Whitney C*® topology (cf.
[2]). This is a Baire space, therefore every residual subset (a set containing a
countable intersection of open dense sets) of Co, (X, R") is dense in it. If Y is
a smooth connected compact (n— 1)-dimensional submanifold of R", by Qy
we denote the compact domain in R" with dQy, = Y. A property 2 of the
smooth connected compact (n—1)-dimensional submanifolds X of R" is
called generic if, for every such X, the set of all feC2, (X, R") such that Y
= f(X) has property # is a residual subset of CZ2, (X, R"). By generic
domains we mean domains of type Q4 for generic X.

Let y = U I, be a periodic geodesic in . If all I, are segments, then y is

called a pertodtc reflecting ray (or a closed billiard trajectory) in Q. In this
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case the points x,, ..., x, are called reflection points of y. If, moreover, some
. = [xx, Xx+1] is orthogonal to X at x; or x,,,, then y is called a symmetric
reflecting ray ([10]). Otherwise, y is called a non-symmetric reflecting ray. In
the first case either s =2 or s> 2 and exactly two segments of y are
orthogonal to X at some of their endpoints. Denote by m the number of all
different segments of y (for symmetric y we should take only one half of all
segments in ), and let ¢ be the number of all different reflection points of y.
The number d(y), defined by d(y) = m—t for non-symmetric y and by d(y)
=m+1—t for symmetric y, is called the defect of y ([10]). To explain the
geometrical meaning of d(y), observe that if y is non-symmetric, then d(y) =0
iff y passes only once through each of its reflection points. Clearly, in general
d(y) could be non-zero.

If every segment I, of a periodic reflecting ray y in Q is not tangent to
0Q at any of its (interior) points, then y will be called an ordinary reflecting
ray. There is a very important object related to such a ray y namely, the
linear Poincaré map P,. To define this map consider a point x lying on the
open segment I, =(x,, x,) and a hyperplane H passing through x and
orthogonal to ;. Set u = (x, — x,)/|lx, — x,||. Taking (x’, u)eH xS"~ !, consi-
der the ray 7' starting at x’ in direction u’ and reflecting from 0Q following
the usual law of reflection. It is easy to see that there is an open neighbour-
hood U of (x, u) in H xS"~! such that for (x", u') eU after s reflections on 0Q
the ray y' intersects H transversally at some point y in some direction
veS"~! (see Figure 2). The map #,: U »H xS""!, defined by #,(x', )
= (y, v) is called the Poincaré map related to y. The linear Poincaré map is
given by

Fig. 2

(cf. [4] or [16]). It is known that, choosing another H, we get a new map P,
which is conjugate to the previous one. Therefore the spectrum spec P, of P,
does not depend on the choice of H. If spec P, does not contain roots of 1,
then y is called a non-degenerate periodic reflecting ray. It is well known that
spec P, gives some information on the dynamical properties of y. For
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example, non-degenericity of y implies y is isolated among all periodic
reflecting rays with s reflection points. This means that there is a neighbour-
hood V of (x,u) in U such that if some (x’, u’)eV generates a periodic
reflecting ray 7, then 9’ has more than s reflection points.
' The starting point of our work is an important theorem of Guillemin
and Melrose [4] which says, in particular, that if y € ¥, is a non-degenerate
(ordinary) periodic reflecting ray in Q and T, # T; for every 8 €.%,\{y},
then T, belongs to singsupp o (t).

It is quite natural to ask if the assumptions of this theorem are fulfilled
for generic domains Q. '

THEOREM 1. The following properties are generic for the compact domains
Q in R™

(a) ([15]) Every two different periodic reflecting rays in Q have rationally
independent periods;

(b) ([19]) d(y) = O for every periodic reflecting ray y in Q;

(c) ([14], [16], [17])) Every periodic reflecting ray in Q is ordinary and
non-degenerate:

(d) ([17]) For any integer s = 2 the number N ,(s) of the periodic reflect-
ing rays in Q with s reflection points is finite;

(e) ([14], [15], only for n=2) There are no points on 02 where the
curvature of 0Q vanishes of second order, and every periodic geodesic in
which does not coincide with 0Q is a periodic reflecting ray.

The proofs of the above results are based on the multijet transversality
theorem (cf. ch. II, theorem 4.13 in [2]). Using different methods Lazutkin
[10] proved that for generic strictly convex domains Q in R? every periodic
reflecting ray y in Q is non-degenerate and d(y) < 2. It should be mentioned
that our proof of the second part of (c) (which is, in fact, the first part of a
Kupka-Smale type theorem for billiards) uses essentially the representation
of the Poincaré map P, found by Petkov and Vogel [18].

As regards (d), it will be interesting to find the asymptotic of {N,(s)]2 ;.
As is well known, the growth of the number P(T) of periodic geodesics of
length less than T has been studied for Riemannian manifolds without

boundary. In particular, for manifolds of negative curvature lim log P(T)/T
T—-w®

exists and equals the topological entropy of the geodesic flow (cf. [11], [7]).
For some domains Q = R? the growth of P(T) for the billiard flow can be
obtained from the estimate from above of the metric entropy (cf. [8]).
Probably, the assertion in (¢) remains true for n = 3. However, it will be
quite surprising if it turns out to be true for some n > 4.
Using Theorem 1 and the result of Guillemin and Melrose [4] mentioned
above, we get the following.
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THeoreM 2 ([14], [15])). For generic domains Q in R* we have
singsuppo(t) = | = T;: YL, U0} UIT,: yEZy),

where o (t) is defined by (2) and {A?}2, is the spectrum of the problem (1).
Moreover, for every y€.¥, we can recover the spectrum of the Poincaré map
P, from {A}}152,.

The last statement means that if Q, and Q, are two generic domains in
R? with one and the same spectrum of the Laplacian, then there is a
bijection ¢: L, — %,, such that T,, =T, and spec P, =specP, for
every y€Ly, .

Note that in the above theorem € is not assumed to be convex. Marvizi
and Melrose [12] proved that for every strictly convex Q there exists an
integer N (€) such that if y is a periodic reflecting ray in Q with n reflection
points, n > N (), and rotation number 1, then T, belongs to singsuppo.

Probably, the statement of Thedrem 2 is true for n > 2 too. To prove
this one might use again the result of Guillemin and Melrose [4] and some
parts of Theorem 1. However, in this case some additional difficulties appear.
For example, %, includes the periodic geodesics lying on 0Q2, and one
should prove that for generic Q, T,/T; is not rational for any two different
elements y and 8 of .&,. There are three possibilities for y and é: (1) y and 6
are periodic reflecting rays; (2) y and & are geodesics on 9Q; (3) y is a
periodic reflecting ray in © and é is a geodesic on dQ. Klingenberg and
Takens [9] proved that given a compact smooth manifold X there is a
residual set # of Riemannian metrics on X (£ is residual in the space of all
Riemannian metrics on X) such that for g e ®, every geodesic y on (X, g) has
a non-degenerate Poincaré map. In connection with the problem discussed
above, it would be important to prove a similar result for X = R" consider-
ing only the Riemannian metrics on X induced by smooth embeddings f: X
—R"
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