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1. Introduction. In [2] the study of varieties of locally convex Haus-
dorff real topological vector spaces (LCS’s) was initiated. (Selected results
were announced in [1].) Of particular interest are those varieties which
are singly generated, including, for example, the variety A4 of all nuclear
spaces and the variety of all Schwartz spaces. It was shown that every
singly generated variety has a universal generator, thus, putting into
perspective the work of Komura and Komura [3] in finding a (concrete)
universal generator for .#°. Various characterizations of singly generated
varieties were given which, in particular, imply that a subvariety of a singly
generated wvariety is singly generated.

In this note we investigate the wvariety generated by the class of
all LCS’s with the finest locally convex topology. We show that this
variety i8 just-non-singly generated; that is, it is not singly generated
but every proper subvariety is singly generated. (This is the first such
example found and it raises the question of whether such examples exist
in profusion or not.) We also see that this variety does not have a maximal
proper subvariety. This is an contradistinction with the situation for
varieties generated by a single normed vector space.

2. Preliminaries.

Definitions. A non-empty class of LCS’s is said to be a variety if
it is closed under the operations of taking subspaces (not necessarily
closed), separated quotient spaces, (arbitrary) cartesian products and
isomorphic images. '

If Qis a class of LCS’s and 7 () is the intersection of all varieties
containing 2, then ¥ () is said to be the variety generated by Q. If Q
consists of a single I.CS FE, then ¥ (L) is written as ¥ () and is said to
be singly generated.

Notation. Let 2 be any class of LCS’s. Then (a) SQ, (b) QL, (¢) C2
and (d) P denote the class of all LCS’s isomorphic to (a) subspaces of
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LCS’s in 2, (b) quotient spaces of LCS’s in 2, (¢) cartesian products of
families of LCS’s in £ and (d) products of finite families of LCS’s in @,

respectively.
We will need the following basic theorem which is proved in [2]:
THEOREM 1. If Q is any class of LCS’s, then v (2) = SCQP(Q).
Notation. For each cardinal number m, let ¢,, be the m-dimensional
real-vector space with the finest locally convex topology (see [4], [6]
and [2]). The class of all ¢,,-spaces will be denoted by ®.
We shall use the following properties of ¢, -spaces:

(A) For any cardinal m, Q(¢,,) = S(¢,)-

(B) For any fixed infinite cardinal m, each member of P(g,,) is iso-
morphic to ¢,,.

(C) For any fixed infinite cardinal m, the LCS FE is in S(¢,,) if and
only if F is isomorphic to ¢, for some n < m.

(D) For any cardinal m and any LCS E, every continuous linear
operator of E onto ¢, is an open mapping. (Of course, this property
characterizes ¢,,-spaces.)

3. ¥ (D).

THEOREM 2. 1If ¥ is any proper subvariety of ¥ (D), then ¥ < ¥ (¢n)
for some cardinal m.

Proof. Since ¥ is a proper subvariety, there exists an m such that
omd¢ V. Let E be any LCS in ¥". By Theorem 1, E<SCQP(®). Using (A)
and (B), we infer that FE e SCS(®), which implies that E e SC(®). Thus Z is
(isomorphic to) a subspace of a product H P for some index set I.

Let o, be the projection mapping of E into ¢,,. Using (C), we see
that each o, (E) is a ¢, for some n. Suppose that there exists an ¢e I such
that g, (E) is a ¢ for some k> m. From (D) we infer that ¢,e¢Q(Z). How-
ever, using (C), we then conclude that ¢,,¢ SQ(E) = ¥, which is a contra-
diction. Therefore, each g, (¥) is a ¢, for some n < m. Hence, using (C) again,
EeSCS(p,,) = ¥ (¢,). Consequently, ¥ = ¥ (¢,,) and the proof is complete.

COROLLARY 1. ¥ (D) has no maximal proper subvarieties. (Cf. Theo-
rem 3.4 of [2].)

COROLLARY 2. 7 (D) 18 a just-non-singly generated variety; that is, it
i8 not singly generated but every proper subvariety is singly generated.

Proof. Theorem 2.7 of [2] and sundry comments thereabout imply
that ¥ (®) is not singly generated. However, by Corollary 2.8 of [2],
every proper subvariety of ¥ (®) being a subvariety of a singly generated
variety, namely, ¥ (¢,) for some m, is singly generated.
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