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This study continues the investigations of completely stable prob-
ability measures started by Parthasarathy in [3]. He proved that every
non-degenerate completely stable probability measure on the at least
two-dimensional Euclidean space is Gaussian. Our aim is to prove that
in the infinite-dimensional case there exist non-Gaussian completely
stable measures. Moreover, we shall give a characterization of completely
stable Gaussian measures in terms of proper values of their covariance
operators.

Let H be a real separable Hilbert space with the inner product (-, )
and the norm |-||. By a probability measure on H we shall understand
a countably additive non-negative set function x on the class of Borel
subsets of H with the property u(H) = 1. For two probability measures
4 and v on H, we shall denote by u*» the convolution of 4 and ». Further,
by B(H) we shall denote the set of all continuous linear operators on H.
Given a probability measure x4 on H and on operator 4 from B(H), by
Au we shall denote the probability measure defined by the formula
Au(E) = u(4A~'(E)) for Borel subsets E of H. In other words, if u is
the probability distribution of an H-valued random variable {, then Au
is the probability distribution of A{. In what follows é, will denote a de-
generate probability measure concentrated at the point = (x € H).

A probability measure x on H is said to be completely stable it for
any pair 4, B € B(H) there exist ( e B(H) and « € H such that

(1) ApuxBu = Cuxd,.

Suppose that § is the covariance operator of a completely stable
probability measure u. Since 48A* is the covariance operator of Au,

we infer that for any pair 4, B € B(H) there exists an operator C € B(H)
such that

(@) ASA*+BSB* = CSC*.

LEMMA 1. Non-degenerate completely stable measures on infinite-
-dimensional spaces H are not concentrated on finite-dimensional hyperplanes.
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Proof. Suppose that u is completely stable and concentrated on
& finite-dimensional hyperplane of H. Let k& be the least integer for which
there exist a %k-dimensional subspace H, of H and an element z, of H
such that x is concentrated on the hyperplane H,4- #,. Since H is infinite
dimensional, we can find a unitary operator U on H with the property
UH, < Hi . Let O be an operator satistying the condition u* Uu = Ou»Jd,
for a certain element # € H. Then CH, = H,® UH, and, consequently,
k> dimCH, = 2k which yields ¥ = 0. Thus y is degenerate which com-
pletes the proof.

LEMMA 2. Let a, > a3 > ... and by > by > ... be the sequences of etgen-
values of covariance operators 8 and OSC* (C e B(H)), respectively. Then
the imequality

b, < Olfa, (n=1,2,...)
holds.

Proof. Taking into account the formula for eigenvalues of non-
-negative operators ([1], Theorem 3, Chapter 10.4) we have

b, =ma.x{%"f—’w—)- : weH},
bpyr = vl.vﬁvﬂamu{% :oeH,(w,y) =0,j=1,2,..., n}.
Oonsequently,
by < nou’max{ (ST;;?@ twe H} < I0|Fa,
and
b,y < IGIP ul,u:,l.].i.l,lu,,ea max {—@W :2eH,(z,Cu) =0,

° S ) .
1sUGseces

< "Gllza'n-u’
which completes the proof.

Suppose we have a sequence a, > a; > ... of positive numbers such
that the sequence

(3) a,la,, (n =1,2,...) is unbounded.
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We note that for every pair n, m of positive integers there exists
an index k(n,m) satisfying the condition a, < ma; for j < k(n, m) and
a, > ma; otherwise. Evidently,

(4) kn+1,m)=k(n,m) (n,m =1,2,...).

Now we prove two lemmas concerning the sequence a,, a,, ... and
the indices k(n, m).

LeMMA 3. There exists a subsequence m, < ny < ... of positive tntegers
such that

(5) Ny >I(m-1) (m=1,2,..),
(6) l(m)> k(ng,,m) (m=1,2,...),
where 1(0) =0 and

I(m) =2(—1)"'2":‘(—1)'n, (m=1,2,...).

J=1

Proof. It is evident that the inequality 2n < k(m, 1) for all n would
imply a, < a,, (n =1,2,...). But this contradicts (3). Consequently, we
can choose an index n, with the property I(1) = 2n, > k(n,, 1). Proving
by induction we assume that the indices n,,7gy ..., N,_, (M= 2) are
chosen and fulfil (5) and (6). We note that the inequality

2n—1l(m—-1) < k(n, m)
for all n > I(m—1) would imply
(7) Op < MByy_ym—yy (7> U(m—1)).
But this inequality yields

(8) Con—im—1) S MByy_yym—1y (1 > l(m—1))

because 2n —I(m —1) > l(m—1). Since for sufficiently large »n the ine-
quality 4n —31(m —1) > 2n holds, we have, by virtue of (4) and (8),

azn—l(m—l) < ma,,
which, by (7), yields
a, < mia,,

for sufficiently large n. But this contradicts assumption (3). Consequently,
there exists an index =,, with properties (5) and

l(m) = 2n,—1l(m—1) > k(n,, m).

The lemma is thus proved.
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We define the permutation g of positive integers by setting
(9) g(ny+j) =lm-1)+j (j =1,2,...,n,—1(m-1)),
(10) glm—=1)+j) =np+j (J =1,2,...;0,—1l(m—1)).

LEMMA 4. For every permulation p of positive imtegers the sequence
(@, + @yn) [0y (m =1,2,...) is unbounded.

Proof. Contrary to this suppose that the sequence (a,+ ayy)) /@y,

(n =1,2,...) is bounded for a permutation p. There exists then
a positive integer m such that

(11) G, < My

and

(12) Ggin) S MBp(n)

for all indices n. By (4) and (11) the inequality
(13) p(H)<kin,m) (j=1,2,...,n)
holds. Moreover, (12) yields

(14) p(r)<klg(r),m) (r=1,2,...).

Setting r =,+j (j =1, 2,...,n,—1l(m—1)), we have, by (9),
q(r) =lm-1)+j<n,
which, by virtue of (4) and (14), implies
p(”m'l"j) < k('”’m’ 'm) (.7 = 19 2’ °ry ”m_l(m—l))'
On the other hand, setting n = n,, into (13), we get
P <Ek(npym) (J =1,2,...,n0,). —

Thus we have proved that the permutation p transforms at least
2n,, —l(m —1) indices into positive integers less than or equal to k(n,,, m).
Since I(m) = 2n,—1l(m—1), we have the inequality I(m)< k(n,, m)
which contradicts (6). The lemma is thus proved.

The following statement is a direct consequence of Lemma 4.

COROLLARY 1. Let b, > b, > ... be a rearrangement of the terms of the
sequence a,+ 8y, (n =1,2,...). Then the sequence b,la, (n =1,2,...)
18 unbounded.

It is very easy to verify that every probability measure the covariance
operator of which has only a finite number of positive eigenvalues is
concentrated on a finite-dimensional hyperplane of H.

THEOREM 1. Suppose that
[ llwlP u(dw) < o0
H



STABLE MEASURES 305

and that u i8 not concenirated on any finite-dimensional hyperplane of H.
Let a, > a, > ... be the sequence of all positive eigenvalues of the covariance
operator of u. If the sequence a,fa,, (n =1,2,...) 18 unbounded, then u 8
not completely stable.

Proof. Let 8 denote the covariance operator of 4 and let e, ¢,, ... be
an orthonormal sequence of eigenvectors of 8 corresponding to the eigen-
values a,, @,, ..., respectively. Taking the permutation ¢ defined
by (9) and (10) we define a unitary operator U by setting U'e, = €ain)
(n =1,2,...) and assuming U to be the identity operator on the ortho-
gonal complement of the subspace induced by e,,e4,... It is easy to
verify that the covariance operator S+ USU"* of the probability measure
p* Up has the eigenvectors e, corresponding to the eigenvalues a,+ ayy,
(n =1, 2,...), respectively. Contrary to the assertion of the theorem let
us suppose that u is completely stable. Then there exist an operator
C e B(H) and an element x € H such that u» Uu = Cu=d,. Moreover,
by (2), CSC* = 8+ USU*. Thus the sequence b, >b,>... of positive
eigenvalues of (SC* is a rearrangement of the sequence a,+ ayy,
(n =1,2,...). By Lemma 2 the sequence b, /a, (n =1, 2,...) is bounded
which contradicts Corollary 1. This completes the proof.

THEOREM 2. Suppose that the Hilbert space H i8 infinite dimensional
and e, 6y,... 18 an orthonormal sequence in H. Further, suppose that
&1y &5y ... 18 a sequence of independent idemtically distributed real-valued
random wvariables, ¢,,¢C,,... 18 a 8sequence of positive numbers, c,lc,,

[}
(n =1,2,...)is bounded, and the series > cj &2 converges almost surely. Then
Nne=]

the probability distribution of the H-valued random variable

(15) C = Zm:cnfnen

ne=1

18 completely stable.

Proof. The boundedness of ¢,/c,, (»r = 1,2,...) enables us to define
two auxiliary linear operators T and V on H by assuming

Tey = ——6,y Toy, =0 (n=1,2,..),

n

Cn
Vezn— 1 =

€y Ve,=0 (n=1,2..)
2n—1

and T = ¥V = 0 on the orthogonal complement of the subspace generated
by e,,é6;, ... Put '

Cl = Z”anznen and Ca = S'cnfzn-len'

n=1 n=1

20 — Colloquium Mathematicum XLII
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The random variables {, and {, are independent and have the same
probability distribution as {. Moreover, for any pair 4, B from B(H),
setting C = AT+ BV, we have the formula

Cf = A, +Bi,

which shows that { has the completely stable probability distribution.
The theorem is thus proved.

Example 1. Every sequence §&,, &,,... of independent identically
distributed random variables with a finite variance and the sequence
o, =1/n(n =1,2,...) fulfil the conditions of Theorem 2. In particular,
if we choose §,, &,, ... to be not infinitely divisible, then also the random
variable (15) is not infinitely divisible.

Example 2. Taking p-stable random variables (0 < p < 2) as the
random variables &;, &;,... and ¢, =1/n"(n =1,2,...), where rp > 1,
we infer that the random variable (15) has the infinite p-th moment,
ie. BILIP = oo.

THEOREM 3. Suppose that the Hilbert space H is infinite dimensional.
Then a non-degenerate Gaussian measure on H is completely stable if and
only if its covariance operator has infinitely many positive eigenvalues
a,>a,> ... and the sequence a,la,, (n =1,2,...) 18 bounded.

Proof. First let us assume that a non-degenerate Gaussian measure
is completely stable. Then, by Lemma 1, it is not concentrated on any
finite-dimensional hyperplane of H. Consequently, its covariance operator
has infinitely many positive eigenvalues a, > a, > ... Taking into account
Theorem 1, we infer that the sequence a,/a,, (» =1, 2,...) is bounded.

Conversely, suppose that { is an H-valued Gaussian random variable
and that its covariance operator has infinitely many positive eigenvalues
a, > 6y > ... such that the sequence a,/a,, (n =1,2,...) is bounded.
Then { can be written as

C =“’o+szu0m
n=1
where z, is the mean value of {, ¢, 6;,... i8 an orthonormal sequence
in H, and &, &, ... are independent standard Gaussian random variables
([2], Theorem 6.3.2). Now our statement is a direct consequence of
Theorem 2.
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