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A boundary value problem for quasilinear
" hyperbolic systems with a retarded argument

by Z. KamMonT and J. Turo (Gdarnsk)

Abstract. A theorem of existence, uniqueness and continuous dependence on boundary
data is proved concerning a.e. solutions of a boundary value problem for systems of quasilinear
hyperbolic differential equations with retarded argument, including the Cauchy problem as a
particular case. The proof is based on recent results due to P. Bassanini for quasilinear
hyperbolic systems without a retarded argument.

1. Introduction. We shall use the symbols D,z(x, y) = (D,z,(x, y), ...
o Dyzy(x, y)) and Dyz(x, y) =[D, z;(x, y)), i=1,...,m, j=1,...,n to
denote the partial derivatives of a vector function z: D, = I, x R™ — R", where
I,=[0,a], a=0 and D, z(x, y) = 0z;(x, y)/0x.
We consider quasilinear hyperbolic systems with retarded argument in
the second canonic [6] (or bicharacteristic [9]) form

(1) Z Aij(x’ Y, Z(X, y))[szj(x, y)+

j=1

+ Z Qik(xa y, Z(X, y)7 (ZOG)(X, y))Dyk ;(x y)]
k=1

=fi(x, y,z(x, ), zoB)(x, ), i=1,...,n,

(x, y)eD,, where y = (yy, ..., yWeR™", m2 1, z(x, y) = (z1(x, ), ..., Z4(x, V),
and (zoa)(x, y) = z(x(x, y)), a(x, ¥) = (2o (x), &' (x, y)), @’ (x, y) = (@, (x, y), ...
.+s Om(x, ). In a similar way we define zo g with B(x, y) = (B (x), B'(x, ¥)),
ﬂ'(xs Y) = (ﬂl (xs y)s AR ] ﬂm(x’ y))

In the present paper we prove, by means of the fixed point theorem in
the product of two Banach spaces [5], a theorem of existence, uniqueness
and continuous dependence on the data for systems (1) with the general
boundary data [11], [1]

N
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for an arbitrary given system of numbers a,, 0< g, <a, k=1,...,N,n<N
< +o00, and gwen functions B, (y) = [Bu;(»)], i.j=1,....n ¥
=(W1()), .., ¥ (y)) where T is the transpose symbol. The boundary condi-
tion (2) includes the boundary condition “a la Cesari” [2], [6], [7] as a
particular case: take N = n, B,;;(y) = B;;(¥)0y; (6,; the Kronecker symbol). If
By;;(y) = 64;0;;, then the boundary condition (2) reduces to the condition
considered in [12]. If, furthermore, all g, =0, k = 1, N, then we have the
usual Cauchy condition. Boundary conditions of the form (2) arise, in a
suitable version, from problems of mathematical physics [4].

System (1) with non-retarded argument has been investigated by L
Cesari [6], [7], P. Bassanini [1]-[3], M. Cinquini-Cibrario [8], M. Cinquini-.
Cibrario, S. Cinquini [9], and P. Pucci [11].

The Cauchy problem for system (1) was considered by Z. Kamont, J.
Turo [10] by using slightly different methods.

2. Assumptions. We introduce the norms |y|, = max |y, and |z|,

1<k<sm
= max |z| in R™ and R", respectively. If D =[d;;],i=1,...,n,j=1,...,m,
1<i<n

is an n x m matrix, then D; = (d;,, ..., d;,). If D is a square matrix, then ||D||

= max ) [d;}. We denote by Q the cube [—Q, Q]" = R", @ > 0. Let a, be

1€isnj=1
a given positive constant.
Let

(3)  A(x,y,2)=E+A(x, y,2),
ATNx, v, 2)=E+A(x,y,2), Bi(y)=E+B(y),

N
Op = Sup z ”Bk(y)”’ 0y = Sup ”A(X, y, Z)”, o, = Sup ”A(X, Y, Z)”'
yeRm k=1 Do, x R™ Dy, * R™

where 47! is the inverse matrix to A, E = [§;], E, =[,;0,;). i, j=1,...,n,
k=1...,N, and D, =1, xR".

AssumpTioN H,. Suppose that

1° A: D, x{—)—'R"z is continuous;

2 detA(x y,z2)=2%x>0in D, xﬁ for some constant x;

3° there are constants H>0, C>0 and a function p: 1,0—»R+ =
[0, +o0), pe L, [0, ao], such that, for all (x, y, z), (x, ¥, 2), (X, y, z)e D,; xQ,
we have

lA(x, y, 2l < H
”A(xa y, z)—A(x, f’ 2)“ s [ly ﬂm'*'lz E'n]s

”A(X, Y, Z)—A(i', Y, Z)” < ij(t)dtl
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Since det A(x, y,z)=2x >0 in D, xQ, it 1s easily seen that there are
constants H’, C’ and a function p’: I,, — R, p'e L, [0, a,], such that, for all
(x, y, 2), (x, ¥, 2), (%, y, 2)€ D,y xQ, we have

N4~ 1(x, y, 2l <
“A—l(xs Y, z)—A—l(xv .v_v Z)“ SC’[Iy_ﬂm'i'lz_Eln}a

X
A= (x, y, 2)— A" (X, y, 2l < |[p' (1) dt].

AssumpTioN H,. Suppose that

1° o(-, y, z, w): I,, — R™ is measurable for every (y, z, e R™ xQ xQ;

2 o(x,"): R"xQ xQ— R"™ is continuous for a.. xelgys

3° there are functions b, I: I, — R., b, le L, [0, ao], such that, for all
,z,u), (Vy,Z,)eR" xQxQ, i=1,...,n and ae. x in Iy, we have

|Qi(x’ Y, 2, u)lm < b(X),
|Qi(x’ Y 2, u)_Qi(x’ )7’ E’ l—i)lm < l(x)[ly_ﬂm"'lz_fln'*'lu_aln]’

4° ay: I,,— R, is measurable and ao(x) < x, ae. in I, ;

5° a'(", y): I,,— R™ is measurable for ye R, and there is a constant ¢

2 0 such that, for all y, yeR™ and ae. x in I,;, we have

o’ (x, y) =o' (X, Plm < €|y —Vm-
AssumpTiON H,. Suppose that
1°f(-, y,z,w: I,,— R" is measurable for every (y, z, u)e R" xQ xQ;
2 f(x,): R"xQxQ— R" is continuous for ae. xel,;
3° there are functions g, l;: I,, — R+, g, I, € L, [0, ao], such that, for all
v, z,u), (¥, Z, e R" xQ xQ and ae x in I, , we have
1f(x, y, 2, Wla < q(x),
1f (e, v, 2, w)—f(x, 3, Z, )] < Ly () [y = Pm~+ 12— Z]p+ [u—1l,];
4 Bo: I, — R, is measurable and fo(x) < x ae. in I, ;
5 B(,y): I,,— R™ is measurable for every yeR", and there is a
constant d > 0 such that, for all y, yeR™ and ae. x in I, , we have

|B'(X, y)—ﬂ’(xs y)lm < dly_.ﬂm
AssumpTioN H,. Suppose that

1° y: R™ — R" is continuous and there are constants wy, Ag, 0 < wq
<Q, Ay = 0, such that, for all y, ye R™, we have

Wl < @o, W)=Y (Dla < Aoy —Fm;

ag’
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2 B,:R"— R is continuous, det B,(y) # 0, k =1, ..., N, and there is a
constant 7, > 0 such that, for all y, ye R™, we have

N
Y B (M =By Dl < 1oy — Vms
k=1
3 0g < 1, C =(00+61)(1+62) < 1, and 0)0(1+02) <Q(1—C)
3. Choice of classes B, (a) and B,(a). Let

2o =(1+6)(1-0)7 ' w,.

Then from 3° of H, it follows that there is a constant k, 0 < k < 1, such that
{=(oo+0)(1+0,) <k <1 and g, < Q.
We assume Cw,, C'w, to be so small that

4 Cweg+Coolop+0y)+Coo(l+ay) <k-—(,
09 = C'[wo+00(0g+0)]+Coo(l+a;) < 1.
Then there certainly is a constant s, 0 <s < 1, such that
g0 =01+4+8){+C wog+C golap+0,)+Coo(l1+0a,) <1.
Let Q be a positive constant such that
Q> fo(l—8)~",

where 1y = (1+35)(1+03)(Ag+00T0)+(1+05)Coo+ C'[@wo+00(06+06,)].
Let us take

r(x) = Roq(x)+ R, p(x)+ R, p(x)+ R3 b(x),
where R;, i =0, 1, 2, 3, are positive constants satisfying
Ro > (1+a3)(1 =807,
R, > go(1+a)(1=8p)7 1,
R; > [wo+00(00+01)](1-8,) ",
Ry >(146,)(1-380) ' [Aog+00T0+00Q+20C(1+Q)+a, Q].
We define the following constants:

&)

P, =

Ot &

p(x)dx, P,= }p’(x)dx, L,= }!(x)dx,
0 0

Ly, = ‘_’[ll (x)dx, R, = ]"r(x)dx, y=(1+0;)[P,+C(1+Q)B,+CR,].
0 0
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We assume that g is so small that y+{ <k < 1.
Now, we can define ¢ as follows:

e =(1+03)(Qs+wo) [1-(r+)]7".

Then from 3° of H,, for a sufficiently small, we have

(1+02)(Q.+wo) < 2[1-(y+0)];

hence ¢ < Q.
Let us consider the Banach space S,(a)=[C(D,)NL,(D,)]", O
< a < agy, of continuous bounded vector functions z: D, —» R" with norm

llzlls, = sup [z(x, Y)la-
(x,y)eD g4

We denote by B, (a) the closed (convex) subset of functions in S, (a)
satisfying the conditions

!z(x, y)|n<Q<Q’ IZ(X, y)—z(x, y)lnsgly_ﬂm’
2(x, Y=z (%, yl. < |fr®)de|,  (x, ), (x, ), (%, y)eD,,

where ¢, Q and r are defined above.
We also consider the Banach space S,(a) =[C(4,) " Lo (4)]™, 4, =1,
xD,, of continuous bounded matrix functions h=1{h,]: A,— R™ i

=1,...,n k=1, ..., m with norm ||hi|,;2 = max sup [h(&, x, Y)n-
1<isn(§,x,y)ed,

We denote by B,(a) the closed (convex) subset of functions in S,(a)
whose components satisfy

h,-(x, X, y) = 09
Ihi (és X, y)—hi(és X, .V)Im < s|y—ﬂm’

o

b(t) dt

|hi(és X, y)—h,(E, X, y)lm < ‘

ey,

b

o

e

H i=1’--"na

Ihi(és X, y)_h:(éa f! y)lm < )’”b(t)dt

for all (&, x,y), (€, x, 9 (& x,y), (£ X, y)ed,, where 1 =[1-L,(1+Q
+0c)]" . Here we assume a to be so small that

6) L(1+0+Q¢) < 1.

Then all functions in B,(a) are uniformly bounded by B,.
Putting for h=[h,]), i=1,....,n, k=1,..., m, heB,(a),

(7) gi(és X, y) = y+h'l(€$ X, })),

4 — Annales Polonici Mathematici XLVIIL.3
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we have

gi(x, x, Y) =y, g x, ¥)—gi(&, x, P < A +5)|y— Pm-

Further properties of h and g are reported in [6], [7].
Let us define the constants

T=y(1+0))7", M,=we+Q,+0(F+0,+0,).

4. Operator T and its properties. We now consider an operator T= (T,
T?) defined in B, (a) x B; (@), where T¥ and T*® are defined in B, (a) x B, (a)
as follows:

B (TV2)(x,y)=A""(x,y, z(x, y))
x[4'(x, y; z, )+ 4%(x, y;z, )+ A3 (x, y; z, B)],
(T;(Z)h)=[(1'(22)h)u], i=1,-": n,j=1"", m,

and

(TP h)(&, x, y) = —}e.- (t. g0, x, y), 2(2, 92, %, y)), (z0a) (t, gi (¢, x, y))dr
‘ i=1,..,n.
At (x, y; z, b) = (4% (x, y; z, hy), ..., A (x, y; z, h,l))r, k=1,2,3,
4} (x, y; z, B) = Yi(gi(a;, x, y))+

+ }fa (t, 9it, x, y), z(t, gi (¢, %, V), (2O P(t, g: (2, x, y)))dt
.

) 47(x,yiz, h) = [Di[AF(, x, i 2z, )] 28, %, y; h)de +
a;
+A*(a'n X yv Z, hi)z (ai’ x ys hi)9
N
Aia(x: y;z, hi) = —gz Bki (gi(ab X, y))z(ab gl(aia X, y)),
=1

Af(t, X,y 2, h‘l) = Ai(ts gl(t’ X, .V), Z(t, gi(ts X, y)))a

Z?(t, X, ), h'n) = Z(t, gi(t’ X, y))’

g; is defined by (7).

Note that, because of (3), we may simultaneously replace D, A}, 4, and
B,; in the above equalities by D, 4*, 4; and B,,, respectively.

LemMA 1. Let Assumptions H,—H, hold. Then for a, 0 < a < a4, Cw, and
C'wo sufficiently small, the operator TV maps B, (a) x B,(a) into B, (a).

Proof. By applying the Chain Rule Differentiation Lemma (4) (ii) of
[6], we can show that

D, A2 (¢, %, y; z, W)l < P()+C(1+Q)b(1)+Cr (o),
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and
ID,z¥(t, x, y; W), <P()+Qb(r), i=1,... n.
Hence, for all (x, y)e D,, we have
TRV 2)(x, y)la < (1+62)(Q. +wo)+0(1+0,)(F+05+0,)
=(1+03)(Q+wo)+e(y+) =0 < Q.
For any two points (x, y), (x, »)eD,, we can write
(T2 (x, =TV 2)(x, 7) = vo+ v, +v, t+vs,
where
vo=[A"1(x, y, z(x, W—A"(x, 3, z(x, )] x
x[4'(x, y; z, )+ 4%(x, y; z, )+ A%(x, y; z, b)],
ve=A"'(x, ¥, z(x, ) [4*(x, y; z, h—A%(x, 7,2z, )], k=1,2,3,
and
Voln < C'(1+ Q) M, |y — i,
Vil < [[A7(x, y, z(x, Y {max [y (g (i, x, )~ i(g: (@, x, D)+

Si<n

+ max |[[£i(t, g:(2, x, )), 2(t, g: ¢, x, y)), (zOB)(t, gi ¢, x, »)-

1<i<n a,

_fu:(ta gi(ta X, y)a Z(t, gi(t’ X, .]_")), (ZOﬂ)(t, gi(t’ X, f))):”dt}
S(A+09)[Mo(1+5)+ Ly (1+5) (1 +Q + Q)] [y — T,

Valn < (1+05) { max |[[4AF(, x, y; z, h)—
1

<i<n a;
—/i’?(t, X, V; z, hi)th?‘(t, X, ys hl)dt’+
+ max |[[D, A (t, x, 7 2, B)[2¥ (¢, x, y; h)—zF (¢, x, h)]dt|+

+ max [[4i(x, y, z(x, )= 4i(x, 7, z(x, P)] z(x, y)|+

1<i<n

+ max |4f(a;, x, y; z, B)[28 (4, x, y; h)—z¥ (a;, x, 7; k1)

1<i<n

<(1+0) [C(R,+QB)(1+35)(1+Q)+FQ (1 +9) +
+eC(1+Q)+0, Q(1+5)] x|y — ¥,

Vala < (1405) { max |} [Bu(gi(a;, x, y))-

1<5i<n x=1

~ By (9:(a;, x, 37))]2(“&’ gi(a, x, y))+
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N
+ max | ) Bulgi(a, x, »)[z(a, g: (@, x, y))—z(a, gi(ai, x, §)]|}

1<isn k=1
S (1+ax)(1+5)(eto+00Q) [y — Flm:
A-l*(t’ X, y; z, h|) = ’i.i(ta gi(t, x: y)a Z(t, gj(t, X, y))), l = l, cees n.
Summarizing, we get

(TR" 2)(x, Y)=(Ta" 2) (x, Pln < EQ+ DY —Fm,
where
e=C'M,+(1+0,)0C+7(l+3s)+

+(1+0)(1+s)[(1+d) Ly, +C(R,+QB))+0,+0,],

n=CM,+(1+065)0C+(1+0,)(1+5s)[Li,+ Ao+ C(R,+ QB,)+070].
We now assume

E0+1<0,
which is certainly satisfied for a sufficiently small; then
(TR 2)(x, )= (T 2)(x, n < @1y = Flm-
For any two points (x, y), (x, yye D,, we have
(T 2)(x, Y)=(T 2)(X, y) = po+ iy + Ha + s,

where

po=[A""(x, y, z(x, )= A7 (X, y, 2(X, y))] x

x[A'(x, y; z, )+ A% (x, y; z, B+ A3 (x, y; z, h)],
wo=A"Y% y, 2(%, )[4 (x, y; z, =A%, y; 2, )], k=1,2,3,

and

ltola < M [|f P’ (D) dt|+ C'|{r () dt|],
4] < (1+02)[Aoi|jb(:)dt|+|jq(t)dt|+L“(1+Q+Qd)&|}b(t)dt|],

aly < (1403) {C(1+Q) (Ry+ @B, 4| [b(1)di|+ 504 |[b (1) di] +

+e[|fp(®)dt|+C(1+Q)|fb(r)det|+ C|fr(t)de]] +
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4 X
+0C(1+ Q) 2|[b(t)dt|+a, QA|[b(r)dt|},

latn < (1+Uz)(T09+UoQH”b([)dfl-
Hence
(10) KRV 2)(x, )= (T 2) (X, y)ia

X X 3 X x
< volfa(dt]+yi|fp(0dt]+ vy |[p () dt|+y3 |[b()de]+ 6 |[r(r)dr],
where - ’ ) i ’ |
Yo=1+02, Y1=01+403)e, =M,
Y3 =(1+03)[AoA+ L1, (1+Q+Qd)A+C(1+Q)(R,+0QB,) A+

+704+0C(1+Q)+0C(1+Q) A+ 0, Qi+(100+000) 4],
5=M,C'+oC(1+ay).

We assume that g is so small that
% <(1-9)R,, k=0,...,3,
ie, %+O0R, < Ry, k=0, ..., 3, where R, are defined by (5). Then (10) yields

(Ta" 2)(x, Y= (TP 2)(%, ylla < |r (@) dt.

Thus T: B,(a) xB,(a) — B,(a). This completes the proof.
LEmMA 2. If Assumption H, is satisfied and a, 0 < a < a,, is so small that

L(1+s(1+Q0+Qc <s, L, (1+Q+Qc)<1,
then the operator T'® maps B,(a) x B,(a) into B,(a).
Proof. Note that, for all zeB,(a), heB,(a), the function T®h is
continuous, and that
(TP hy(x, x, y) =0,
_ g
I(T;(Z) h)l(é’ X, y)_(T;(Z) h)l (éa X, y)lm < Ijb(t)dtl!
3
(T2 k€, x, )= (T2 h)(E, %, )im
<|[IOA+Q+Q0)gi(t, x, Y)—gi (¢, X, Plmdt|
g

S L(1+)(1+Q+Q0)|y—Jlm < 81y~ Vlms
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I(T;‘Z) h)l(é’ X, y)_(T;(Z) h)i(fa 56’ y)'m

< ”Ql (ta gi (ta X, ,V), Z(t, gl'(t! X, y)),‘(zooz)(t, gi(t’ X, .V)))dt|m+

+|j[Ql (t, gi(t3 X, y)s Z(ts gi (ta X, y))s (Z oa)(t, gl’(t’ X, y)))—
4

_Q!(t’ gi(t’ fa y)a Z(t, gi (t’ i, y))’ (ZO&) (ta 9 (ts f’ ,V)))] dtlm

< |}b(t)dt|+L,,(1+Q+Qc)i|}b(t)dt| = A|}b(z)d:, i=1,..,n

Hence we conclude that T}? h belongs to B,(a). Thus the lemma is proved.

LemMma 3. If Assumptions H,-H, are satisfied, then the operators
T®: B,(a) xB,(a) = B;(a) (i = 1, 2) are Lipschitz continuous.
Proof. Indeed, for all z, Ze B, (a), h, he B,(a), we have

ITVz— TV 2lls, < (1+02) {[Ao+ L1a(1+Q+Qd)+00Q +070] X

xllh—Flls, +114%(z, = 4%(z, B)s,}-
Integrating by parts, we can write
A}z, h)—4F(z, by)

= [D,[A*(t, x, y; z, )1 [2* (¢, x, y; h)=z}(t, x, y; h)]dt—

- j[;{l*(t) X, y; z, hl')_A-l"(ts X, .V; z, El)] D,Z?(t, X, .V, h,)dt‘l‘

+A~l'(al" x, ¥z, hi)[zi*(ah X, ¥, hi)_z:'k(ai’ X, ¥, Fll)]’
with g;(¢, x, y) = y+ (&, x, y). Hence
14%(z, B)— 4% (z, B)lls, < [FQ+C(1+Q)(R,+QB,)+0, Q1|lh—Hhlls,,
and so

IV z— TV 2lls, < A, lh—Hhlls,,
where

A =(1+03)(Ag+e1) +{Q+(1+3,) [¥Q+ L, (1+Q+Qd)+
+C(1+Q)(R,+0B,)].
Similarly, we have
ITiVz— TV 2lls, < [C'M,+(1+05) 2Ly, +00)] [z —2lls, +
+(1+0,)14%(z, H)— 4% (Z, b)ls, -
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Integrating by parts, we can write
A} (z, B)— AL, k)

= ID,/‘{,*(I, X, .Va Z-, hl)[zl*(t’ X, y: h‘)—fl*(t, X, }’, hl)]dt—

— [[AX(t, x, y; 2, ) — AL (t, %, y; , B)]I D, z¥ (¢, X, y; h)de+

+[Ai(x, y, z(x, )= Ai(x, y, Z(x, Y] 2(x, p)+
+ A% (@, x, y; Z, k) [2F (@, X, y; h)—2F (@, x, y; b))
Hence
14%(z, B~ 4% (Z, h)lls, < [T+ C(R,+QB)+ Co+a]llz—1[s,,
and we finally get
IV z— TV 2lls, < Asllz—2ls,
where
A3 =[C'we+C g(og+0,)+Co(l +a,)+{]+
+{C'Qo+C o7 +y+(1+03)[2L,,+ C(R,+0B,)]}.
For the operator T'® we easily obtain
IT® h— T hlls, < 2L, |1z =25, + L (1+ Q@+ Qc) ||k — hl|s,.
This ends the proof.

5. The main result.

THEOREM. Let Assumptions H,—H, hold. Then for a, 0 < a < ay, Cw, and
C' wq sufficiently small, and for every system of numbers a;,, 0 < a; < aq, i
=1, ..., N, there is a vector function z: D, — R", ze B, (a), satisfying (1) a.e. in
D, and (2) everywhere in R™. Furthermore, z is unique and depends continuous-
ly on  in the classes which are described in the proof.

Proof. From Lemmas 1-3 we have for T = (T, T¥): B, (a) x B,(a)
— B,(a) x B, (a)

1TV z— TV 2lls, < kyllh—hils, +kallz—2lls,,
IT? h— T2 hils, < kyllh—Alls, +kqllz—2ls,
where
ki =241, ky=23, ki=A¢=L,(1+Q0+Qc), ky4=214=2L,

and we assume (the non-trivial case) 4, 43 4,4¢ > 0.
Thus, the problem is reduced to the general setting considered in [5],
with 4, = A =0, and assumptions (H1), (H2) of [5] are fulfilled.
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Accordingly, we choose the weighted 1-norm in S, (a) xS, (a)
(11) Iwlls; xs, = «llzlls, +Bllhlls,, ~w =(z, h)e B (a) x B;(a),
with a, § > 0 to be speciﬁed below, and we require conditions (H3) of [5] to
be satisfied:

ky <k, ky<k, kiky<(k—ky)(k—k,),

together with
(12) ko(k—kp)™! < off < (k=ka)k,.

Assumptions (H3) reduce here, because of (6), to the conditions

ky <k, kyky <(k—k;)(k—ks),

which are certainly satisfied for a sufficiently small, by virtue of (4).
Then, as is proved in [5], the map T: B;(a) x B,(a) — B,(a) xB,(a) is a
contraction with constant k, 0 <k <1, in the norm (11)

”TW_ TW’”S‘ xsz S k“w—W”sl 152

for all w=(z, h), w = (Z, h)e B, (a) x B,(a). Thus T has a unique fixed point
W =Tw, w=(, h) in B,(a) xB,(a). It is easily seen that 7 is the (unique)
solution of the boundary value problem (1), (2), by means of the same
considerations as in the Chain Rule Differentiation Lemma (4.ii) of [7].
Indeed, for this fixed point we find from (8) (with g =g, z =2, §(&, x, y) =
y+h(¢, x, y)), after integration by parts and simplifications, that

13) 0=A""(x,y, z(x, Y)[4A' (x, iz, h+A%(x, y; 2, D+ 4%(x, y; 2, B)],

where

A (x, y;z, ) = (A2 (x, yi 2, by, o, B2, iz, b))
A2(x, y; z, hy) = [A*(t, x, y;z, D z¥(t, x, y; h)dt, i=1,...,n,
. :
and 4!, 4® are defined by (9).

Since det A~ ! # 0, the expression in brackets in (13) is zero. Thus we see
that z = 7 satisfies the boundary conditions (2), and (13) reduces to

I[f;(za gi(ta X, }’), Z(t, gi(t9 X, y))$ (ZOB)(I, gdi (t, X, .V)))_
—Ai(t’ gi(t1 X, y)5 Z(t, gi(ta X, Y)))D:z{t, gl'(t! X, .V))] dt = 0,
i=1,...,n whence (1) lollows a.e. in D,, by the same considerations as in

[6], [7] (in particular, using the group property of g).
We only need to show that Z[y] depends continuously on . For this
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purpose, let us define by

Wlisg = Sup ¥ (Ml
yeR™

the norm in Sy = [C(R™ A L,(R™]", and for arbitrary ¥, ¥ satislying
Assumption H, let z =Z[y], Z=2[y¥], h=h[¥], h = h[§] be the corre-
sponding fixed points. Then we obtain, by the same argument as in the proof
of Lemma 3,

lz=Zlls, < (1402l —Plisy + A1 I1h—=Flls, + A3 llz —Zls,
h—hlls, < A6llh—hlls, + A4 Iz~ Zlis,

whence

(14) Ih—hlls, < 2e(1=46)™ " llz—Zlls, = AL,llz—Zls, .

Combining the above relations, we get

(13) lz—2ls, =12 [¥1-2[¥ s, < A +0)(1=k) "' |y —lls,,

where the constant k = A;+4; A, (1 —4¢) ™! satisfies 0 < k < k. Relations (14)
and (15) show that the fixed point w = w[y] depends continuously on .
This concludes the proof.

Appendix

System (1) can be written in the matrix form

AD,z+ Y Ry AD, z =,
k=1
where

A= [Aij (x, ¥y, z(x, y))]n’,j= 1,..m
Rk = diag [Qlk(x’ ya z(x, y),(zoa)(x, y))’ AR an(x’ y’ z(x, y)’ (ZOG)(X, y))]7
f = (fl (xa Y, Z(x’ y)s (ZOﬂ)(x, y))a ""fn(x’ Y, Z(xs y)s (ZOﬁ)(x, y)))

With this notation, it is easy to recognize (as was done in [1]) that a generic
first order system of partial differential equations

m
Z Aijjz =f; Yo = X,
j=0
can be reduced to the bicharacteristic form (1) iff the matrices

Al A, (r=1,..., m) commute, ie., iff “linear shocks” are ruled out (in G.
Boillat’s terminology).



360

(1]
[2]
(3]
4]
(5]

)
71
(8]
(%]
(10]
(11]
[12]

Z. Kamont and J. Turo

References

P. Bassanini, [terative methods for quasilinear hyperbolic systems, Boll. Un. Mat. Ital. (6)
1-B (1982), 225-250.

—, On a recent proof concerning a boundary value problem for quasilinear hyperbolic
systems in the Schauder canonic form, ibidem (5) 14-A (1977), 325-332.

—, The problem of Graffi-Cesari, Proc. of Inter. Conl. on Nonlinear Phenomena in Math.
Sci, Arlington, US.A, Acad. Press 198 (1982), 87-101.

—, L. Cesari, La duplicazione di frequenza nella radiazione laser, Atti Accad. Naz. Lincei
69 (1980), 166-173.

—, E. Fillaggi, Schemi iterativi e accelerazione della convergenza per operatori di
contrazione nel prodotto di due spazi di Banach, Atti Sem. Mat. Fis. Univ. Modena 28
(1979), 249-279.

L. Cesari, A boundary value problem for quasilinear hyperbolic systems in the Schauder
canonic form, Ann. Scuola Norm. Sup. Pisa (4) 1 (1974), 311-358.

—, A boundary value problem for quasilinear hyperbolic systems, Riv. Mat. Univ. Parma 3
(1974), 107-131.

M. Cinquini-Cibrario, Teoremi di esistenza per sistemi di equazioni quasilineari
a derivate parziali in piu variabili independenti, Ann. Mat. Pura Appl. 75 (1967), 1-46.
—, S. Cinquini, Equazioni alle derivate parziali di tipo iperbolico, Ed. Cremonese, Roma
1964.

Z.Kamont, J. Turo, On the Cauchy problem for quasilinear hyperbolic system of partial
differential equations with a retarded argument, Boll. Un. Mat. Ital. (6) 4-B (1985), 901-916.
P. Pucci, Problemi ai limiti per sistemi di equazioni iperboliche, ibidem (5) 16-B
(1979). 87-99.

J. Szarski, Comparison theorems for infinite systems of differential-functional equations and
strongly coupled infinite systems of first order partial differential equations, Rocky Moun-
tain J. Math. 10 (1) (1980), 239-246.

Regu par la Rédaction le 1985.02.20



