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Sinks, sources and saddles for expansive flows with the
pseudo orbits tracing property

by Jerzy OmBACH (Krakow)

Abstract. Classification of points and basic sets for an expansive flow having the pseudo
orbits tracing property on a compact metric space is established. There are three diflferent types of
behavior like a sink, a source or a saddle.

1. Introduction. In this paper we examine expansive flows having the
pseudo orbits tracing property on a compact metric space. Such flows have
been distinguished by R. Thomas in [11] and examined in [11], [12] and [13].
They generalize Anosov flows, the restrictions of Axiom A flows to a basic set,
the suspensions of subshifts of finite type (see Thomas’ papers for more
information). Earlier P. Walters ([14]) introduced expansive homeomorphisms
having the pseudo orbits tracing property as a generalization of Anosov
diffeomorphisms, the restrictions of Axiom A difftomorphisms to a basic set
and subshifts of finite type. Such homeomorphisms also appear in the theory of
expanding maps ([10]). They have also been studied in [4]-[9]; we should note
here that by a result in [5] the above class of homeomorphisms is the same as
the class of Smale spaces ([14]) and the class of expansive homeomorphisms
with canonical coordinates ([8], [9]).

We examine the behavior of orbits near a given point, near a periodic
orbit and near a basic set (see Proposition 2.13 for definition) in terms of stable
and unstable “manifolds”. We show that an expansive flow having the pseudo
orbits tracing property admits only three different types of behavior, similar to
those in the differential and hyperbolic cases. We even use the terms sink,
source and saddle for those types of behavior. Our results correspond partiaily
to the similar results obtained for homeomorphisms in [6], [7] and [9]. We
take advantage of the techniques introduced by Thomas [11]-[13] and by
Bowen and Walters in {2]. We introduce (canonical) coordinates (Proposition
2.9), which are very useful in the sequel. The main results are stated in
Theorems 3.7 and 3.12 and remarks after them.
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2. Basic definitions and lemmas. We will denote by X a compact metric
space with a distance d and by F a flow (a continuous dynamical system) on X,
ie. F: XxR—X is continuous and for all xeR and t, seR, F(x, 0) = x,
F(F(x, t), s) = F(x, t+s5) (see [1] for the theory of dynamical systems). For
xe X and teR we shall often write xt instead of F(x, t) and more generally for
aset ] « R we put xI = {xte X: tel}. The set xR is said to be the orbit of x.
As we will consider expansive flows we assume without loss of generality that
the flow does not have fixed points, i.e. for every x, xt # x for some teR (see

2D

The following two lemmas are easy to prove:

2.1. LeMMA. For every T >0 and e > 0 there exists 6 > 0 such that if
d(x,y) <6 and |t| € T then d(xt, yt) < e.

2.2. LeMMa. For every ¢>0 there is 6 >0 such that if |t| <& then
d(xt, x) < e for any xeX.

2.3. LEMMA (cf. Lemma 2 in [2]). There is Ty > O such that for every t > 0
there exists & > O such that for any xe X, if d(x, xt) < e and |t| < Ty, then |t| < 7.

2.4. DEFINITION ([2]). The flow is expansive if for every r > O there is ¢ > 0
such that for any x, ye X and every continuous map h: R — R with #(0) = 0, if

d(yh(t), xt) < e for all teR
then y = xt, where |t| <r.

The following lemma gives the basic property of expansive flows. It is, in
fact, equivalent to expansiveness.

2.5. LemMA ([12, Lemma 8]). Let F be an expansive flow. Then for every
r > 0 there exists € > 0 with the property that for every & > O there exists T > 0

such that for any x, ye X and every increasing continuous map h: [—T, T]-R
with h(0) = 0, if

d(yh(t), xty<e for [t < T
then d(y, xt) < & for some |t| < r.
Fix r >0 and ¢ > 0. For given T >0 and 6 > 0 define

Ve = {(x, )eX x X: d(xh(r), yt) < e, d(xt, yg(t)) < e,
for all [t| < T with some continuous increasing maps
h,g: [T, TI-R, h(0) = g(0) = 0},

D;, = {(x, y)e X x X: d(x, yt;) < 6, d(xt,, y) < & for some
lt] < r, lt,] < 1}

Now, Lemma 2.5 can be stated as follows.
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2.6. LEMMA. Let F be an expansive flow. Then for every r > O there exists
g > 0 with the property that for every 6 >0 there exists T >0 such that
VT c Da'r.

Note that the above lemma corresponds to a basic lemma in the theory of
expansive homeomorphisms (see [14, Lemma 2]).

Let ©>0 and 6>0. A pair of doubly infinite sequences (..., x_,,
X—1s Xgs Xg5 Xgs eeeseny gy by, tg, by, ty, ...) Where x;€X and t,eR is said
to be a (4, 7)-pseudo orbit ((6, 1)-p.0.) if

(1) d(x;t;, x;+1) <6 and ¢, >1, for all i

A pair of finite sequences (xg, ..., X,; gy, ..., bx—1) is @ (8, 7)-chain if (1) holds
with i=0,1,2,...,n—1.

For a given (d, t)-p.o. or (9, 7)-chain we shall denote by x, » ¢ the point on
this p.o./chain t units from x,. More precisely,

n-1 n
( t), when ) f<t< Y g for t >0,
i=0 i=0

i
(2) xoxt= —y -
) when — Y ,<t<~— Y ¢ fort<0O.

i=n i=n+1

n—-1
xp(t— 3
i=0
-1
xa(t+ Y ¢
Here d7()=01if n<m.
A (0, 7)-p.o. 18 e-traced by xe X if there exists he Rep(R) (i.e. h is an
increasing homeomorphism R—R with h(0) = 0) such that for all teR

d(xh(t), xo*1) < €.
Fix 7> 0.

2.7. DeErFINITION (cf. [11, Definition 1.2], see also [3]). The flow has the
pseudo orbits tracing property (POTP) if for any ¢ > 0 there exists 6 > 0 such
that any (9, 7)-p.o. is e-traced by some xeX.

Thomas proved ([11, Proposition 1.4]) that this definition does not
depend on 7 > 0. He also proved the following.

2.8. ProposITION ([11, Proposition 4.3]). Assume the flow F has the
Jollowing finite pseudo orbits tracing property. For any & > 0 there exists 6 > 0
such that any (8, 1)-chain is e-traced. Then F has POTP.

From now on, we assume that the flow F is expansive and has POTP.

Now, we show that the flow has a property which corresponds to the one
known for homeomorphisms as (canonical) coordinates. More details about
coordinates will appear in another paper.

For an interval I < R containing the origin we denote by Rep(I) the set of
increasing homeomorphisms I — I fixing the origin. For ¢ > 0 and xe X we
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define the e-stable and e-unstable “manifolds” at x:

W (x)= {yeX: d(yh(), xt) <, for all ¢t >0, with some heRep[0, w0},
We(x) ={yeX: d(yh(t), xt) <e, for all t <0, with some heRep(—c0, 0]}.
We also put
By = {(x, )eXxX: d(x,y) <8}, O(F)={A<X: Alies on an orbit of F}.

2.9. PROPOSITION. For any r > 0O there exist €, > 0 with the property that for
every 0 < & < g there are >0 and a map [, ... B;— O(F) such that:

(a) for any (x, y)€B;, [x, yl.. = Wi(x) n W' (y) # O,

(b) for any (x, y)eB, and z, we[x, y],. there is |t| < r such that z = wt,

() the following continuity condition holds: for every f > O there exists
a > 0 such that for every (x, y), (x', y')€ B, satisfying d(x, x') < o, d(y, ') < a we
have [x’ y]r.a x [X', y’]r.s < D,B,r-

Proof We fix r >0 and by expansiveness pick e, > 0 such that 3e,
corresponds to r according to Definition 2.4. For 0 < € < ¢, we choose 6 > 0
corresponding to ¢ > 0 by POTP (Definition 2.7 with 7 = 1). Let (x, y)eB,.
Define a (8, 1)-p.o. as follows:

t =1 for all n.

xn, for n>=0,
X, =
" Ayn, for n<O,

It is e-traced by a point ze X. That means d(zh(t), xo * ¢} < ¢ for all teR and
some heRep(R). Hence, using (2), we have ze W (x)n W/(y), hence
Wi (x) n Wi(y) # 9. Let z, we W (x) n W(y). From the triangle inequality and
the definition of W’(x) and W/(y) we have, for t > 0, d(zh,(t), wh, (1)) < 2¢
with some h,, h,eRep[0, o), so d(z(h, 0h;')(t), wt) < 2s, and h,oh;'
eRep[0, ). The same way d(z(g, 0g5 *)(t), wt) < 2e, for all t < 0 with some
g,09; 'eRep(— o0, 0]. By expansiveness z = wt with some |t| < r. So putting
[x, y1r. = Wi(x) n W'(y) we have proved (a) and (b).

In the proof of (c) we use the following result of Thomas. It is true for any
flow without fixed points.

2.10. LEMMA ([13, Lemma 1.2]). For any 1> 0 there is u > O with the
property that for any x, ye X, I € R an interval containing the origin and an
increasing continuous map h: I - R fixing the origin, if

d(xh(t), yt) < p, for all tel,
then
|h(t)—t] < Alt|, for tel, |t > 1.
We prove condition (c). We change g, >0 in such a way that ¢,

corresponds to r in the sense of Lemma 2.6 and corresponds to A = 1/2 in the
above Lemma 2.10. Fix § > 0. By Lemma 2.6 there exists T > 0 with V. < Dy,,.
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Pick o > 0 such that if d(u, v) < « and [t| < 2T then d(ut, vt) < & (Lemma 2.1).
Let (x,y), (x', y)eB; and let d(x, x)<a and d(y, y') <o Let ze[x, y],
Z e[x, y'] (we omit the subscripts r, ¢ here).

There are h, ke Rep(R) such that

d(zh(1), xt) < for t >0,

& d(zh(t), yt) <e, for t <0,
d(z'k(t), x't) <e, for t>0,

d(z'k(t), y't)<e, for t<0.

From this and by the choice of « we have for 0 <t < 2T
d(zh(t), 2’ k(t)) < d(zh(z), xt)+d(xt, x't)+d(x't, 2’ k(t)) < 3¢
and similarly for —2T <t < 0. So for |t} < 2T we have
(4) d(zh(t), z'k(t)) < 3e,.
By Lemma 2.10 inequalities (3) imply
h2T)2 T, h(-2T)< —-T, kQT)=2T, k(-2T7)< —
Now, (4) implies that (z, z') € V; € Dg,. That means [x, y] x [x', y'] < Dy,

The following proposition says that the positive orbit of a point from
W (x) tends to the positive orbit of x. The same holds for W*(x) so we omit the
statement for that case.

2.11. PROPOSITION. Let r > 0 and let £ > O correspond to r in the sense of
Lemma 2.5. Let x, ye X, heRep[0, ) and let

d(yh(t), xt)<e for all t>0.
Then
lim dist d(yh(z), x(t—r, t+1r]) =
= o

Proof. Fix o« > 0 and choose T > 0 for this o according to Lemma 2.5.
Fix t > T Define g: [—T, T]—R by g(s) = h(t +s)—h(t). We have for |s| < T
d((yh(0)g(s), (xt)s) = d(yh(t+s), x(t+5) <&
as t+5> 0. By Lemma 2.5 there is || <r with d(yh(t), x(t+1)) <
We define the following sets: the set of periodic points
Per = {xe X: xt =x, for some ¢ # 0};
the sets of a-limit points and w-limit points

«=|){a(x): xeX}, o=J{wk): xeX},
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where a(x) = {ye X: xt,—y, for some t,— —oo} and w(x) = {yeX: xt,—y,
for some t,— co}; the non-wandering set

Q = {xeX: for every neighborhood U of x and every T >0
there exists t > T with U nF(U, t) # 9};

the chain recurrent set

CR = {xe X: for every ¢>0 and 7 >0 there is a non-trivial
(¢, t)-chain from x to x}.

[t is easy to see that for any flow the sets defined above are invariant, also
Q and CR are closed and

Percanwcaoauwc < CR.

It is also easy to prove for our flow F that CR c cl(Per). Here cl(4) denotes the
closure of A. Then we have

2.12. ProrosiTiON. cl(Per) = ¢la =clw = 2 = CR.

The following proposition contains some results from [13] (Lemma 4.1
and its proof).

2.13. ProposITION (Spectral Decomposition Theorem).

() Q=0,u...uQ,, where Q, are closed, invariant and pairwise disjoint,

(b) for everyi=1, ..., kand x, yeQ,, x and y are chain equivalent (i.e. for
every € >0, © > 0 there are (g, t)-chains from x to y and from y to x),

(c) every Q, contains a dense orbit (is topologically transitive),

Any set @, in the Spectral Decomposition Theorem is said to be a basic set.

3. Sinks, sources and saddles. We shall show in this section that under some
natural assumptions we have for any point x and small ¢ > 0: either
xeint W(x) or xeint Wj(x) or any neighborhood U of x contains points
from Wi(x)n W (x)\x[ — T, Tp)- Each of such situations will be described in
more detail. Particularly, in the first case we shall prove that the w-limit set of
x reduces to a periodic orbit which is a basic set. Next, we shall prove that any
basic set is either a sink or a source or a saddle and we express this fact in terms
of stable and unstable “manifolds” just as above for the point x. In the case of
basic sets the description is even better than in the case of points. Moreover, we
shall show that if x eint W’(x) then the periodic orbit which is the w-limit set of
x is a sink and similarly if xeint W(x) then the periodic orbit which is the
a-limit set of x is a source.

For any positive r < Ty, T, given in Lemma 2.3, we denote by ¢, a number
chosen for this r in accordance’with Definition 2.4, Lemmas 2.5 and 2.6 and
Proposition 2.9.

In the sequel we fix r > 0.
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3.1. PROPOSITION. Let 0 < & < ¢,, and xe X. The following two conditions
are equivalent:

(a) xeint WS(x),
(b) there exists a neighborhood H of x such that Wr(x)n H < x[—r, ].

Proof. Assume (a). Let H be a neighborhood of x such that
xeH < W;(x). Let ye W*(x)n H and d(x, y) < 8, where § is chosen for ¢ in
Proposition 2.9. Then ye[x, x],, < x[—r, r].

Assume (b). By Lemma 2.2 we pick » > 0 and § > 0 such that ¥ <r,
B(x[—7', 7], B) = H and

(5) d(ut,u) <eg/2, for all ueX, Jt|<r.
By Lemma 2.3 we have a positive & < min(g/2, &) such that
(6) dixt,x)<¢ and jt|<r imply [{<7.

Proposition 2.9 provides 4 > 0 and a > 0, a < 6, such that themap [ , ], is
defined on B, and for any y with d(y, x) < « we have

(7) [yl x]r'.s’ x [x: x]r'.z' c Dﬂ.r’-

We claim that B(x, o) = W}(x). Let ye B(x, o) and let ze[y, x], . Then (7}
and the definition of Dy, (in Section 2) provides t,, {t,| <r, such that
d(z, xt,) < B. This means that ze H. As ze[y, x], » = W¥(x) = W(x) we have
zex[—r, r] by (6). So z = xt,, where [t,| < r. Once again, as ze W,"(x), we have
d(z, x) < ¢, hence |t,| < ' by (6). On the other hand, ze W;(y) so there exists
heRep{0, o) such that

d(zh(t), yt) <€ <ef2, for all t 2 0.
By (5) we have for t 20
d(zt, xt) = d((xt)t,, xt) < ¢/2,
o)
d(xh(t), yt) < d(xh(t), zh(£))+d(zh(t), yt) < e for 1 20,
This proves the claim and Proposition 3.1.
As WS(x) = Wi(x) and Wi(x) = W,3(x) for &, <e&,, we have:

3.2. CorROLLARY. If xeint W (x) with some 0 < g, < ¢,, then xeint WS(x)
for all 0 <e<eg,.

In the proof of Proposition 3.4 we need the following:
3.3. LEMMA. Let xeQ, 0 <e <e,. If xeint W;(x), then xe Per.

Proof By Proposition 2.12 any neighborhood of x contains periodic
points. As x eint Wj,(x) (see Corollary 3.2) we have a periodic point p € Wy, (x).
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If p# x, then we can find another periodic point g # p, ge W;j»(x). By the
triangle inequality, p € W (q). Froposition 2.11 implies that the orbits of p and
q are arbitrarily close to each other, which is a contradiction since they are
compact. So x = pePer.

3.4. PROPOSITION. Let 0 < & < ¢, x€ X, yew(x). Assume that x eint WS(x).
Then:

(a) y is periodic,
(b) w(x) = yR,
(c) yeint Wi(y).

Proof. First we claim that w(x) = w(y). As w(x) is invariant and compact,
w(y) = w(x). To prove that w(x) < w(y), let zew(x) and fix small u > 0. By
Corollary 3.2, xeint Wjj3(x). Let B(x, 4) < Wj3(x) with some 4 > 0. Pick 6 > 0
such that any 4-p.o. is min(4, u/3)-traced. As ye w(x), there exists T > 0 with
d(xT, y) < 6. So we can construct a (4, !)-p.o. with x, = x such that

, xt, for t < T,
* =
Xo yt—T), fortzT

It is min(A, y/3)-traced by a point x’ so we have ceRep(R) such that
(8) d(x'c(t), xt) <4, fort<T,
(9) d(x'c(T+1), yt) < w/3, for t>=0.
From (8) we have d(x', x) < 4, so x'e Wjj3(x) and thus
d(xh(t), x't) < u/3 fort=0
where heRep[0, o). As hoceRep[0, o) and ze w(x), there is t, > T with
(10) d (xh(c(to)), 2) < p/3.
Combining (8), (9) and (10) we have
d(y(to—T), 2) S d(y(to—T), X' c(te))+d(x' c(to), xh(c(te)))+d(xh(c(to)), 2) < i

This proves the claim.

Now, we prove (c). By Corollary 3.2, x eint W, (x). Let B(x, 1) = W3,(x)
where A > 0. Let 6 > 0 correspond to min(4, &/4) according to POTP. We now
show that B(y, 6/2) =« W;’(y), which will prove (c). Let ze B(p, §/2). There is
T >0 such that d(xT, y) < 6/2 and thus d(xT,z) <68 We construct two
(4, 1)-p.o. with initial points y, = z, = x such that

_ fxt, for t < T,
Yo' = VYe-17), fori>T

g owtm xt, for t < T,
" T lz2(t=T), fort>T
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They are min(4, &/4) traced by some points x, and x,. respectively. So there are
¢;, ¢, €Rep(R) such that

(11) d(xycq(t), xt) < 4,
(12) d(x,c,(1), x1) < 2,
for t < 7T, and

(13) d(xyc; (T+1), y1) < &/4,
(14) d(x,c,(T+1), 2t) < ¢/4,
for t = 0.

(11) and (12) imply d(x,, x) < 4, d(x,, x) < 4, hence x,, x, € Wjs(x). So,
there are h,, h,eRep[0, o) such that for £ >0 we have

(15) d(xh(t), x, 1) < g/4,
(16) d(xh,(t), x,1) < ¢/4.

Define increasing homeomorphisms a,(t) = ¢, '(t+¢(T) =T, Bit) = h (1)
—¢;(T) and put ¢, =a;0p8;, i =1,2. We have for t =0

Ay (0, 205(0) < Ay (B, (1), x1,(T+2, (B,(0))
+d(x1(131(t)+01(n)’ Xhl(ﬁl(t)+cl(T)))
+d(xt, xt)+d (xhy (B, (1) +¢,(T)), x,(B2(t)+¢5(T))
+d (x5 05(T+ oy (B, (1)), z0,(B,(1)))-
By (13){16) we have d(yo,(t); z¢,(t)) < ¢ for t = 0, hence
d(y, z(pr007 ) (1) <&

As ¢,0¢;'eRep[0, c0) we see that ze Wi(y) and (c) is proved.

Now, (a) follows from (c) by Lemma 3.3.

Condition (a) implies that w(y) = yR so the claim at the beginning of the
proof gives (b).

3.5. PROPOSITION. Let 0 < ¢ < ¢, x€ X, yew(x). Assume that yeint Wi(y).
Then xeint W(x).

Proof By Corollary 3.2 there is 4 > 0 with B(y, 1) = Wj.(y). As yew(x)
we can find T with d(xT, y) € A4/2. By Lemma 2.1 there is a > 0 such that for
any zeB(x, a) we have

(1)) dizt, xt)<e¢ for0<t<T

and d(zT, xT) < A/2. This implies d(zT, y) < 4, so zTe W;,(y). Clearly also
xTe W,j,(y). Thus by the triangle inequality

d(x(T+hy (1), z(T+h,()) <& for t=0
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where h,, h,eRep[0, 00). This combined with (17) clearly means that
ze W5(x). We have proved that B(x, a) = Wi(x).

3.6. PROPOSITIO.N. Let 0 < e < g,/2, x€ X. Assume that int W, (x) # . Then
x eint W7 (x).

Proof. Let x'eint W¥(x). By the triangle inequality, x'eint W3,(x’). Let
yew(x’). From Proposition 3.4 it follows that yeint W3,(y). On the other hand,
Proposition 2.11 implies w(x) = w(x’). So by Proposition 3.5, x € int W3,(x), and
by Corollary 3.2, xeint W;S(x).

All the above results can be summarized in the following:

3.7. THEOREM, Let 0 < & < ¢,/2, x€ X, y e w(x). The following conditions are
equivalent:

(a) int Wi(x) # 9,

(b) x eint WS(x),

(c) there exists a neighborhood H of x such that Wi'(x)n H < x[—r, r],

(d) y is periodic and yeint W;:(y),

(¢) w(x) is a periodic orbit and zeint Wi(z) for any ze w(x).

Moreover, if any of the above conditions holds for some positive ¢ < ¢,/2,
then all of them hold for all positive € < ¢,/2.

Now, it is reasonable to call a point x € X a sink in the situation described
above, a source if x is a sink for the reverse flow F'(x, t) = F(x, —t) and
a saddle in all other cases. Assume that the space X and the flow satisfy the
following quite natural assumption. There is » > 0 such that for any point
x and any neighborhood U of x the set U\x[—r, r] is non-empty. Now, it is
impossible for a point to be a sink and a source at the same time. Indeed, (c) of
Theorem 3.7 and the condition x eint W} (x) exclude each other. Moreover, we
can state several equivalent conditions for a point to be a saddle. It is enough
to consider the negation of a condition from (a) to (¢) in Theorem 3.7 and the
negation of a condition that we get in the dual case of the source. For example
we have

3.8. COROLLARY. A point xe X is a saddle if and only if there are small
numbers r > 0 and & > 0 such that any neighborhood U of x contains points
Jrom Wi(x)\x[—r,r] and W!(x)\x[—r, r] and this holds if and only if
int W(x) = int W,'(x) = @ for small ¢ > 0.

As we have seen the w-limit set of a sink is a periodic orbit. In the sequel
we shall examine the behavior of the flow near periodic orbits. In fact, we shall
examine the flow near a locally maximal set with the property that any two of
its points are chain equivalent. As we shall see, any periodic orbit, as well as
any basic set (see Proposition 2.13), is such a set.

We start with the following
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3.9. PrOPOSITION. Let @ # K < X be a closed invariant set. The following
conditions are equivalent:

(a) the restriction of the flow to K has POTP,

(b) there exists a constant ey > 0 such that if an invariant set L satisfies
K < L < B(K, eg), then K = L,

(c) there is a constant ey > O such that if d(xt, K) < ey for all teR, then
xekK.

K is said to be locally maximal or isolated if it satisfies condition (b) and so,
in our situation, conditions (a) and (c).

Proof. It is easy to see that (b) and (c) are equivalent.

(a) = (c). Condition (a) provides § > 0 such that any (&, 1)-p.0. in K is
ero/2-traced by a point from K. There is 8, > 0 such that d(x, y) < 6, and
0 <t < 1imply d(xt, yt) < min(d/2, er,/2). We put e = min(§/2, §,). Assume
that for xe X we have d(xt, K) € e, for all reR. For any integer n there is
y,€ K such that d(x,, y,) < egx. By the choice of §, we have

(18) d(x(n+t), y,,t) er/2 for 0t
and hence
d(ynls .Vn+1) < d(ynl’ (xn) ])+d(x(n+]-)a Yn+ 1) ‘s 5‘

The last condition means that the pair of sequences (..., y-1, Ygs Vis--+;
. 1,1,1,..) 1s a (6, 1)-p.o. It is er,/2-traced by a point ye K. So we have

d(yo*t, yh(t) < er/2 for all teR,

where heRep(R). (18) also means that d(y,*t, xt) < e7,/2 for all teR, so
d(xt, yh(t)) < er, for all teR. By expansiveness (Definition 2.4) x = yteK, so
we have proved condition (c).

Now we prove that (c) implies (a). Let 0 < ¢ < e and pick ¢ for thise > 0
according to POTP (Definition 2.7). Let (..., X—y, Xgs Xy - e e300y b=15 Loy Lgs --0)
be a (0, 1)-p.o. and x,€ K for all n. There are xe X and heRep(R) such that
d(xo *t, xh(t)) < ex for all teR. As xo*#teK for all ¢t and h is a homeomor-
phism, d(K, xt) < e, for all teR and xeK by (c). This proves (a).

Recall that x and y are chain equivalent if for any ¢ > 0 and 7 > 0 there
are (e, 7)-chains from x to y and from y to x (Proposition 2.13(b)).

3.10. PROPOSITION. Let K be a basic set or a periodic orbit. Then K is locally
maximal and any two points in K are chain equivalent,

Proof. The last property is clearly satisfied by a periodic orbit and, by
Proposition 2.13(b), by a basic set. We prove the first one.

Let K = xR be a periodic orbit. The restriction of the flow to K, Fl xg, i8
the suspension flow of the homeomorphism defined on the one-point space
Y = {y}. This homeomorphism has POTP and hence, by [11, Theorem 2], so
does F l KXR+
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Let K be a basic set. To prove that F|g xg has POTP we apply Proposition
2.8. Let 0 < ¢ < &1,/2. Let 6 > 0 be chosen for ¢ by POTP (Definition 2.7,

7 = 1). Assume also that
J < min {dist(K, Q,): R, is a basic set different from K}.

Let {xgy.oos Xp5 Loy ---» tam1) be a (6, 1)-chain in K. Proposition 2.13(b)
provides a (4, 1)-chain from x, to x4, say

(xns Xnt1yer-s xm =x0) [n’ (AR tm—l)s Tn<m.

We construct an (infinite) (8, 1j-p.o. Extend the chain (x,, x,, ..., X,, = X,;
tos f1s ...y tm—y) backward and forward by putting

xm+1=x1’ tm=t0’

xm+2=x2a tm+1 =t1,

X—1 = Xm—1, Loy =lm-1,

X-32 =Xm—2, L-2=1lp-2,

Now, it is easy to see that for each teR, xo* (t+ T) = x * ¢, where T = ) 7o' ¢,.
The above p.o. is e-traced by a point xe X. It is enough to show that xeK.
We have

d(xo*t, xh(t)) <&, for teR,

where he Rep(R). As h is an increasing homeomorphism there is n > 0 such
that k(nT) > T,. We put g(t) = h(nT+t)—h(nT). Clearly g € Rep(R) and for any
teR we have

d((xh(nT))g(t), xh(8) < d(xh(nT+1), xo* (nT+1)+d(xo* ¢, xh(2)) < 2¢ < er,.

By expansiveness xh(nT)= xt,, where [t,|<T,, so x is periodic as
h(nT)—t, > 0. Hence xeQ and by Proposition 2.13(a) and the choice of 6,
xekK.

In the sequel we assume that K is locally maximal and any two points in
K are chain equivalent.

We define ¢-stable and g-unstable “manifolds™:

We(K) = {xeX: d(xt, K)=0,t—> 0} ={xeX: w(x) < K},
W(K) = {xeX: d(xt, K)-0,t——o0} ={xeX: a(x) = K},
Wi (K) = {xeK: d(xt, K) < ¢, for t > 0},

WX(K) = {xeK: d(xt, K) < ¢, for 1 < 0}.



Sinks, sources and saddles for expansive flows 249

It is easy to see that W;(x) « W3(K) and W'(x) =« W¥(K) for any x€ K and
¢ > 0. Moreover, for any ¢> 0 and a sequence t,— oo,
oD

W(K)c ) F(WiK), —t,) and W*K)< | F(W(K),t,).
n=0 n=0
Also by Proposition 2.11, for 0 <e< ey, we have W:(x)= W¥(K) and
W' (x) = WY(K), for any xe K. We prove more:

3.11. PROPOSITION. (a) For every & >0 there exists ¢>0 such that
W (K) © U xex We(x).

(b) There exists e, > 0 such that Wi(K) = W5(K) for any 0 <e<e,.
(c) For any 0 <e < e, and any sequence t,— o0

WiK) = |) F(W2(K), —t,).

n=1
Similar statements hold for the dual case.

Proof (a) Given ¢ >0 we pick 4 such that any (8, 1)-p.o. in K is
¢'/2-traced by a point from K. Let 0 < ¢ < 4/2 be chosen in such a way that
d(x, y) <eand 0 <t < 1 imply d(xt, yt) < min(d/2, '/2). Let xe W3(K). There
are points yg, ¥4, Vs, ... in K with d(x,, y,) <¢ forn=0, 1,2, ... As in the
proof of Proposition 3.9 we can see that the pair of sequences

(s ¥o(—2), Yo(—1)s Y05 Yis Vas eevseens 1, 1,1, 00)
is a (0, 1)-p.o. It is &'/2-traced by a point ye K. So, by the same arguments as in
the mentioned proof we have d(xt, yh(t)) < ¢, for t > 0, where heRep[0, ),
hence xe Wi(K).

(b) Pick ¢ > 0 such that W;(x) =« W*(K) for any x € K; this is possible by
the remarks preceding Proposition 3.11. Let e, > 0 correspond to this ¢’
according to (a). Now (b) is clear. Condition (c) follows from (b).

Now, we are ready to prove our main result about the set K.

3.12. THEOREM. Let 0 < ¢ < min(eg, e,) (see Propositions 3.9 and 3.11). The
following conditions are equivalent:

(a) int Wi (K) # 9,

(b) int W*(K) # O,

(¢) K < int W¥(K),

(d) W5(K) is open,

(e) K < int W¥(K),

() there is an open positively invariant set G such that K< G and

(Ne>oF(G, 1) = K,

(8) W'(K) =K,

(h) W(K) = K.

In particular, if any of conditions (a), (e), (h) holds with some positive
¢ < min(ey, e,), then all three conditions hold for every positive e < min(eg, e,).

5 — Annales Polonici Math, 53.3
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Proof. (a)=>(b) by Proposition 3.11(b).

(b) = (c). Let x,eint W¥(K), so x,€B(x,, 0) = W*(K), where 6 > 0. Let
8, > 0 correspond to min(g/2, 8) according to POTP. It is enough to show that
B(K, 6,/2) =« W*(K). Let xe B(K, J,/2). We can find p, ge K and T > 0 such
thatd(x, q) < 8,/2and d(x, T, p) < §,. As p and q are chain equivalent we have
a (6,/2, 1)-chain from p to g. We stick together: the orbit segment x,(— oo, T),
the above (8,/2, 1)-chain and the orbit segment x[0, cv). We thus get
a (&,, 1)-p.o. It is min(e/2, )-traced by a point x'. Hence we have heRep(R)
such that d(x'h(t), xo *t) < min(e/2, ) for all teR. In particular, d(x,, x') <6,
which means that x'e W*(K). Moreover, there is 7, >0 such that
d(x'h(T,+1), xt) < ¢/2 for all t 2 0. Since x't > K as £t —» o0, and he Rep(R), we
have T,>0 such that d(x'h(T;+1), K)<e¢?2 for t> T,. That means
xT, e Wi(K) =« W*(K) (Proposition 3.11(b)) and then xe W*(X).

(c)=(e). Let peK. From (c) it follows that pe B(p, é,) ¢ W¥(K), where
d, > 0. Let § > 0 be chosen for min(e/2, §,/2) by POTP and suppose é < §,/2.
It is enough to show that B(p, §/2) = W;(K). Let x,€ B(p, 6/2). Since pe W*(K)
there exists T > 1 such that d(x,t, K) < min(e/2, 6/2) < e for t = T. So, it is
enough to show that

(19) dxgt, K)<e for 0<t<T.

Pick geK with d(x,T, p)<d/2 and a (d/2, 1)-chain from g to p, say
(@=Yos--sVa=DPtos -, ta—1)- We construct the following (4, 1)-p.o.:

(-ors Xo(—2), X0(=1), Xg, X T, Yo -vs Vs X0 T, Yoo -+ 5
s LTty oy tamy Ty Bgs o).
By POTP we have a point x and heRep(R) such that for all teR
(20) d(xq *t, xh(t)) < min(e/2, §,/2).

This, in particular, means that d(x,, x) < 6,/2 and as d(x,, p) < 6/2 < ,/2 we
have d(x, p) € J, and hence x e W*(K). On the other hand, (20) implies that for
any te[0, T] and n=0, 1, 2, ... we have

d(xot, xh(n(T+ S)+t)) <¢/2,

where §=)>7-Jt. Since xeW$(K), for n large enough we have
d(xh(n(T+5S)+1), K) < &/2, for 0 <t < T But this implies the required con-
dition (19) so we have proved condition (e).

(e)=(a) and (d)=>(c) are trivial.

(c)=>(d). Let xe W*(K). There exists T >0 with xTeint W*(K). By
continuity, yT € W*(K) for y from some neighborhood of x. So ye W*(K) and
we have (d).

(€)= (0. Put G =|J2oF(intWi(K), t). Clearly K = G, G is open and
positively invariant. Moreover, for x€ G we have x(—t)e WS(K), where t > 0,
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hence x = x(—1)teB(K, ¢). Thus G c B(K, ¢). Let xe(\ZoF(G, 1). For all
t 20, x(—t)e G = B(K, ¢). In particular, xe G and as G is positively invariant
we have xte G c B(K, ¢) for ¢t > 0. We have shown that d(K, xr) < ¢ for all
teR. As e < ex we have xe K by Proposition 3.9(c), which proves (f).
(H)=(g). Let x¢K. By (f), x(—t)¢G for all t large enough so x¢ W*(K).
(g) = (h) follows from the dual statement to Proposition 3.11(b).
(h)=>(e). Let 6 >0 correspond to ¢>0 by POTP. We show that
B(K, 8) « Wi(K). For x,e B(K, ) we have a (J, 1)-p.o. defined as follows:

_ yt, for t <0,
Xo¥l=
Xot, for t>=0,

where ye K is a point such that d(x,, y) < é. There is a point x and h e Rep(R)
such that

(21) d(xh(r), yt)<e for ¢t <0,
(22) d(xh(t), xot) <e for t=0.
(21) implies that xe W}(K) = K. By (22), x, € W}(x) = W?(K). This proves (e).

We shall call K a sink in the situation described in the above Theorem
3.12, a source if K is a sink for the reverse flow F'(x, t) = F(x, —t) and a saddle
in all other cases. If we assume that K is non-isolated in X (i.e. given
a neighborhood U of K there is xe U\K) we see that K cannot be a sink and
a source at the same time (consider the conditions K < int W*(K) for a sink and
W3(K) = K for a source). Moreover, this assumption allows us to characterize
the third situation, i.e. when K is a saddle. Namely we consider the negation of
one of conditions (a)-(h) in Theorem 3.12 combined with the negation of
a condition that we get in the dual case of the source.

We have

3.13. ProprosITION. If K is a sink/source then K is a basic set.

Proof. Clearly K <« CR = Q and as any two points in K are chain
equivalent K must be contained in some basic set Q,. Since K is a sink/source,
by Theorem 3.12(c) there exists a neighborhood U of K such that
(UNK)n Q2 = . This implies K = Q,.

Let us note that some conditions stated in Theorem 3.12 are known in
classical stability theory (see [1] and references therein). For example, (c) means
that K is an attractor, (¢) means that K is (Lyapunov) stable, etc. For the flow
F and the set K all those conditions are equivalent.

Combining Theorems 3.7 and 3.12 we have

3.14. COROLLARY. Let x€ X, ye w(x)/y€a(x). Then x is a sink/source if and
only if y lies on a periodic orbit which is a sink/source.
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Proof. If x is a sink then condition (d) in Theorem 3.7 holds. So, the orbit
K of y is periodic and y e int W;(y) < int W;(K), hence condition (¢) in Theorem
3.12 holds and K is a sink. Assume now that y lies on a periodic orbit K which
is a sink. Let r > 0 and T, = T/2, where T is the smallest positive period of y.
Pick ¢ > 0 so that d(u, vt) < ¢ with |¢| <'T, implies |f| < r (Lemma 2.3) and
WX(K) = K (Theorem 3.12(h)). Let ze W,'(y). Then ze W}(K) = K. So z = yt,
where [t| < Ty, hence [t| < r. We have proved that W*(y) < y[—r, r], which
implies condition (c) in Theorem 3.7 for y. It is equivalent to condition (b) in
this theorem for y. As y is periodic we have condition (d) in the same theorem.
This means that x is a sink.

The proof for a source is straightforward.
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