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0. Introduction. Given an acyclic space X (i.e., & topological space
X with H,(X) = 0, where H, denotes the reduced integral homology
functor), Dror [7] has given a general procedure for constructing a tower
of acyclic spaces (called by him an acydlic decomposition of X) which
successively approximate X. An acyclic decomposition of a space is a
Postnikov-like decomposition and, as Dror has shown, has many advan-
tages, particularly in analyzing the homotopy structure of an acyclic space.
The n-stage of an acyclic decomposition in Dror’s construction is obtained
by the acyclic functor from the corresponding n-stage of the Postnikov
tower. The object of this paper is to show that the acyclic decomposition
tower can be obtained by a general categorical completion process which
is due to Adams [1] and which has been developed by Deleanu et al. [5]
in a much more general context. More precisely, it is shown that each
stage of the acyclic tower can be obtained as the generalized Adams
completion of a certain set of morphisms in the homotopy category of
based CW-complexes. The relation between any stage of the acyclic
decomposition and the corresponding stage of the Postnikov decomposition
is also clearly demonstrated within the framework of generalized Adams
completion. We formulate the results in the homotopy category of based
CW-complexes. There is no loss of generality in working in this category;
for if X is an arbitrary topological space, then there are a CW-complex
Y and a map f: ¥ - X which is a weak homotopy equivalence, and
since the reduced integral homology functor satisfies the weak homotopy
equivalence axiom ([9], p. 181), it follows that if X is acyclic, so is Y.
The problem then is to construct a tower of acyclic spaces in the homotopy
category of based CW-complexes whose inverse limit is Y. This we do
using the notion of generalized Adams completion, a brief summary of
which is given in Section 1 together with other relevant results.

1. Generalized Adams completion. Let 2 be a category and 8 a given
set of morphisms of 2. If 2[8~'] denotes the category of fractions, then
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for a fixed object Y of 2 we have a contravariant functor
‘2[8~'1(—, Y): 2 — Ens,

where Ens denotes the category of sets. If this functor is representable,
then the representing object Yg is called the (generalized) Adams completion
of the object ¥ with respect to S or, simply, the S-completion of ¥. This
means that there is a natural equivalence of functors

2[87—, Y) = 2(—, Yy).

The category 2[8~'] takes a simple form when 8 admits a calculus
of left fractions (see Definition 2.3 in [8]). Recall that there is a canonical fun-
ctor F': 2 — 2[8~']. Theorem 1.2 of [5]describes the exact relation between
an object Y and its S-completion Yg4 in the case where § is saturated.
For our applications, 8 will not be saturated. Therefore, we give a variant
of this result in the following

THEOREM 1.1. Let 8 be a family of morphisms of @ and let Yg be the
S-completion of an object Y. Then there exisis a morphism e¢: Y — Yg in
9 having couniversal property with respect to amy morphism in 2 which
i8 taken into an isomorphism by the camonical functor F: Given f: Y —Z
such that F(f) i8 an isomorphism, there exists a t : Z — Y4 such that tf = e.

The theorem follows from Propositions 4.1 and 4.2 of [8].

It is not, in general, true that under the assumptions of Theorem 1.1
we have ¢ € S. In the case where § is saturated and admits a calculus of
left fractions, ¢ is8 in 8. In many concrete situations, however, S is not
saturated. For our purpose, it is enough to show that F'(e) is an isomorphism
in the category 2[8~!]. This happens when every object of 2 admits an
Adams completion with respect to 8. To prove this, we need only to collect
some relevant results.

THEOREM 1.2. If every object of 9 admits an S-completion ande : Y — Ygq
is the morphism obtained by Theorem 1.1, then F(e) is am isomorphism
in the category 2[87'].

Proof. Since every object of 2 admits an 8-completion, the canonical
functor F : 2 — 2[8~'] has a right adjoint @ (Corollary 2.2 of [6]), and in
that case the S-completion of an object Y is simply G(Y). Moreover, G
is full and faithful (Proposition 2.3 of [56]). Then Proposition 2.4 of [5]
implies that the unit of the adjunction ¢:1 — GF is rendered invertible
by the functor F. Observe that the functor F : 2 — 2[8~'] is such that
F(Y) = Y for any object ¥ of 2, and under the assumptions of the
theorem we have GF(Y) = G(Y) = Yg. We also recall that, given a pair
of categories & and & and a pair of functors H: 6 -~ % and K : ¥ —~&
with H—| K (i.e., K is the right adjoint of H), we have the natural equiva-
lence
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n:F(HY,Z)S 8(Y, KZ),

and the unit of the adjunction is defined by &(Y) = 5(1gy). In our case,
we take & = 9, F = 9[87'}, H=F, K =G and n = 7. Then

1: 9[8"'UY, 2) S D(X, Zg)

and, clearly, ¢(Y) = ('Y) = ¢, as defined in Theorem 1.1. This completes
the proof.

2. The set of morphisms S, and the S,-completion of a space. Let ¢
be a %-category (where # denotes a fixed Grothendieck universe which
remains fixed during the rest of our discussion) whose objects are CW-com-
plexes and whose morphisms are continuous maps between them. Let %7.

denote the corresponding based homotopy category; clearly, @7. is a %-
category. Let U, be the set of all (»n 4 1)-equivalences of this category, i.e.,
all maps f: X - Y in ‘é. such that f, : n, (X) - =, (Y) is an isomorphism
for m < n and an epimorphism for m = n+1. We define V to be the set
of all morphisms of this category which induce isomorphisms in reduced
integral homology. Let 8, = U,NV. The set S, has many desirable
properties for proofs of which we need the following

. ProPOSITION 2.1 ([6], Theorem 1.3). Let T be a closed family of mor-
phisms in a category D satisfying the following conditions:

() If tt' €T and t' €T, then teT.

(b) Every diagram &L . with teT can be embedded in a weak
push-out diagram

—r

tl lt with ¢ € T.
e

Then T admits a caloulus of left fractions.

ProrosrTioN 2.2 ([6], Proposition 3.1). The family of morphisms
V satisfies (a) and (b) of Proposition 2.1 and, therefore, admits a caloulus
of left fractions.

ProrosITION 2.3 ([8], Proposition 2.1). The family of morphisms U,
satisfies (a) and (b) of Proposition 2.1 and, therefore, admits a caleulus of left
fractions.

" PROPOSITION 2.4. The family of morphisms 8, = U,nV satisfies (a)
and (b) of Proposition 2.1 and, therefore, admits a calculus of left fractions.

Proof. Condition (a) of Proposition 2.1 is obvious. Moreover, since
the weak push-out diagrams in Propositions 2.2 and 2.3 are the same, the
result follows easily.

PROPOSITION 2.5. For any objest Y of %, the set {s: ¥ — Y'|s € U,}
18 an element of the universe %.

This has been proved in [8].
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PROPOSITION 2.6. For any object Y of ‘:?., the set {8: Y — Y'|s € S,}
18 an element of the wunmiverse %.

Proof. Since the set {8: Y — Y'|s € 8,} is a subset of {8: ¥ — ¥'|
s € U,}, the result follows from the properties of a Grothendieck universe.

PROPOSITION 2.7. The category €, and the set S, satisfy conditions (A)
and (B) of the main Theorem in [4]. _

Proof. Let I be an index set belonging to #. If each 8; (¢ € I) is in
V, then [[s;is in V. This can be seen by Theorem 2 of [4], p. 36, as follows:
Observe that V is a saturated family of morphisms and that every object
of %, has a V-completion and, therefore, Theorem 2 of [4] applies. On the
other hand, if each s; is in U, then it has been proved in [8] that [[s,
is in U,. Combining these two results, we see that condition (A) of the
Theorem in [4] is satisfied.

To see that condition (B) is also satisfied, we take ¥ = # and, for
a fixed object Y of %+ ywelet 8y = {8: ¥ ->Y'|s€d,} which is an element
of % by Proposition 2.6. Then, a commutative diagram, as in condition (B)
of the Theorem in [4], is easily obtained by taking s’ = 8 and 4 = 1g..
As a consequence, we have the followmg

THEOREM 2.1. Ewvery object Y of %. has an Adams completion with
respect to 8,,.

We denote the 8,-completion of a space Y by Y" and by e, the map
Y — Y™ which arises by Theorem 1.1. Let F : Gy — s [8;'] be the ca-
nonical functor. As a consequence of Theorems 1.2 and 2.1, we infer that
F(e,) is an isomorphism in €, [8;'].

PROPOSITION 2.8. ¢, 8 an element of 8,,.

Proof. We observe first of all that since S admits a calculus of left
fractions, we get a better hold of the category % [8;!]. The objects of this
category are the same as those of %. and a morphism in this category
between two objects X and Y is represented by a pair of morphisms
(f, 8) with 8 € 8,:

b.¢ Y

Two such pairs (f, 8) and (f', s’) represent the same morphism from
X to Y if there is a diagram
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7
with uf = «'f’ and us = u’'s’ € 8,. The composition of two morphisms
(f, ) and (f', ') is defined to be (kf, vu’):

7

Y

<

RSN

The existence of morphisms k and v is guaranteed by the fact that S,
admits a calculus of left fractions. The canonical functor F : Gu - € [8;1]
is then defined as follows: For any object X of @., F(X) = X and, for
a morphism f: X —~ Y in %, P(f) = (f,'Y). The identity morphism
on X in %.[S;'] is represented by the pair ('X,'X) or, equivalently,
by any pair (%, %), where % : X — Y is an element of S,,.

Now, since F(e,) = (¢,,1,,) i8 an isomorphism in €. [8:1], let (g, 8)
be its inverse (with s € 8,,): (g, 8)(é,y 1,5) = (1, 1¢). Therefore, we have

Y
A
1y “
1y
:Y Y" Y ZI/
x l‘y" X vs
‘Yn. Z w
v
\ !
ZI

2 — Colloquium Mathematicum XLIV.2
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with % = wke, and v = wvs € §,,. Since s and v are in §,, so i8 »3, and
it follows easily that w € 8,. This, together with the fact that w = wke,,
implies that

(i) ko : Ho(Y™) - H,(Z’) is an epimorphism (because the mapping
we : Hy(Z') > H,(Z") is an isomorphism);

(ii) e : Ty (Y) = 7y (XY ™) is @ monomorphism for m < .

Moreover, u € 8,,; therefore, F () is an isomorphism in R [8;'] and,
by Theorem 1.1, there is8 a unique morphism «’:Z"” — Y" such that «'u
= 6,. Thus, we have

e, = u'u = u'wke,
14

and a diagram

Since F'(e,) is an isomorphism, Theorem 1.1 applies and we get u’'wk
= 1,,. This implies that

(iii) %4 : Ho (Y™ - H,(Z') is a monomorphism;

(iv) %e : e (Z"') — 7a (¥Y™) is an epimorphism.

From (i) and (iii) it follows that k. : H.(X") — H,(Z') is an isomor-
phism which, together with the facts that w and « are in 8, and that
% = wke,, implies that e,.:H,(Y) - H,(X") is an isomorphism. Now
(iv) together with the fact that « is an (n-1)-equivalence imply that
pe : Ty (Y) = 7,y (Y") is an epimorphism for m < n--1. Consequently,
by (ii), e, i8 an (n-1)-equivalence. Thus ¢, e VNU, = 8§,.

3. Y" and the n-stage of the acyclic tower. We show in this section
that Y™ is the n-stage of the acyclic decomposition of an acyclic space in
the sense of Dror. Recall that by an acyclic decomposition of an acyclic

space Y belonging to fZ’. we mean a tower of fibrations
l;u_nY, =Y>..>Y,>Y,_;—>..-> ¥, =pt.,

where the Y,’s are in ¥,.and such that for each n > 0:

(i) the n-stage Y, is acyclic for each n;

(ii) the n-stage Y, is j-simple for j > n (i.e., =, X, acts trivially
on = Y, for j > n);

(iii) the fibre Y, — ¥Y,_, i8 (»—1)-connected.
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It is clear that once we get a tower of acyclic spaces such that, for
eachn, Y, — Y, _, is an n-equivalence, then this can be converted to a fibra-
tion with (» —1)-connected fibre, thus giving rise to a tower of fibrations.

We now recall from [8] that every object ¥ of %. has a U,-completion —
denoted by Y™ — which is precisely the n-th Postnikov section of ¥, i.e.,
7y (Y™) = 7,(¥) for j<n and x;(¥Y™) = 0 for j > n. Moreover, if 0, :
Y — Y™ denotes the map that arises by Theorem 1.1, then 6, € U,. Since
6, is also an element of U,_,, it follows from the couniversal property of
the map 0,_,: Y — Y* U that there is a map g¢,: ¥™ — Yi*=2 guch
that ¢,0, = 0,_,. We thus get a tower of spaces, and we can assume that
the maps ¢,’s are all fibrations.

We have the same sort of situation with respect to the families of
morphisms 8,’s; for, corresponding to each n >0, we get a space Y™,
the 8,-completion of ¥. Moreover, the map ¢,: ¥ — Y", being an (n+1)-
equivalence, is also an m-equivalence, and hence belongs to §,_,. The
couniversal property of ¢,_, then implies that there is a map p,, : Y* - ¥"~?
such that p,e, = ¢,_,. We may assume that the maps p,’s are all fibrations.
Tt follows from Proposition 2.8 that H,(Y) = H,(Y"™); therefore, if ¥
is acyclic, 8o is Y" for each n. It is also equally clear that the fibre of
Pp,: Y* > Y™ ! ig (n—1)-connected. Thus, conditions (i) and (iii) of an
acyclic tower are satisfied by the spaces {¥"}. To show directly that.
condition (ii) is also satisfied seems to be difficult. We, therefore, take
the help of Dror’s acyclic functor 4 to show that ¥® and AY™ (which
is the n-stage of the Dror’s acyclic tower) are homotopically equivalent.

Consider the commutative diagram

46,

AY > Ay
P4
7
7
J 0"// I
7
v
7
\} //
Y > yinl
on

Since Y is acyclic and Y™ is the n-th Postnikov section of ¥, H,(¥™)
= 0 for ¢ < n+1. It follows from Theorem 2.1 (iii) of [7] that f, is an
(n+1)-equivalence and that f is a homotopy equivalence, showing that

(A46,)s : 7y (AY) - 7, (AXY™)

i8 an isomorphism for m < n. This together with the fact that Agq, is an
n-equivalence in the diagram
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Ab, > A Y["]

AY

Aq,

Aylr-1l
implies that A40,_, is an n-equivalence. Thus, we have a map
gn = (46,)f': Y - AT

which is an (n+ 1)-equivalence. We can now collect together the relevant
spaces and maps:

0 "

The map ¢, arises because of the couniversal property of 6, with
respect to all (» +1)-equivalences, the map k, arises due to the couniversal
property of e, with respect to all (» 4 1)-equivalences which induce homo-
logy isomorphisms, whereas the map &, arises due to the universal property
of g,. The maps ¢,, h, and k, are all unique and, moreover,

on = @nt, =fngn’ 6, = pgnv gn = h’nen'

Thus, we have ¢,k,g, = ¢,¢, = 0, = f,9,; hence, by the couni-
versal property of 6,, ¢, k, = f,. Now, f,h,k, = ¢,k, = f,; hence, by the
universal property of f,, h,k, = id ). Moreover, e, = kng, = kphye,
implying that k,h, = 1lpyn. Therefore, h, is a homotopy equivalence.
This completes the proof that Y" is the n-stage of the acyclic decomposi-
tion. The diagram above also brings out the relation between Y™ and

Y™™ in the framework of generalized Adams completion.
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