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The well-kknown Fubini Theorem ([3]) describes a relation between the
Lebesgue measure on the real line and on the plane. As a consequence a
subset A = I xI is of positive measure in the unit square I x I if and only if A
has sections xA = {yel; (x, yye A} of positive measure (in the unit inter-
val I) for all x belonging to a subset of positive measure (in I).

Thus, the ideal of all Borel sets of zero measure in I x1I is equal to the
product L x L of the ideal L of all Borel sets of zero measure in I, by itself.
Similarly, the ideal of all Borel sets of the first category in I x I equals to the
product K x K of the ideal K of all Borel sets of the first category in I: a
Borel subset A = IxI is not of the first category in IxI exactly when
{xel; xA¢K}¢K, ie. when A¢K x K (see eg. [5]).

These facts imply that the products LxL, K x K are w-complete w-
saturated ideals in the field of all Borel sets in I x I. It is not a very interesting
result because the standard homeomorphism of I x 1 to I transformes L x L
to L and K x K to K. But we can make mixed products of ideals, L x K or
KxL, in IxI and get (by the mentioned homeomorphism) w-complete w-
saturated ideals of Borel sets in I, other than L and K. Further ideals can be
formed by products of more factors, such as LxKxL or KxLxK.
However, the construction is not straightforward and requires use of special
properties of ideals L, K. ‘

The description of the iterated product of ideals L, K is, in a more
general form, given in the second section of this paper. The necessary
properties of L, K are examined and generalized in the first section. The third
section is devoted to applications of iterated products for construction of
various complete Boolean products of Cantor algebra ¥ and random algebra
A. It i1s shown that, for algebras ¥, #, there are infinitely many incompar-
able complete Boolean products which, moreover, are locally disjoint. (The
local disjointness of factors in complete Boolean product is equivalent with
the disjointness of the corresponding cogeneric Boolean-valued models of the
set-theory, see [1], [2]). The constructed products give solution of the
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problem, whether the minimal (m, 0)-product is necessarily the least one, [6].
At the end of the paper, an open problem of isomorphism for ideals, such as
LxK, K xL is formulated.

The notions and denotations are mostly standard, and follow [6] for
Boolean notions (with the exception of denotation A, v, 0, 1 for the
Boolean operation and the bound elements). For set-theoretical denotation,
an ordinal is considered as the set of all lesser ordinals, e.g. [0, 1} =2,
‘0, 1, 2,...] = w, the set of all functions from A4 to B is denoted by 4B. For
ordinals o, f we denote by ~*f the sum (J {’f; y <a]. The domain of a
function f is denoted %(f), the range W (f). The set of all finite subsets of X
is denoted by P=“(X). If X is a topological space, then #(X) denotes the
field of all Borel subsets of X. The random algebra is the complete Boolean
algebra # = #4(I)/L. Cantor algebra is 7 = A(I)/K.

1. Quasimaximal systems of quasi-ideals. If X is the Cartesian product of
sets Xo, X, and if I, I, I are ideals in fields 4,, 4,, # of subsets of spaces
Xo, X,;, X respectively, then, by the standard definition of products for
ideals, I = I, x I, holds, if for any A€ 4,

A¢l = {xoeXo; (x,€X,; (%o, xn)EA}"i”l}Q”O

is fulfilled.
This definition is meaningful when the following two conditions are
satisfied:

(») for any Ae A, xo€ X, the set xo 4 = {x,€X,; (x, X;)€ A} belongs
to .%1,

(»+) for any Ae 4, the set AI, = {xqe Xo; xoA¢1,} belongs to A,.

Let us suppose that X,, X,;, X are topological spaces (the topology in
X being the product topology) and %,, .4,, .4 are the fields of all Borel sets
in Xy, X;, X, respectively. The condition (*) is satisfied under this assump-
tion (see e.g. [5]).

To verify the condition (*+) we proceed by induction through the

hierarchy of Borel sets in 4. Let a be a countable subset of 4, such that for
any Aea or —Ae€a, (*#) is fulfilled. It is easy to verify that, for any x,e X,

xo(Ua) =U{x0A4; Aea}, xo(Na)={xoA4; A€a},
and, therefore,
VUal, = {XOEXM U {x04; Aea}¢ll},
(Na)I, = {xoeXo; N {x0A; A€a}¢l,}.

If the ideal I, is w-complete, we get (Ja)I, =) {Al;; Aea}. Thus (x%)
is fulfilled for (Ja, in view of the induction assumption. But, the -
completeness of I, does not suffice to prove (Na)l, = () {Al,; Aea} and
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(**) for (\a. If the ideal I, is, moreover, maximal, we may “go to com-
plements” and we get ((\a)l, = N{—(—A)I,; Aea} which, by induction
assumption, gives (*x) for ()a.

The assumption of the maximality is too strong for our purpose, as we
are preparing to multiply the ideals L and K. We shall use another way to
“come to complements”. The idea is the following.

It is known that a Borel subset A of the real unit interval I is not of the
first category in I, exactly when there exists an interval J < I such that — A4
is of the first category in J. We may suppose that the endpoints of J are
rational. If we denote by K’ the ideal of all Borel subsets A < I such that
JnAeK and if J denotes the set of all subintervals of I with the rational
endpoints. then we have

A¢K=3Jel)—-AcK’.

Moreover, any ideal K’ can be approximated in this dual way by ideals K’
J'eld, J' < J. A similar pass to complements that resembles maximality is
possible for the ideal L. The sets L of all Borel subsets of measure at most r,
for r rational, enable dual approximation

A¢Ll =3seQ,s<1-r)—Ael’.

However, L are not ideals (except for I° = L).

To make use of the above observations, we define a more general
concept, called quasi-ideal. We shall multiply quasi-ideals not as single
factors but as systems admitting dual approximation, the so-called quasi-
maximal systems. Further, the notion of the w-saturatedness will be modified,
as to be preserved in the iterated product.

If 4 is a w-complete field of subsets of a space X, then a subset # = £
is called a m-complete quasi-ideal in A, if

(i) % is convex downward, i.e. for any A, Be #, A < B, Be %, we have
Ae U,

(i) % is linearly w-complete, i.e. for any countable chain a = % we

have ()ae %.

A quasi-ideal % is called proper, if
(i) Q#U# B ie. QeU, X¢U.
A system U of w-complete quasi-ideals in 4 is called w-quasi-maximal, if

(iv) for any quasi-ideal #€ U there is a countable subset -a = U such
that for any Ae#, A¢ % = —Ae|) a holds true.

The system U is called closed, if
(v) for any finite subset a = U, we have (Jac U, (Nae U.

It is easy to verify that & = [L"; reQ, 0<r <1} is a closed w-quasi-
maximal system of proper w-complete quasi-ideals in % (I). The system ¢
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= {K’; Jel] is also w-quasi-maximal and its elements are proper w-
complete ideals. ¢ itself is not closed but J# can be extended to a closed
system ¥, according to the following theorem.

THeoREM 1.1. If U is a w-quasi-maximal system of proper w-complete
quasi-ideals in 4, then

U={U{Nd; de 2}; 2e P<°(P<“(U))}

is the least closed w-quasi-maximal system of proper w-complete quasi-ideals in
# extending U.

Proof. Straightforward. O

2. Iterated products. To provide the condition (**) mentioned above,
which is necessary for the definition of the product of ideals, we shall use a
wider notion, that of quasi-ideal. The product of quasi-ideals will be defined
in the same way as for ideals.

Let X, Xo, X,, #, %9, #, have the same meaning as in the previous
section and let %,, %, be quasi-ideals in #,, #,, respectively. Assuming the
conditions (*) and (**) (the later with %, instead of I,) we define the product
Uy x WU, as follows:

A¢%ox%l E{XOEXO; on¢%1}¢0710, for Ae4%.

Our first task will be to verify that the product of quasi-ideals preserves
w-completeness and w-quasi-maximal systems.

THeoreM 2.1. If U,, U, are w-quasi-maximal systems of proper w-
complete quasi-ideals in By, #B,, such that the conditions (*) and (**) for any
U,€ U, are satisfied, and if, moreover, U, is closed, then U= {%, x
XUy ; Uoe Uy, U, € U,} is a w-quasi-maximal system of proper w-complete
quasi-ideals in 3. -

Proof. It is easy to check the following monotony rules for 4, Be 4,
acS B, xo€Xy, U €U,: if A< B, then xoA S xoB, AU, < B%,;fais a
chain in %, then {x,A4; Aea}, {A%,; Aca} are chains in #,, %,
respectively.

Using this monotony, we can show that any % € U has the properties (i),
(i1), (iii). To verify (iv), we bring a lemma.

LEMMA. If % is a w-complete quasi-ideal in a field # and if a < & is
countable, then

Ua¢ % =Qd eP=“(@)Ua'¢%.
Proof. Use the w-completeness of % and the fact that
Ua=U 4 iew} = {4ou...U4;; iew}. O

We are prepared to prove the w-maximality (iv) of U. As U,, U, are w-



ITERATED PRODUCTS OF IDEALS 43

quasi-maximal, for any given #,e U,, %,€c U, there are countable sets
a, < Uy, a; < U, such that for any Aoe By, A, € %4, we have

Aot U= —AoeUay, A1¢U =—-A,€la.
Now, for A€ %, we have the following equivalent statements:
A¢Uo x Uy,
{x0€Xo; X0 A¢ U, } ¢ U,
1X0€ Xo; Xo(—A)el a,} ¢ U,
U{=(=A)7y; ¥ 1€a,}¢U,,
(3d€P<w(al))U {—(—A) Yy Vied}¢U,,
@' e P=“(ay) {xo€ Xo; xo(—A)el a'} ¢ U,,
(@a e P=*(a,))@¥ o€ ao)((— A(U @))€ ¥,
(FaeP=“(a)))@¥ o€ ay)— A€ ¥, x(U @).
We have used lemma to replace the infinite countable set a; by its finite
subsets. For a'e P<“(a,) we have, as U, is closed, |) a'€ U,. Therefore
a={Vox(Ud); ¥oeay, deP=“(ay)}
is a countable subset of U such that for any Ae B, A¢ U, xU = —A€Ja
holds true. O

Remark. It is easy to verify that if #%,e Uy, %,€ U, are, moreover,
ideals, then %, x %, is a (w-complete) ideal.

The next theorem guarantees the conditions (*) and (*x).

THeOREM 2.2. If X4, X, X = X X X, are topological spaces (X with the
product topology), B,, #,, # are their fields of all Borel subsets and if U, is a
w-quasi-maximal system of proper w-complete quasi-ideals in %,, then the
conditions (x) and (**) for any %,€ U, are fulfilled.

Proof. We shall follow the idea from the previous section. Let us take
a countable linearly ordered subset a = # such that for any Aea or —A€a
the condition (**) is satisfied for any %, € U,. Then, the w-<ompleteness of
U, e U, gives (Ua) = {A%,; Aca}e B,. To prove ((\a) U, € B, we shall
use the w-quasi-maximality of U,: %, being fixed, we take a countable
subset a = U, such that for any A, €%, A, ¢%, = —A,€()a holds true.
We have '

(@)%, = {x0€ Xo; Xo(Na)¢ %)
= {xo€ Xo; —xo(ﬂa)eud}
=U {{xoeXo; —x0(N@)e? }; ¥ €a}
= U {{xoeXo; Uixo(—A); Aealer }; ¥ ea}
=U{-U{(-A)7; Aea}; ¥ caleBo. O
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The Theorems 2.1 and 2.2 make it possible to construct the product of
any finite number of quasi-ideals (or, which is of main importance, of ideals),
provided that the factors are members of closed w-quasi-maximal systems. It
is easy to verify the associativity of product, therefore the product of n
factors can be denoted simply as %, x %, x ... x %,-,, without brackets. It
will be useful to get some information on the saturatedness of the product.
First we define some related notions.

A quasi-ideal % in a field # is called (i, j)-quasi-saturated if any subset
a < 4 of cardinality card a > j with elements A4 e a fulfilling — 4 € %, contains
a subset a' S a, carda’ > i such that (\a' is non-empty.

 is called w-quasi-saturated, if for any iew there is je w such that % is
(i, j)-quasi-saturated.

Tueorem 2.3. If U,, U,,..., U,_, are closed w-quasi-maximal systems of
proper w-complete w-quasi-saturated quasi-ideals, then for any %Uy€ U,,
U, eU,,...,Uy_1€U,_, the product UoXxUyx...xU,—, is w-quasi-
saturated. If, moreower, WUy XUy % ... XU,— is an ideal, then it is w-
saturated.

Proof. For the first part of the theorem it is sufficient to consider two
factors, say %€ Uy, %, € U,. Clearly, if %, is (i, j-quasi-saturated and %, is
(h, i)-quasi-saturated, then %, x %, is (h, j)-quasi-saturated.

Therefore, if %,, %, are w-quasi-saturated, so is %y x %, .

To prove the second part, we show that if U is a w-quasi-maximal
system of w-complete w-quasi-saturated quasi-ideal in a field 4, then any
ideal #€ U is w-saturated.

Let us take an ideal € U and an uncountable set a = .4 of elements
not belonging to %, such that A n B belongs to % for any A, Bea, A # B.
By the w-completeness of %, we may assume that elements of a are pairwise
disjoint. The w-quasi-maximality of U implies the existence of a countable
a = U such that for any Ae B, A¢ % = — A€ a holds. Thus, there is ¥ €a,
such that — A e ¥ is true for infinitely many A € a. It is in contradiction with
the fact that the quasi-ideal ¥~ is w-quasi-saturated (and, therefore, (2, j)-
quasi-saturated for some jew).

THEOREM 2.4. Elements of systems ¥, X are w-quasi-saturated.

Proof. Elements of ¥ are of the form L, for r rational, 0 <r < 1. For
any such r, there 1s natural h > 0 such that r < 1—1/h. Then, L is (i, ih)-
quasi-saturated for any natural i > 0.

Elements of X, and their finite intersections as well, are proper ideals
and are, therefore, (i, i)-quasi-saturated for any natural i > 0. It is easy to
verify then, that any element of X, of the form | {Nd; de2Z} for
7eP=“(P<“(X)), is, in denotation, card & = h, (i, ih)-quasi-saturated for
any natural i >0. O



ITERATED PRODUCTS OF IDEALS 45

As a consequence of our previous considerations we have the following
theorem which involves the description of iterated products of ideals L, K.

THEOREM 2.5. If every of quasi-ideals %, X,,..., U,-, belongs to & or
to A, then the product WUox Uy % ...xU,_, is a w-complete w-quasi-
saturated quasi-ideal. If, moreover, Uy, U,,..., U,-, are ideals, then U, x U,
X ... XU,y Is a w-complete w-saturated ideal.

3. Complete Boolean products of 4,%#. Products of ideals L, K defined in
the first two sections enable us to define interesting examples of complete
Boolean product of algebras 4, #.

By a complete Boolean product of Boolean algebras .o/,, .«/; we under-
stand a triple (ip, iy, %), where

(a) 4 is a complete Boolean algebra,

(b) ig: oAy — B, iy: o/ = #B are complete injections,

(c) io(Fp)viy(.«7;) completely generates A.

If, moreover,

(d) io(o#p), iy (o#,) are independent subalgebras in 4, then the product
(io, iy, ) is said to be independent.

Sometimes, properties of products other than independence are inves-
tigated. For Boolean-valued models of the set theory ZFC, the local inde-
pendence and the local disjointness are important; see [1], [2].

The product (iy, iy, %) is called locally independent, or locally disjoint,
if the set [ ¥ € #; io(A) ¥, iy (o) ¥ are independent in B|¥"}, or the set
{7 €B; ig(A)V iy ()Y =10, ¥ }}, respectively, is dense in 4.

It is proved in [2] that for fixed .of,, ./, there is exactly one (up to
isomorphism) such complete independent Boolean product of .o/,, .o/; that is
locally independent. This product is minimal in the ordering of products
defined as follows: (iy, iy, #) < (i, i, %) = there exists complete homomor-
phism h: 8 — # such that iy = hiy,, i} = hi;. The minimal product is
characterized by the property that the set {io(A4o) A i;(4,);
Ag€ ofy, A € of,) is dense in .

In the contrary to the uniqueness of the locally independent products,
we show in this section that it is possible to construct infinitely many
locally disjoint complete independent Boolean products of algebras 4, #4.
The construction, in a more general form, is described in Theorems 3.1 and

3.2
THeorReM 3.1. Let C,, C, be w-complete fields of subsets of spaces Y,, Y;,

let Jo, J, be proper w-complete w-saturated ideals in Cy, C,, let C,, C, w-
generate the field C in the Cartesian product Y = Y, x Y;. If J is a proper w-
complete w-saturated ideal in C, such that

(#*x) for any AgeCy, A1€Cy, Agx Ay ¢J = Ayg¢J,y, Ay ¢J, holds true,

then, denoting i5(A/J,) = (A x Y,)/J for any AeC,, i{(A/J,) = (Y, x A)/J for
any AeC,, we have
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(a) (i{,, i{, C/J) is a complete independent Boolean product of algebras
CO/ J 0> / J 1

(b) Jor any proper w-complete w-saturated ideal I in C fulﬁllmg (%xx),
(ih, i, C/D < (i}, i1, C/J) is equivalent to I 2 J.

Proof. (a) Using (***), it is easy to verify that iy: Co/J, — C/J,

C,/J, = C/J are uniquely defined w-complete injections and that
i5(Co/Jo), i1(Cy/J,) are independent and w-generating in C/J. By w-
saturatedness of J,, J,, J, algebras Co/J,, C,/J,, C/J and injections i}, i]
are complete.

(b) If h: C/J = C/I is a w-complete homomorphism such that i, = hi},
il = hi] holds, then, for A,eC,, A,€C,, we have h((4o x A,)/J) = (Ao X
x A,)/1. As Cy, C; w-generate C, it must be h(A/J) = A/I for any Ae C. That
gives J = I. The converse implication in (b) is clear. O

In the following, we need the notion of (x, p)-tree: if «, f are ordinal
numbers and C is a system of sets, then a function A is called an (a, )-tree
in C if D(A) < =B, W(A) = C and if for any ¢, Yy € “°f the implications
o<y, YyeD(4) - 9eD(A), A@)24AW), o £V, ¥ £o, ¢ YyeD(A)
— A(p) nA(Y) = @ hold true. The well-known Suslin’s hypothesis says, that
if in a tree A any chain and any antichain is countable, then A itself is
countable. Suslin’s hypothesis is mdependent on the axioms of ZFC (see [4],

(81 (7).

THEOREM 3.2. Let ideals J,, J,, J in fields C,, C,, C fulfill the conditions
of Theorem 3.1 and the condition

(**xx) for any (w+1, w)-trees Ay in Cy, Ay in C, the implication

(VW e“w)doW) x A, (W)eJ - U {Ao(¥) xA; (¥); Y e“w}el
holds true.

Then, assuming the Suslin’s hypothesis, the Boolean product (i}, i, C/J) is
locally disjoint.

Proof. We proceed by contradiction and assume that:

(A) There is a non-zero element #eC/J such that for any non-zero
element ¥ €C/J, ¥ < % there exist elements AyeCy/Jy, A;€C,/J; such
that 0 <ij(Ag) A Y =i{(A) A ¥ <V .

We can take an element % € C such that [#], = % fulfills (A) and define
two (w,, 2)-trees, A, in Cy, A, in C; with the same domain D = D(4,)
= D(A,) = ~“12, in such a way that the (w,, 2)-tree 4 in C, defined by A4 (¢)
= Ao(p) x A, (p) for any @eD, has the following properties (for xew,; we
write D(x) instead of D N%2):

() (VoeD)U N A(p)¢J;
(i) (Vaew,) %—- {A(¢); peD(a)}eJ;
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(iii) (V @& D) 0, ¢l eD;

(iv) (Vaew,)0 <card D(a) < w.

The trees A,, A, are defined on D(a) by induction with respect to
2 €w;. On non-limit steps we use the assumption (A), on limit steps we take
the intersections of the branches such that (i) is fulfilled. The crucial point of
the proof is to verify (i1) at limit steps; the conditions (iii), (iv) are clear.

Let Aew; be limit ordinal. We fix an increasing sequence (4,; new)
converging to A. We denote for ke2, new

A, = U {A4(0); 0eD()}, A=U{A(9); peD()},
A" = {A(0); 9€D(A)}, A® =({4A"; new}.
For n <m < w we have A™ 2 A™ 2 A’ o 4 and, therefore
U—A=(U—-A)U(UN A - Q)
=(U-ANV(UNA N —AN (A, xAy))U
U(ZNA N —An —(4,x Ay)).
It is easy to show that the first two summands of the union belong to J.
For the third summand we have:
UNA N —AN —(Aygx A,)
SUNAD N —(Ayx A,)
=N{UNnA" N —(AyxA,); new}
= N{U{ZnA(9)n — (4o xA4,); 9eD(4,)}; new}
=U{N{ZnAE)n —(Ap xAy); new}; ee[[{D(4,); new}}
cU{ZnA(p)n —(Ao x 4,); 9e’2}.
For o¢D(A), 4 nA(p)eJ and for peD(4),
A(@)n —(Aox Ay = (Ao(‘/’) ><Al(fl’))h —(AgxA;) = QeJ
hold. By the saturatedness of J and by (x**%) we get

U {% n (4o (@) x A1 (9)) 0 — (Ao x 4,); pe?2}el.

By (ii), the tree A has non-zero elements at any level aew,, by w-
saturation of J, any antichain in A is countable. Therefore, Suslin’s hy-
pothesis implies that there is ¢ € “°'2 such that for any aew,, ¢laeD holds.
By (i), (i), (A(pla)/J; aew,) is a strictly decreasing sequence in C/J, in
contradiction to the w-saturation of J. O

The general construction described above will be specified by using
products of ideals in various order.

We shall assume that U,, U,,..., U,_; are w-quasi-maximal systems of
proper w-complete w-quasi-saturated quasi-ideals in the fields 4%,,
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AB,..., B.—, of all Borel subsets of topological spaces X,, X,,..., X,_;. For
0< k < m< n we denote
ka=ka°'° XXm_l, %k,n:%(ka),
Ukm = {d7lk X ... Xq,m-l; %,‘G Uk""’ %m_IEUm_l}.
Let x =(x(0),...,a2(n—1)) be a permutation of the set n= 0, 1,...

...,n—1}. For x=(x¢, Xy,..., X, 1)EXoX ... x X1 =X, AS X, Ue
eUgy,..., U,-,€U,_, we denote

ax = (xa(o),..., xa(,,_ 1))€X¢(0) X ... XXa(ll-‘l) = aX,'

aAd = {ax; x€A}, aWUon= Upo)X .-+ X Ugin-1y-

The permutated product %%, of ideals %,, %,,..., #,-, in order a is
defined as follows: for any Ae%,,,

AelUy, = aAeay,.

For 0 <l <n we denote by %5, %;, the projections of the ideal %,
into %q,, %, respectively, and by iy,, if, the natural injections of B,/%4:,
B U5, respectively, into Bo./Us,- In this denotation we have

THEOREM 3.3. For 0<l<n, for any ideals U,ecU,, U €U,,...

eesU,-1€U,_, and for any permutation a, under the assumption of Suslin’s

hypothesis, the triple (ig;, i5,, Bon/Uss) is a complete independent locally dis-
joint Boolean product of algebras Bo/ Uy, RBil U,

Proof. By Theorems 3.1, 3.2, it is sufficient to verify conditions (#*xx),
(***x). An intermediate verification by induction gives, for any Ag € Bo,
Alnegglna

Ao X Ap¢ Uow = A€o, At U
The condition (***x) will be also verified by induction. Let us assume

that (»*xx) is fulfilled in the case of less than n factors. Let T,, T; be
(w+1, w)-trees in By, B, respectively and let

UTo(W) x L (¥); ¥ €“w} ¢ U,
hold. By definition, we have

S= {xa(O)eXa(O); U {xa(O)(’Ib('//) X 7]('/’)): ¢e"’w}¢%"{n}¢%a(o),

We may assume «(0) < . (The case !/ < x(0) differs only by denotation.)
For /=1 (then a(0) =0 holds) and for x,o € To(¥), ¥ € “w we have

U {0 (To (W) x T (¥)); Y €0} = Ty (),



ITERATED PRODUCTS OF IDEALS 49

therefore
S = {xa(O)e X0y QY €“w) x40 € To(Y), T, (Y) ¢ 41,4}
= {xz(O) € Xy0: QY e“’w)(x,(o, 7;)('/’)) x T, ()¢ '”:n} ¢ Uy o)-

The same result we get for | > 1, using the induction assumptibn. Further, by
the w-quasi-maximality of Uj, and the w-completeness of %, ,,, there exists
¥ e U3,, such that

{xa(O) € X 30> Ay e“’a))—((x,,(o, T, ('//)) x T (W))G “V} ¢ %1(0)
holds.

The quasi-ideal ¥ is w-quasi-saturated, so there exists i e w, such that ¥~
is (2, i)-quasi-saturated. Then we cannot have more than i of functions
Y €, fulfilling —((xa(o, o) x T, (u/z))e ¥". Now, as %, preserves the finite
joins, there exists Y €“w, such that

(%00 € Xaors — ((Xai0) To (W) X Ty W) € ¥} ¢ Uy,

ie. To(Y)x T, (Y)¢ %5,. The condition (*xxx) is verified. O

In the final part of this section we apply the previous results to ideals L,
K. We get

THEOREM 3.4. For any 0 <[ < n, for the ideals Uy == U -, = L, %,
== Y,_, = K and for any permutation o, the triple (i%;, i},, B(I")Us,) is a
complete independent locally disjoint Boolean product of algebras #(I')/L,
’@(’n—l)/’(n—l.

Proof. The assertion is a special case of Theorem 3.3 with Suslin’s
hypothesis left out. However, this point is clear, because the algebra #(I')/L,
being measurable, cannot contain any Suslin’s tree. (Moreover, the algebra
Z(I""YK"' having a countable base, cannot contain Suslin’s tree,
either). O

By the Fubini Theorem #(I')/L' is isomorphic to #Z(I)/L=% and,
analogously, #(I""")/K"~! is isomorphic to #(I)/K = %. Thus, Theorem 3.4
gives infinitely many locally disjoint products of #, . Some of them are
isomorphic, but we can find infinitely many non-isomorphic among them.

THEOREM 3.5. (a) For any fixed natural n, the products IV of ideals %,
=L U =..=%,.,=K in order 0, =(1, 2,...,k,0,k+1,...,n—1) for
ken are incomparable ideals in the field 2(I").

(b) For any natural n, there exist n pairwise incomparable complete
independent locally disjoint Boolean products of algebras R, €.

Proof. By the previous remark and by Theorems 3.1 and 3.2 it is
sufficient to prove (a). We suppose 0 <k <m <n and we construct a set
Ae B, such that AeI®, —AeI™ holds.

For any jew we take a decomposition r; = {N{; iew} of the set w,
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