XLII

1979

COMPLETELY STABLE MEASURES ON HILBERT SPACES

 $\mathbf{B}\mathbf{Y}$

B. MINCER AND K. URBANIK (WROCŁAW)

This study continues the investigations of completely stable probability measures started by Parthasarathy in [3]. He proved that every non-degenerate completely stable probability measure on the at least two-dimensional Euclidean space is Gaussian. Our aim is to prove that in the infinite-dimensional case there exist non-Gaussian completely stable measures. Moreover, we shall give a characterization of completely stable Gaussian measures in terms of proper values of their covariance operators.

Let H be a real separable Hilbert space with the inner product (\cdot, \cdot) and the norm $\|\cdot\|$. By a probability measure on H we shall understand a countably additive non-negative set function μ on the class of Borel subsets of H with the property $\mu(H)=1$. For two probability measures μ and ν on H, we shall denote by $\mu*\nu$ the convolution of μ and ν . Further, by B(H) we shall denote the set of all continuous linear operators on H. Given a probability measure μ on H and on operator A from B(H), by $A\mu$ we shall denote the probability measure defined by the formula $A\mu(E)=\mu\left(A^{-1}(E)\right)$ for Borel subsets E of H. In other words, if μ is the probability distribution of an H-valued random variable ζ , then $A\mu$ is the probability distribution of $A\zeta$. In what follows δ_x will denote a degenerate probability measure concentrated at the point x ($x \in H$).

A probability measure μ on H is said to be completely stable if for any pair $A, B \in B(H)$ there exist $C \in B(H)$ and $x \in H$ such that

$$A\mu * B\mu = C\mu * \delta_x.$$

Suppose that S is the covariance operator of a completely stable probability measure μ . Since ASA^* is the covariance operator of $A\mu$, we infer that for any pair A, $B \in B(H)$ there exists an operator $C \in B(H)$ such that

$$ASA^* + BSB^* = CSC^*.$$

LEMMA 1. Non-degenerate completely stable measures on infinite-dimensional spaces H are not concentrated on finite-dimensional hyperplanes.

Proof. Suppose that μ is completely stable and concentrated on a finite-dimensional hyperplane of H. Let k be the least integer for which there exist a k-dimensional subspace H_0 of H and an element x_0 of H such that μ is concentrated on the hyperplane $H_0 + x_0$. Since H is infinite dimensional, we can find a unitary operator U on H with the property $UH_0 \subset H_0^{\perp}$. Let U be an operator satisfying the condition $\mu * U\mu = C\mu * \delta_x$ for a certain element $x \in H$. Then $CH_0 = H_0 \oplus UH_0$ and, consequently, $k \geqslant \dim CH_0 = 2k$ which yields k = 0. Thus μ is degenerate which completes the proof.

LEMMA 2. Let $a_1 \geqslant a_2 \geqslant \ldots$ and $b_1 \geqslant b_2 \geqslant \ldots$ be the sequences of eigenvalues of covariance operators S and CSC^* $(C \in B(H))$, respectively. Then the inequality

$$b_n \leqslant ||C||^2 a_n \quad (n = 1, 2, ...)$$

holds.

Proof. Taking into account the formula for eigenvalues of non-negative operators ([1], Theorem 3, Chapter 10.4) we have

$$b_1 = \max\left\{rac{(CSC^*x,x)}{\|x\|^2}: x \in H
ight\},$$
 $b_{n+1} = \min_{m{v}_1,m{v}_2,\ldots,m{v}_n \in H} \max\left\{rac{(CSC^*x,x)}{\|x\|^2}: x \in H, (x,y_j) = 0, j = 1, 2, \ldots, n
ight\}.$ Consequently,

$$b_1 \leqslant \|C\|^2 \max \left\{ \frac{(SC^*x, C^*x)}{\|C^*x\|^2} : x \in H \right\} \leqslant \|C\|^2 a_1$$

and

$$\begin{split} b_{n+1} \leqslant \|G\|^2 \min_{u_1,u_2,\ldots,u_n \in H} \max \left\{ \frac{(SO^*x, C^*x)}{\|C^*x\|^2} : x \in H, (x, Cu_j) = 0, \\ j = 1, 2, \ldots, n \right\} \\ \leqslant \|G\|^2 \min_{u_1,u_2,\ldots,u_n \in H} \max \left\{ \frac{(Sy, y)}{\|y\|^2} : y \in H, (y, u_j) = 0, j = 1, 2, \ldots, n \right\} \\ \leqslant \|G\|^2 a_{n+1}, \end{split}$$

which completes the proof.

Suppose we have a sequence $a_1 \geqslant a_2 \geqslant \dots$ of positive numbers such that the sequence

(3)
$$a_n/a_{2n}$$
 $(n = 1, 2, ...)$ is unbounded.

We note that for every pair n, m of positive integers there exists an index k(n, m) satisfying the condition $a_n \leqslant ma_j$ for $j \leqslant k(n, m)$ and $a_n > ma_j$ otherwise. Evidently,

(4)
$$k(n+1, m) \ge k(n, m) \quad (n, m = 1, 2, ...).$$

Now we prove two lemmas concerning the sequence a_1, a_2, \ldots and the indices k(n, m).

LEMMA 3. There exists a subsequence $n_1 < n_2 < \dots$ of positive integers such that

(5)
$$n_m > l(m-1) \quad (m = 1, 2, ...),$$

(6)
$$l(m) > k(n_m, m) \quad (m = 1, 2, ...),$$

where l(0) = 0 and

$$l(m) = 2(-1)^m \sum_{j=1}^m (-1)^j n_j \quad (m = 1, 2, \ldots).$$

Proof. It is evident that the inequality $2n \le k(m, 1)$ for all n would imply $a_n \le a_{2n}$ (n = 1, 2, ...). But this contradicts (3). Consequently, we can choose an index n_1 with the property $l(1) = 2n_1 > k(n_1, 1)$. Proving by induction we assume that the indices $n_1, n_2, ..., n_{m-1}$ $(m \ge 2)$ are chosen and fulfil (5) and (6). We note that the inequality

$$2n-l(m-1) \leqslant k(n,m)$$

for all n > l(m-1) would imply

(7)
$$a_n \leqslant ma_{2n-l(m-1)} \quad (n > l(m-1)).$$

But this inequality yields

(8)
$$a_{2n-l(m-1)} \leq ma_{4n-3l(m-1)} \quad (n > l(m-1))$$

because 2n-l(m-1) > l(m-1). Since for sufficiently large n the inequality 4n-3l(m-1) > 2n holds, we have, by virtue of (4) and (8),

$$a_{2n-l(m-1)} \leqslant ma_{2n}$$

which, by (7), yields

$$a_n \leqslant m^2 a_{2n}$$

for sufficiently large n. But this contradicts assumption (3). Consequently, there exists an index n_m with properties (5) and

$$l(m) = 2n_m - l(m-1) > k(n_m, m).$$

The lemma is thus proved.

We define the permutation q of positive integers by setting

(9)
$$q(n_m+j) = l(m-1)+j \quad (j=1,2,...,n_m-l(m-1)),$$

(10)
$$q(l(m-1)+j) = n_m+j \quad (j=1,2,...,n_m-l(m-1)).$$

LEMMA 4. For every permutation p of positive integers the sequence $(a_n + a_{q(n)})/a_{p(n)}$ (n = 1, 2, ...) is unbounded.

Proof. Contrary to this suppose that the sequence $(a_n + a_{q(n)})/a_{p(n)}$ (n = 1, 2, ...) is bounded for a permutation p. There exists then a positive integer m such that

$$a_n \leqslant m a_{p(n)}$$

and

$$(12) a_{q(n)} \leqslant m \, a_{p(n)}$$

for all indices n. By (4) and (11) the inequality

(13)
$$p(j) \leqslant k(n, m) \quad (j = 1, 2, ..., n)$$

holds. Moreover, (12) yields

(14)
$$p(r) \leq k(q(r), m) \quad (r = 1, 2, ...).$$

Setting $r = n_m + j$ $(j = 1, 2, ..., n_m - l(m-1))$, we have, by (9), $q(r) = l(m-1) + j \le n_m$

which, by virtue of (4) and (14), implies

$$p(n_m+j) \leqslant k(n_m, m) \quad (j = 1, 2, ..., n_m-l(m-1)).$$

On the other hand, setting $n = n_m$ into (13), we get

$$p(j) \leqslant k(n_m, m) \quad (j = 1, 2, \ldots, n_m).$$

Thus we have proved that the permutation p transforms at least $2n_m-l(m-1)$ indices into positive integers less than or equal to $k(n_m, m)$. Since $l(m)=2n_m-l(m-1)$, we have the inequality $l(m) \leq k(n_m, m)$ which contradicts (6). The lemma is thus proved.

The following statement is a direct consequence of Lemma 4.

COROLLARY 1. Let $b_1 \geqslant b_2 \geqslant \ldots$ be a rearrangement of the terms of the sequence $a_n + a_{q(n)}$ $(n = 1, 2, \ldots)$. Then the sequence b_n/a_n $(n = 1, 2, \ldots)$ is unbounded.

It is very easy to verify that every probability measure the covariance operator of which has only a finite number of positive eigenvalues is concentrated on a finite-dimensional hyperplane of H.

THEOREM 1. Suppose that

$$\int\limits_{H}\|x\|^{2}\mu(dx)<\infty$$

and that μ is not concentrated on any finite-dimensional hyperplane of H. Let $a_1 \geqslant a_2 \geqslant \ldots$ be the sequence of all positive eigenvalues of the covariance operator of μ . If the sequence a_n/a_{2n} $(n=1,2,\ldots)$ is unbounded, then μ is not completely stable.

Proof. Let S denote the covariance operator of μ and let e_1, e_2, \ldots be an orthonormal sequence of eigenvectors of S corresponding to the eigenvalues a_1, a_2, \ldots , respectively. Taking the permutation q defined by (9) and (10) we define a unitary operator U by setting $U^*e_n = e_{q(n)}$ $(n = 1, 2, \ldots)$ and assuming U to be the identity operator on the orthogonal complement of the subspace induced by e_1, e_2, \ldots It is easy to verify that the covariance operator $S + USU^*$ of the probability measure $\mu * U\mu$ has the eigenvectors e_n corresponding to the eigenvalues $a_n + a_{q(n)}$ $(n = 1, 2, \ldots)$, respectively. Contrary to the assertion of the theorem let us suppose that μ is completely stable. Then there exist an operator $C \in B(H)$ and an element $x \in H$ such that $\mu * U\mu = C\mu * \delta_x$. Moreover, by (2), $CSC^* = S + USU^*$. Thus the sequence $b_1 \geqslant b_2 \geqslant \ldots$ of positive eigenvalues of CSC^* is a rearrangement of the sequence $a_n + a_{q(n)}$ $(n = 1, 2, \ldots)$. By Lemma 2 the sequence b_n/a_n $(n = 1, 2, \ldots)$ is bounded which contradicts Corollary 1. This completes the proof.

THEOREM 2. Suppose that the Hilbert space H is infinite dimensional and e_1, e_2, \ldots is an orthonormal sequence in H. Further, suppose that ξ_1, ξ_2, \ldots is a sequence of independent identically distributed real-valued random variables, c_1, c_2, \ldots is a sequence of positive numbers, c_n/c_{2n} $(n = 1, 2, \ldots)$ is bounded, and the series $\sum_{n=1}^{\infty} c_n^2 \, \xi_n^2$ converges almost surely. Then the probability distribution of the H-valued random variable

(15)
$$\zeta = \sum_{n=1}^{\infty} c_n \, \xi_n e_n$$

is completely stable.

Proof. The boundedness of c_n/c_{2n} (n = 1, 2, ...) enables us to define two auxiliary linear operators T and V on H by assuming

$$Te_{2n} = \frac{c_n}{c_{2n}}e_n, \quad Te_{2n-1} = 0 \quad (n = 1, 2, ...),$$

$$Ve_{2n-1} = \frac{c_n}{c_{2n-1}} e_n, \quad Ve_{2n} = 0 \quad (n = 1, 2, ...)$$

and T = V = 0 on the orthogonal complement of the subspace generated by e_1, e_2, \ldots Put

$$\zeta_1 = \sum_{n=1}^{\infty} c_n \, \xi_{2n} \, e_n$$
 and $\zeta_2 = \sum_{n=1}^{\infty} c_n \, \xi_{2n-1} \, e_n$.

The random variables ζ_1 and ζ_2 are independent and have the same probability distribution as ζ . Moreover, for any pair A, B from B(H), setting C = AT + BV, we have the formula

$$C\zeta = A\zeta_1 + B\zeta_2$$

which shows that ζ has the completely stable probability distribution. The theorem is thus proved.

Example 1. Every sequence ξ_1, ξ_2, \ldots of independent identically distributed random variables with a finite variance and the sequence $c_n = 1/n \ (n = 1, 2, \ldots)$ fulfil the conditions of Theorem 2. In particular, if we choose ξ_1, ξ_2, \ldots to be not infinitely divisible, then also the random variable (15) is not infinitely divisible.

Example 2. Taking *p*-stable random variables $(0 as the random variables <math>\xi_1, \xi_2, \ldots$ and $c_n = 1/n^r$ $(n = 1, 2, \ldots)$, where rp > 1, we infer that the random variable (15) has the infinite *p*-th moment, i.e. $\mathbb{E} \| \zeta \|^p = \infty$.

THEOREM 3. Suppose that the Hilbert space H is infinite dimensional. Then a non-degenerate Gaussian measure on H is completely stable if and only if its covariance operator has infinitely many positive eigenvalues $a_1 \ge a_2 \ge \ldots$ and the sequence a_n/a_{2n} $(n = 1, 2, \ldots)$ is bounded.

Proof. First let us assume that a non-degenerate Gaussian measure is completely stable. Then, by Lemma 1, it is not concentrated on any finite-dimensional hyperplane of H. Consequently, its covariance operator has infinitely many positive eigenvalues $a_1 \ge a_2 \ge ...$ Taking into account Theorem 1, we infer that the sequence a_n/a_{2n} (n=1,2,...) is bounded.

Conversely, suppose that ζ is an H-valued Gaussian random variable and that its covariance operator has infinitely many positive eigenvalues $a_1 \geqslant a_2 \geqslant \ldots$ such that the sequence a_n/a_{2n} $(n=1,2,\ldots)$ is bounded. Then ζ can be written as

$$\zeta = x_0 + \sum_{n=1}^{\infty} \sqrt{a_n} \, \xi_n e_n,$$

where x_0 is the mean value of ζ , e_1 , e_2 , ... is an orthonormal sequence in H, and ξ_1 , ξ_2 , ... are independent standard Gaussian random variables ([2], Theorem 6.3.2). Now our statement is a direct consequence of Theorem 2.

REFERENCES

- [1] N. Dunford and J. T. Schwartz with the assistance of W. G. Bade and R. G. Bartle, *Linear operators*, Part II, New York London 1963.
- [2] U. Grenander, Probabilities on algebraic structures, New York London Stockholm Göteborg Uppsala 1963.

[3] K. R. Parthasarathy, Every completely stable distribution is normal, Sankhyā: The Indian Journal of Statistics, Series A, 35 (1973), p. 35-38.

INSTITUTE OF MATHEMATICS WROCŁAW UNIVERSITY, WROCŁAW

Regu par la Rédaction le 27. 9. 1978