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1. Introduction. In 1928 A. F. Andersen, in [2], proved the following
theorem:

THEOREM A. Y u, is summable (C, y) if and only if 3n*4*u,, is summable
(C,y+ k), &k a positive integer.

Here A*u, is the k-th difference of {,} and the sufficiency condition
is meant in the sense that there exists a unique series )'u), satisfying
A*up = A*u,, which is summable (C,y). Defining the classes {C,} by

c, = {Zaf‘l Zan is summable (C, y)},

Andersen’s theorem can be stated as
D'u,e0, if and only if > n*A*u,e0,.,.

On the other hand, from a well-known classical theorem (see Hardy
[4]), D u,€C, implies Y n~7u,eC,_, for y >0, but the converse does not
hold for any y or y > 0. But such transformations are important, especially
in trigonometric series. Whereas a trigonometric series transformed by
v, = n* A*u, is no longer a trigonometric series, one transformed by
v, = n’u, is again a trigonometric series and represents, in some sense,
the fractional integrated or differentiated series, or its conjugate series.
Thus, it would- be useful to construct a family of classes, {S,} say, which
contains the Cesaro summability classes {C,}, in which all the theorems
about Cesaro summability can be extended to this new family, where
all the methods used in the theory of Cesaro summability are equally
applicable in the new theory, and where

D u,e8, it and only if Y'n’u,e8,.

It is such a family {R,,}, called the repeated convergence classes,
that is the object of our investigation. The first extension needed is to
define Cesaro summability for all real numbers and not simply to consider
numbers greater than —1 as is commonly done. As early as 1930,
Hausdorff, [6], suggested a definition for orders < —1, and since
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that time other definitions, equivalent to his, have appeared (see [3],
[10]). In our case we shall investigate repeated convergence classes {R,,}
for all real values (z, ¥) of the Euclidean plane and it is crucial that we
consider Cesaro summability of all orders. If not, the range of the param-
eters z, ¥, would have to be restricted simply because Cesaro summability
was not defined there, and this would detraet from those natural values
of the parameters, where the theorems actually are false.
We define Cesdro summability for arbitrary order as follows:

DerFiNiTION 1. Let Y'a, be a series of numbers,

_ W+1)(y+2)...(y+n)

_All
i n!

) Ag =1
and
L
s¥ = ZAZ_,a,.
r=0

The series ) a,, is said to be summable (C, y) to sum a®, y an arbitrary
real number, if

(1) Ut — g AV L o(n¥*")  for r =0,1,2,...

Although the definition requires a denumerable number of conditions
for a series to be summable (C, y), if y > —1 the condition for r = 0
will imply all the other conditions, and if ¥ < —1, the condition for » = 0
and for any other value of r such that y+ 7 > —1 Will imply all the other
conditions. To see this, suppose

sV = a®A4¥ 1 0(n¥) for some y < —1
and

sUtT = a@W AV L o(n¥*")  for some r such that y+r > —1.
Subtracting a{® from a, gives us a series which is summable (C, y+r)

n
to 0. Thus, we may assume a® = 0. Now, s¥*' = Y's¥. Since y< —1

o0 vex()
the series ) s! converges to sum ¢, say. Then
(]
n (=1
1
23},’: ¢ — Z 8 =ct+o(n't).
v=0 r=n+1

Thus

n
suHT = ZA;‘_zvsH“ = cAL, ' +o(n™).
e
But s¥*" = o(n¥*") and since r—1 > y+r, ¢ = 0.
Continuing in this way, we prove that s*? = o(n¥*?) for p =2, 3, ...
XX 1' - 1.
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If y = —1, then a, = o(1/n), and by a well-known Tauberian the-
orem, )'a, converges even if it is summable by Abel’s method.

Thus two conditions would suffice to define Cesaro summability in
general. However, by using the above definition, one can prove all
summability theorems in their full generality without having to consider
two separate cases, ¥y > —1 and y < —1. Thus, with this definition,
y = — 1 plays no special role.

In Section 2 we define the repeated convergence classes. The concept
of repeated convergence originated with Rajchman [12], and is concerned
with the convergence of a series of remainders of some initial series.
It is from his definition that the classes will be constructed. At first glance
this appears to have nothing to do with Cesiaro summability, but the
connection is quickly established in Theorems 1 and 1*.

In Section 3 we consider the transformations v, = n” 4%,, y a real
number, ¢ a non-negative integer. These transformations reduce to the
transformations v, = n’«,,, discussed above, when ¢ = 0. We prove the
theorem

ZuneRw if and only if Zn"d"uneRx_Hq_H,,

except for certain special values of the parameters.

Finally, at one such place where the theorem fails, namely
Y n*a,eR, , does not imply D a,cR,, for # fractional and non-negative,
we show what the connection is, by proving Theorem 7: ) n”a,eR, ; if
and only if Y a,e¢R,, and ) n”a, is summable by Abel’s method.

In proving this theorem .we use fractional differences which are
defined by

=]
z _ —z—1
A%a, = ZA,, Gpyp

p=0
N
and we use the notation 4% a, for the expression Y 457 *a, ..
p=0

The author wishes to express his deep gratitude to Professor Anton
Zygmund who not only suggested the problem of repeated convergence
of series, but who was a source of constant help and encouragement
throughout its preparation.

2. Suppose D'a, is a convergent series. If we let
a’g) = 2 2%
v=n+l
then al is defined for each n and we may consider the series }'af).
If this series converges, we say, following Zygmund [14], p. 373, Vol. 1,
that ) a, has convergence of order 1. In general a series ) a, has con-
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vergence of order %, k a non-negative integer, if Y'a® converges, where
a® =a,, b= 2 a*v  (k=1,2,3,..).
v=n++1

The series Y af is called the k-th iterate of ) a,.

The above definition does not permit us to consider the k-th iterate
of a series unless we first assume that the (k—1)-st iterate converges. This
is an unnecessary restriction that can be overcome by the following
procedure; a procedure that will, in addition, suggest a way of extending
repeated convergence to fractional orders.

Suppose a series ) a, has convergence of order k¥ and let

0 = <] =]
7 k K
a? = Zan, a = 2 al,...,a® = Zaﬁl).
0 0 ']
Then
0
a’in) = Qp,
o) n
al) = 2 a, = a®—s®,  where s — Za,,
v=n+1 ym=0

n
a® = oM 2“9.) = a®—a® AD 4 g0
r=0

where s’ is the n-th Cesaro sum of order 1. In general
o® = (—1)f[sh1—a® AK-1p gD AR | 4 (—1)Fa].

It is not necessary for Y'a, to converge in order to define al. If Y'a,
is summable by any method of summation to a®, we may define
a) = a¥ — 5O and likewise for the terms a{, & > 1. Also, since both
s and AF are defined for fractional orders we can define a*! for k fractional
since it consists of terms involving s and 4% only. Finally, if the x-th
iterate is not convergent but is summable (C, y), we express this by saying
that the original series is in the repeated convergence class E,, . Formally,
we have the following definition:

DEFINITION. A series )'a, is said to be in the repeated convergence
class R, ,, 2 =0 or z =a+k—1, 0<a<1, k a positive integer, if
there exist numbers a, a®, ..., a® such that Ya!® is summable (C,y)
to a®, where

a® =a, if =0,
a‘g’) — (_1)k[8:+k—2_a(0)A;+k—2+a(l)A:+k—3_...+(_1)ka(k—l)A;—l]

if z =at+k—1.
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In addition
(—1)a® it » =k,
0 if  is not an integer.

a® —

If 2 =y—Fk, where 0 <y <1, k a positive integer, then the series
is said to be in class R, if ' 4*a,<R,, and Y 4*a, is summable (C, y)
to 4% 'a,. x is called the order of convergence and vy, the order of summability,
of the series. '

Note. The definition of repeated convergence classes of negative
order arises as a consequence of requiring Lemma 3, below, to be valid
for all orders of convergence. Also, the requirement that a® = 0 if z is
not an integer is natural. If } a,¢R,,, # > 0, then a® = 0for 0 < 2’ < #
if ' is non-integral. Thus we have defined classes R, for all ordered
pairs (z, y) of the Euclidean plane with the classes R, , being the Cesaro
summability classes.

The following theorem characterizes repeated convergence classes by
means of asymptotic expansions of Cesaro sums, including, as a special
case, the notion of Cesaro summability. Theorem 1* below makes the
characterization particularly lucid.

THEOREM 1. A necessary and sufficient condition for a series Zdn to
be in class R,,, v = a+k—1, k any integer, 0 < a <1, y arbitrary, is
that there exist constants cq, €y, ..., ¢; Such that for all non-negative inte-
gers r,

Co ARtV 4 e ATV LG ATV 6 AT o (V)
(3) sptvrT =l if ©>0,
o(n¥*")y  if ©< 0.

The ¢; = (—1)ya",j =0,1,...,k—1,

(—1)a®  ife =k,
C =3
k 0 otherwise.

For0< a< 1landy > —1 we can drop the r and the theorem states
Da,eR, , if and only if s3tY = a® A2tV o(nV).

In order to prove this, observe that Ya,¢R,, means > A% ,a{®

Y0

= o(n¥), ) &’ being summable to 0 by definition. But

n n
DAY 0 = 3 AV [ AT — 571 = a9 ATV g,

r=0 v=0

Hence, if ) a,<R,, the left-hand side of the equation is o(n?) and so
8;"'1’ = a‘“’A;+”+o(n”).
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Conversely, if
s:"'” — (°)A:+”—|-o('n”),
then

83— aW G = 3 AY_ 0 = o(n?)
and Z‘ aneR,w.
For the general proof of the theorem we use the following lemmas:

LEMMA 1. Given a series D a,, the sum of whose first k iterates are o,
a", ..., a®. If a; is defined by

k
(4) @ =a,— D A7, v =0,1,..,k,

el d
a =a,, n>Fk,
then the first k iterates of ) a; have sum equal to 0.
The proof of the lemma is straightforward and we return to the
proof of the theorem. First let > 0 and suppose ) a,¢R_,. By Lemma 1,

the series ) a, has the property that the sum of its first % iterates are
all zero. Letting b, = (—1)¥a,® = 8,*~) we see that Y apeR,, if and

n
only if }'b, is summable (C,y) to zero. Thus if #? = }'b, if follows
that 1" = o(W¥*") or &=+ = o(n¥*"). But =0

n k
goEtvtr — Z A:tn:ﬂ-[a'_z A_i—_i'—la(ﬁ]
j=v

ym()

k
= gZtvir_ 2 a) (— 1) AZHV+r=1 — o (n¥+T),
F=0
Hence

gVt = a® ATHVHT _ o) gZvtr—1 4 (__1)eg@ AV o(n¥1T).,

If 4 y-+r is a negative integer, then AZ+Y*"/ are 0 for n large
enough, and s*¥+" = o(n¥*").

Conversely, if

8:'““" —_ a(O)A:+il+r_' a(l)A:+1l+r-1+ et (_ l)ka(z)AZ+r+o(ny+r),
then

n
D ArtalrtE N = (1 [ — aO AT L (— 1) a4
=g

= aD AL o(n¥7).

Hence ¢ is summable (0, y) to a® and ) a,<R,,.
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Suppose z < 0, say ¢ = y—k, where 0 < y < 1, k & positive integer.
We have

n

(5) D Anturraa,

r=0

— (_l)k ZA;—tl:+f —k 1

y=()

n+k
— 1 Y At (1 S g
y=0 =0
k—1 k—r»
— (__l)k TEYHT _ (_ l)kA;+y+r8k_ (_1)k2 (2 Ar+v+r—1)3'—k—l
v Jem]

— (—1)"8:1%+r+ Ak—laoA;+ll+f+o(,nﬂ+r).

If sZt¥+7 = o(n¥*"), then
Z’n‘A;—I—-:’ﬁrAka’ = Ak—laoAr.+"+'+0(’ny+')
v=0
and Y A*a,¢R,,, 3 A*a, is summable (C, y) to 4*'a,
Conversely, if ) a,¢R, ,, then
jA;tg+rAka' — Ak—laoA:':+ﬂ+f+o(nv+r).

p=0

Hence by (5)
A%V gy ALV Lo (nVFT) = (—1)*sTHUPT 4 AF1 gy ATV L o (V7).

and $ZtV*" = o(n¥*") thus proving the theorem.

From Lemma 1 it follows that by changing the first few terms of
a series, which does not effect the repeated convergence class to which
it belongs, we can then state that

THEOREM 1*. Y'a.<R,, if and only if sZ+'*" = o(n’*") for all non-
negative integers r.

3. We turn our attention to the transformations
v, = AR A%, v, =nPA,,
P, q being non-negative integers. The following comparison theorems are
valid.

THEOREM 2. In order that ) v, eR,, ;_, .. p it 18 necessary and sufficient
that there exist a solution u,, of the equation v, = n® A%u, such that > upeR, ,,
where p, § are non-negative iniegers, y any real number and v+4q # 0,1,
2 [IEEXE] p - 1- .
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Also

THEOREM 2*. In order that ) v, e R, , p.,., it is necessary and sufficient
that there exist a solution u, of the equation v, = A% A%, such that Y ureR, ,,
where p, q are non-negative integers, y any real number, and r+q +# 0,1,
2,..,p—1,

Notice that when p = ¢ the order of convergence remains fixed
and the order of summability increases by p under the transformations.
In particular for =0,y > —1, Theorem 2* reduces to Andersen’s
theorem stated in the introduction. When p = 0 the order of summability
remains fixed, the order of convergence increases by ¢. When ¢ = 0 we
have the transformation A?w, and n”u, discussed in the introduction.
In this case the order of convergence decreases by » and the order of
summability increases by p. That the condition on x is needed is seen
by the following counter example.

We prove that .

) 1
R_ d Z B, _
Z nlogn €foro AR 10gn¢ -1

which corresponds to the special case of Theorem 2 whenx =0,y = —1,
p=1,9g=0.But Ynu,eR_,, if and only if ,= o(1/n) by Theorem 1.
n

But

eR_,,. However,

1
=o0(1/n) and so the series
n (1/n) 2 nlogn

1
Z nlog ¢R, _, since the series does not converge and so is certainly
n

not summable (C, —1).
Theorem 2 is a consequence of the following two lemmas:

LEMMA 2. A necessary and sufficient condition for Y'u, to be in class
R, , is that > nu,<R,_, ., provided x 0.

LeMMA 3. In order for 3 v, to be in class R, , it is necessary and sufficient
that there exists a solution w, such that v, = A%, and > upeR, .., 2,y
arbitrary.

Proof of Lemma 2. Suppose D'u,eR,,. The following formula
is well-known (see [2]). For y arbitrary

n+1

(6) D ALy, = —(y+ DS (i 1)eh .,

v=0

n
where s = > u,. Assuming without loss of generality that «©® = "
v=0

= ... =u® =0, it follows from Theorem 1 and (6) that

n+1
Z v, ATEVET = o (0¥ + (n4-1) o (0¥F7) = o(n¥F"HY).

=0
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Since the expression on the left is the (x+y+ r)-th Cesaro sum of
the series ) nu, it follows that 3 nu,eR,_,,.,. In this direction the lemma
holds without any restriction on «.

For the converse result we shall prove that Zu eR,, implies

Z 5 _tn]_ eR,,,,-, provided x # —1. The following formulae are valid:

AL O s EAD
y+2 & AT ot

(7) 8, (v) =

it y #-—-1,—2,-3,...,

m m—k

1
-m — —-m A Am 2
® 5" ,Z sk+n_m(_u); AL
for m =‘1, 2,3, ..., where s} (v) is the Cesaro sum of order y of 2 n+1
and s?(u) is the Cesaro sum of order y of Y u,. To prove (8) observe that
sy (w) = ¥ A7 —' ZA,, sp ™ (u) ——
(@) ;‘ Z o (w2
n A-m
_ —-m m-—2 n—y
= 28" (“)ZA”"‘ v 1
k=0 v=Fk
= ~m A"
> w ) £
k=n—m v=k
m
B _ 1
= 2 sn:nm+k (u) 2 Anf';Av-k+m -n" +1
k=0 v=n—m+k
— mﬁs (,u) v A—m Am—2. 1 .
;:OJ k+n—m ‘éoJ r4-m—Kk <ty v—l—k—i—n—m-{—l .

The derivation of (7) is similar to the derivation of the formula given
by Andersen [1], p. 61. However, since there are differences in the two
derivations, the proof of (7) will be given here.

(0) = ZAV-.- — Z’smza‘“w

k=0

—Z‘s*(u)ZA-H e k+1 ZBn.s (w),

ve=( kmy re=(
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where

AF7iAY_,  ATYAY, A7 A3
B =737 T 538 Tt a1

However, from the Cauchy product rule we have for |z|< 1,

ZA x” —? 2_|__ ] Zanwn+l

+1 0 n=r
But the left-hand side is just
ﬁv‘ﬁf R
v 2" (1—a)’*? L v(r—1)...2 . x(1—z)’ it
r+2)(»+3) T +2(r43).. v+ y+14w
_ v(r—1)...2-1 1 ((1_{”)”2“_1)].
(r+2)(y+3)...(r+1+v) y+2+v»
But
1 y(v—1)...2-1

. = = AV N
A—=ay ™ (r+2)r+3)..(r+2+7)  (+2)4*" Z e
Hence for n+1>»+2 or »<n—1,

Bo =335 e r = Bun = oo
Thus, we have
n+1 '1 8y (u) 8,
(v = 5 T
We assume again that »® = u(l’ =...=u® =0 so that sZ+V*"(u)

=o(n¥*?) for all non-negative integers r. If #+4y-r is not a negative
integer, then from (7) it follows that

n—2
Z+y+r —_ T+Y+r —-r—2 ° n”+r)
HI(0) = 0w ) Dol 4 S o

v==(

If z< —1, then

EH(0) = O (1) o(n ")+ o(nV 1Y) = o(n¥+Y).

u,
Thus ¥V — gZHIHV-147 — 5(g¥=1+7)  gand ZF"leRﬁ_l,,_l by

Theorem 1%*.
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-’D+1H'f
If 2> —1, then S’ _A_;“m converges to ¢,, say, and
Azt
T4Y+r _ —-T—2 y-=1+7
sn w+y+r+2[c. = 10(1’ )]+0(’n )
Co
A3+y+f+o ,nil 1+r
T atytriz ().
83+v+r(,v)
Dividing both sides of the equation by AZ*¥*" we see that W
—>——c°——— as n — oo and hence % . We have therefore
e+y+r+2 z+y+r4+2
&EFVHT () = ¢R,,,, .. However, if
n~2
z = —1 the estimates fails since Zo(v" 2) = Zo(v 1) = o(logn).
re=0 o=

If x+y+r is a negative integer, then it immediately follows from
(8) that
STHUHT — g(m¥trTy,

Now suppose > nu,eR, ,,.,. Then > (n+1)u, ,¢R, ,, ., and by
(n+1)u,,,
n-+4+1
# —1. Hence Y u,eR,, provided = s 0. This completes the proof of

Lemma 2.

Proof of Lemma 3. It suffices to prove the lemma for ¢ =1,
since by repeated application of this special case we obtain the proof
of the general case. Thus, suppose > u,eR,_, .. Let v, = du, and r a non-

negative integer. If x+y+r—1 is not a negative integer and z—1 > 0,
then

what was just proved 2 = du,,,«R,, provided z—1

n+1
-1 +
SEHVT(0) = — D ATIV T U, ug AT
y=(
Thus
(9) s:+1l+f(,v) — _s'fl:itll+f—l(,u)+u A$+v+f+u Az+v+r 1

By hypothesis
SEFVITTN (1) = o ATV 0 ATV L 4 ¢ AT - o (n )

for all non-negative integers r, 2 = k+a—1
Hence

Sa Ut (v) = do ATV A AT T L+ d AT 0 (V)
and ) v,¢R, .
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Conversely, assume }'v,eR,, and assume x4y +r is not a negative
integer and 2> 0. From (9) it follows that

-14u+ +u+ +
StV (u) = ATV T4+ AT Y ug— [Co ARtV . 40, AYTT L o (0¥ )]

= (Ug— Co) ATTV"+ ...+ ¢, AU+ o (V7).
Choosing %, = ¢,— u, then Au, = v, and
sz:_ll+u+r(u) — O'Af,"'""'r— (u;'_”'l))A;+v+r—l+‘..+(_1)kv(z)Ag+r+o(,ny+r)

and hence Y u,cR,_, ,.
If 4 y+ 7 is a negative integer, then from (9) we see that s**¥*7(¢)
=—8t4*""1(u). Since s;t"*"(v) = o(n?*") it follows that Y wu,eR,_, ,.
If z < 0, then choosing u, = u,— u, it follows from (9) that

+y+r z -1 * —1,%
SptVTT(v) = — st (wr) - ARV ug + AT g
Since up = 0,

STV (D) = — T (w?) = o(n¥*).

This completes the proof of the lemma.

Returning to the theorem, we have }'n” A%u,eR, ¢ p ,,p if and only
if Y0P A%, eR; ¢ pi1.yep-1 DY Lemma 2, provided z4-q—p+1 # 0.
Applying Lemma 2 p—1 more times we see that n” A'u,e¢R,, ,_, 4. p if
and only if > 4%,¢R,, , , provided z+¢—j # —1 for j =1,2,...,p.
From Lemma 3 this is true if and only if Y up<R, ,.

Before proving Theorem 2* we need the following theorem which
gives us the inclusion property on the order of convergence and on the
order of summability.

THEOREM 3. (i) If Yu, R, ,,, then Y u,eR, . for y' >y.

(i) If Su,eR, ,, then Yu,eR, , for o' < a.

Proof. For >0,y > —1, (i) is clearly true since 3 4! is summable
(€, y) implies that Y #{ is summable (C,y’). For >0,y < —1, if k is
a positive integer such that y+ %k > —1, then

Yk gk k Ak
ZuneR,,,, = Zn Au,eR, o r = Zn A" u,eRy oy = Z"nGR:,y'

by Theorem 2. For < 0, if ¥ is a positive integer such that z+ k> 0,
then

NtpeRoy = 3 BupeRy oy = ¥ AtyeRpihy = 3 tineR,,
by Lemma 3. This completes the proof of (i).

In order to prove (ii) we firstlet y >0and 2’ > 0. Let ¢ = e+ k—1,
0<a<l1l. We have

n
+ -—x-1
v _ ZA"" &Y,

Pel
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By hypothesis and Theorem 1

n
ST = M AT M eg AT+ e ATV T L g AV + 0 ()]

y=0
= CoAZ Y L0 ATV L 40, AT Y Lo (nY)

since o' —z—1< —1 and D) AT to(+¥) = o(n?).
Also, if 2’ <y + m for some integer m, 0 < m < k, then AZ ™V = o(n¥).
Thus we have
§EHY = ATV f e, ATV AL L b AVt o ().

Hence Y u,cR, .
Suppose x and y are arbitrary. Let p be a positive integer such that
Y+p >0 and g a positive integer such that #'—p+ ¢ > 0. Then

P 4q
ZuneRz.ﬂ = 2,'"’ AupeRy pig,ysp

= Zn” AueRy i yin = Z“nfRz',u
by Theorem 2.

We can now easily prove Theorem 2* using Theorem 3 and noting
that

AL = co+eyn+tcyni+...+c,n?  for some constants ¢;, § =0,...,n.

From this fact and from Theorems 2 and 2* we can also prove
THEOREM 4. A necessary and sufficient condition for Y AL u, to be in

class R, , is that Y n’u,<R,, for », y arbitrary, y# —1, —2, —3, ...
So far we have considered only the transformations

v, = AP A%, and v, = nP A%}

for p, ¢ non-negative integers. If p is not necessarily an integer, say
p =y, it still follows in many cases that

Y 42
E;And UpeRpsg y,yry < ZuneRz,v

although further restrictions on x are necessary. .

In comparing > w, and > A’ A%,, y > 0, ¢ a non-negative integer,
if we let a, = A4%,, then the problem reduces to finding the relation
between )'a, and ) A4 a, and then applying Lemma 3 which connects
> a, and D'u,. The following theorems give us the desired information:

THEOREM 5. If Y a,eR,,, then Y Ala,eR, , .., for vy >0, non-
integral, provided x—y #0,1,2,...

THEOREM 6. If M Aa,eR,_, .y, then Da,eR,, for y >0, non-
integral, provided x #+ 0,1,2, ...
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Combining Theorems 5 and 6 we have

THEOREM 6*. If y > 0, non-integral, x and z—y # 0,1,2,..., then
Ya,eR, , if and only if 3 ALa,eR, , ..

If y is non-integral, positive, and # = y, then Theorem 6 extends
the results of the classical theoremm mentioned in the introduction. Thus,
it } A%a, is summable (C,y+y), then } a, not only is summable (C, )
but is in R, ,.

Borwein [3] has defined Cesaro summability of order < —1 of a series
Ja, in the following way:

A series )'a, is summable (C, —y), y >1 if

n
(10) 2 AZV1AYO) > L as m > oo, where s{)) = 2 a,.

pe=(

From Theorem 6 and Theorem 6 we readily show that this definition
coincides with the one used in this paper. We may suppose (10) converges
to zero as n — oo. Then

n
DA AL >0 a3 n>oo = 3 ALVR,

pm(
< ng)) eR_, _, ¢>2a,,eR,,, —ye

The first equivalence follows from Theorem 1, the second from
Theorem 5 and Theorem 6 and the third, from Lemma 3.
Both theorems are immediate consequences of the following lemma:

LEMMA 4. If Y a,<R, , and if {f,} is a sequence such that

A’fn=0(ny_j)’ j =0,1,2,...,
then

ZanfneRx—V.val
provided x—y #0,1,2,...

The proof is similar to the proofs of Lemmas A and B of Marcinkiewicz
and Zygmund [11]. However, in that paper the authors deal only with
trigonometric series and the proofs correspond to special cases of the
above lemma. Since we are concerned here with a more general situation,
one in which the conclusion of the lemma fails for certain values of the
parameters, we give the complete proof.

Proof of Lemma 4. The lemma will first be proved for -ty an
integer. Let r be any non-negative integer such that #+y+r >0 and
let ¢ =ao+y+r, n, = A4;_,f,. We also suppose for the time being that
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y > ¢ and without loss of generality s, = )’ A!_,a, = o(n*""). Now

r=0

n—{—1

Z'A'n—va.fv =Z":a'v77v =( )H'l Z s, AH-L'] + Z&n kA Mn—% —'Pn+Qn’

=0 pem( y=0

We have
Ak?’ln-k =0(n") for k=0,1,...,¢

and since the relation s* = o(n¥*") implies s*_, = o(n¥*") for n —» oo it
follows that
Qn —_ O(nu+r)0(n?) — o(n”“’*’).

We use here the fact that )'a,eR,, implies Ya,eR;_,_,, since
k—y—r<x. Hence s£™ — o(n¥*") for all non-negative integers
r* and in particular, for r* = r, s* — o(n¥*"). In order to estimate the

expression P, we use the formula

A& Enlly = thkAk‘f At-kﬂnﬂn t=0,1,2,...

k=0

Hence, taking into account that A*f, = 0(»"~*) we obtain

t+1
At+l 26t+1 kA-t k+10(,vv+k —t— 1)

It follows that P, is equal to the sum of the expressions

n—t—1

i1,k Z SEATEO(GRY) for B =0,1,...,1.

y=0

This expression in absolute value does not exceed

n—t—1 —i~1

s Dy OUFNOWTEYALE — oy, )3T 07N A — o)

ya=( v=0

since t—k > —1 and for y > 2, y—2+k—1> —1.

If y <z, then for k a large enough positive integer Z”kanfo-k, vtk
and y>x—k. By what was proved aboveit follows that 3 n*a,f, e B iy yirsr
and by Theorem 2 }'a,f,<R,_, ,,, provided z—y %= 0,1, ..., k—1.

Thus if #— y is a positive integer, then the smallest value for ¥ we can
choose so that y > 2—k is #—y+1 and the latter condition would fail
to hold. Thus the theorem is true for this case provided x—y # 0,1, 2,...

2 — Annales Polonici Mathematicl XXIII
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Suppose that x4+ y+7 = —t—1 is a negative integer. We may write

n

ZA taf, = (— 1) Aay i1 Faciin]

»=0

t
= (—1)t 2 ct,kAka’n—tAl-kfn—t+k

k=0

= (—1) th k(_l)k Ekt:;At kfn —ttk

i—1
— Zo(ny+r+t—k)0(ny—t+k) _ o(n"”“).
k=0

This proves the theorem for z-}+ y integral.
In the case of fractional -+ 7y, we assume for the time being that
z+y>—1,y>xand y > —1. We write

t=lotyl+l, 7 = 4TS~ 1),

Now
n n n n
N Az f, =1, ) AZa,+ Y an, = o)+ D a,n,.
=0 y=0 ve=0 p=0

To the last sum we apply Abel’s transformation ¢+ 1 times,

n—t—1

n
Zarﬂv 2 S, At“ + v k kA Nn—k _Pn+Qn1 say.

=0 1

Now
z O JAZTUT AL, e AT (S, — S
i=
For » = n—k it is easy to see from the above equation that
A = 0O ¥y =0~y for j =0,1,...,k—1,

st = o(n'~®) by Theorem 3 and so s*_, = o(n'™®), k =0,1,...,t Hence
t
Qn = D o' )0 = o(n' =) = o(nHY).
k=1

It remains to extimate the sum P,. On account of the equation

Z 0k7Az+y 7Ak ]f f+Am+” k(fv+k“'fn)
i=
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with ¥ =t+1, P, is a sum of {41 expressions

n—t—1

t gz+y—7i At4+1-7 s
ct+1:i 2 st'n—v A f7+7', J - O, 1’ very t,

y=0

and of the expression
n—t—1
Z AT NSy — )
v=0

The first sum is

n—t—1 n—t—1
D oTATITOW ) = 3] o(ym ) ATHT = o(w?*Y)
r=( r=0

provided y > x. Now

n—1 n—1
fv_fn = Z Afk = Z‘ O(ky_l) for Y = 1
k=v k=v

and

fo—"Tfn = 2 o' for y< 1,

k—v»

Thus in any case we can write
fo=Jfa = (n—»)0 (W )+ 0(»"7)

and the latter sum does not exceed in absolute value

n—t-1 *

3 ot AZH N n— ) O () + 0 (7Y = o(w*).

n—y
v=0

If y<ao or y<< —1, then for ¥ a large enough positive integer
dYn*a,eR, 4 . and y > 2—k, y+k > —1.By what was proved above
d'n*a,eR, _, ,ixiyand by Theorem 2, >a,f,¢R,_, ., provided z—y
#0,1,2,... This proves the theorem for z+t+y > —1.

Assume now that x+y < —1 and in addition assume also that
y>0,y+y>0. We write

D Aztvaf, = Y ATY(af,—af)+ S, D) AZa,.
=0 v=0 y=0
The last term is equal to f,s2tY = O(n')o(nY) = o(n’*¥). Consider

k(2 n

D ATa,(f,—f,) = D) AttUn,, where 4, = a,(f,—f,).

) r=0
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Letting —t—1<<a2+y< —t!, where ¢t is a non-negative integer
we have
n t—1

n
(1) D AT, = (—1) ) AGHH Ay, Y ATHHTI Ay
=0 §=0

v=1{
But
2
A,y = 2 ct,kAt—ka’v—t+kdk(fv—t_fn) and At—k(ar—l+k) = (—1) “Fef-t-1,
f=0

From (11) we obtain

n

t
12) D) A3ty = (-1 2 AT Moy (— 1) R AR, —fu) +

r=0 V— k=0

-1
+ D AT Ay = Pt-Q,.

j=0

Since 4 'y, = o(1) if y <0 and O(»”) it y >0for j =0,1,2,...
y, 1—1 we can write in any case

A7, =0(1) and @, = O(n*VY) = o(n'Y)

agsuming, as we do, that y+y >0, ¥y >0 and 24y < —
Now

14
= (—1) 2 AGHYH 2 0 k(A5 (foi— F)1(— 1) FsE 14

r={

+ 2 AZTV e, o(f,i—fu) (—1)'s7 ™ = Pr+- Py

y={

P';l — Z 0 ((,n_ v)x+1l+t) O(v?—k)o(v—x—t-i-k—l)

y=1{

Z O (n—»)=HVHO (=71 = o(n¥*?)

v={

f

since y+y >0 and 2+y < —{¢ implies y—t—ax—1 > 1. Substituting
s;t— st for s;'! and expanding, we see that P, can be written

(—1)"eqof 2 ALYt "‘(fv_z—f,.)+2A“+”+‘ 87 frrme—Fu) +

’=¢

+ (Faci—fa) 82— AZTYT (L—F,) 874
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The last two terms are respectively. O(n’')o(n=>"Y) = o(n’*") and
since 1—f, = [0(1)+0(n")], the last term is O(n**V*[0(1)4 0(n")]
= o(n¥*?) since y+y > 0. The first term is

n—1 n-1
2 O(n— 1,).q:+u+t0(,,1/—1)0(”—3—3) — Z‘ O(n— ,v)z+v+lo(,‘,‘)'—l—a:—t) = o(n¥?").

v 121

Finally, since f,,, —f, = (n—»)0(")+0(n*"!), the second
term is

3 0(n— o5 (n— ) [0 (") + O ()]

1 n—1

— 0(n— v):c+1l+to (v—a:—r—t—l) +Oo@Y) 2 O(n— ,‘,)a:+v+t 0 (v-z—t)
y={

vl

— O(,n7+ll)+0(n?—l)q(,n'u+l) — o(fn””).

In the general case, we let & be a positive integer such that y+ % > 0
and y+y+k > 0.-Then Y n*a,cR,_, .., and by what has just been proved
Sn*a,f,eRy y_y yiriy and by Theorem 2. Y a,f,eR,_, ,., Provided z—y
#0,1,2,... This completes the proof of the lemma.

If }a,eR,,, « non-integral and greater than 0, then it is not true
that )' A7a,eR, ,. It is known that a Fourierseries S[f]is in R, , uniformly
if and only if f(z) is in the Lipschitz class 4,, see [13], and it is well known
that f(z) being in 2, does not imply that > »°(a, cosnz+b,sinnz) is
summable (C, a) for all z¢(0,2=). However, we do have the following
result:

THEOREM 7. Let x > 0. A necessary and sufficient condition for D' A% a,
to be in class R, , (i. e. to be summable (C, x)) is that > Ala, is summable
by Abel's method and Y a,eR_ ,.

Proof. If ) A47a,cR, ,, then it is summable (4) and by Theo-
rem 6, Y a,cR; ,.

Conversely, suppose > AZa, is summable (4) and Y a,eR,,.

LEMMA 5. Suppose D a,eR,, and a® =a® =... =a® = 0. Then
D Afa, is equisummable (C,x) with D st At1(A7), where  =k+a—1,
0<a<1l, >0 and where AT (AL) i3 the fractional difference of AZ of
order v+ 1.

Proof. The following formula is valid: s—1 <z <s,

(13) D Afa, = ) 's7ANAD) + D A AN (AL, ) +o(1).
j=1

ya( p=0
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To see this, observe that

ZAza _Z(A:Hl(Aa:) ZszAz+l(A:t) 28 2 A x— SA'_H’

r=0 v=0 v=0 y=0 Pp=n—v+1

Now
n 0o n n

T —-z-2 4z — —T—2 4z xz —Z—2 4
der Y ATMAL, = 2' AT AL,+ D Y A;TTA
=0 Pp=n-—v+1 I)=n-rl vl Pp=n-—v+l]

The first term on the right is

n 00

s 2 0@~ 0((v+p)) —Zs D o™ )P (1 +v/p).

vy=0 Pp=n+1 r=0 p=n+l

Since (1+v/p) < 2 the sum is

Zs Z‘ P t%o(1) = Z’s"‘O(n—l) —20(1)0(%“) = o(1).

v=0 p=n+1 =

Consider 28, Z A,* %47, ,. Summing the inner sum by parts

=0 Pp=n—v+1

8 times, where s—1 < z < 8 yields

n—s8

D AL, = Y AT+

Pp=n—v+1 p=n—v+1

8
-T—247 -1 4 —z—2+ 1
+ Z [(-Au+l~7 ! 47 Av+n+1 —7 Anfl—vly Aj A:+2—1‘] .

Now
n—a n—s
—z-2 —r—
.A. z-2+8 48 Af+p)| — O(nz 3) 2 l_Apa: 2+s
p=n—v+1 pP=n—v+1
and
n n-s
Se 3 amasa] o S 5 g
v=0 p=n—v+1 v=0 P=n—v+1

But A,%7?*% iy of constant sign for p > 1. Hence we can omit the
absolute value signs. Thus

2 A-—m 2+sAs(Av+p)’ — O('n," 3)20(1 (.A :t 1+8 A;:_tv—l+a

p=n—v+1
= 0(n*~ 3)o(n_’+") = o(1).
Also
”n n+4+1—3
DA AT AL, = A4, D) sEALT,
(2] y=0

= ANA7,, )80 for j=1,2,
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It is clear that

n &

D8 Y AT AT AT = 0(1).
7=1

y=0
This completes the proof of (13).

If Ya,eR, ,, then YsPeR, ;, , , by Lemma 3 for j =0,1,...,k—1.
By Theorem 6

S azTseR , ,; forj=0,1,..,k—1.

Thus the (C, — j) means of the sequence {4% 75} tend to 0. Taking
the (C, r— 1) means of each side of (13) show that Z'A;”, a, is equisummable
(C, x) with D's? A"+*'(AZL) thus completing the proof of the lemma.

Return to the theorem. We will show that 3 si A°t'(A7) has terms
whose order of magnitude is o(1/n). For that purpose, we state a theorem
by B. Kuttner (see [9], Theorem B):

If $>—1, r+8> —1 and r+s is not an integer, then A4"*°a,
= A"(A4°a,) is valid whenever the expressions on both sides of the equa-
tion exist.

Now suppose « is fractional. Then 4*T(AZ) = A% A*¥*+1(4%) since we
can let r = z—k, s = k+1 in Kuttner’s theorem. Then s > —1, r4 s
=x+1> —1 and r+s is not an integer if » is fractional. But A"*’Aﬁ
= (=142 kbl = (—1)""4%2% ., and 2—k = a—1. Thus

AHAD) = (— 1 A (A )

oo

=£’A;"0(n+p)°" = Zn,‘+ D =P+9,
p=0 p=0 P=n+1

n

Bl =| 45700497 = | 3 45 214 plr 20 (0)|
p=0 0

—n*=t 3p=2e-20(1) = " 20 (") = O(nY),
p=0

191 = D 4;°(2p)*20(1) =27 Y p7t = 0(n7.
p=n+1 p=n+1

Thus, 4°t'(4%) = O(1/n) and since s& = o(1), the terms of the series
have an order of magnitude o(n~'). If « is integral the result trivially
follows.

Hence if the series is summable (A), then it converges. From (13)
it 3 AZa, is summable (4), Y s%A**'(AZ) converges and from the lemma,
D AZa, is summable (C,z). This completes the proof of the theorem.
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